
OPERATION MANUAL

Cat. No. W381-E1-03

3G8F7-DRM21-E

DeviceNetTM PCI Board

Trademarks and Copyrights

COMBICON is a registered trademark of the Phoenix Contact Company.

ODVA, CIP, CompoNet, DeviceNet, and EtherNet/IP are trademarks of ODVA.

Pentium is a trademark of the Intel Corporation.

Windows, Windows 95, Windows 98, Windows NT, Windows 2000, Windows XP, Windows 7,
Visual C++, and Visual Basic are registered trademarks of the Microsoft Corporation.

Other product names and company names in this manual are trademarks or registered trademarks of
their respective companies.

The copyright of the DeviceNet PCI Board and related software belongs to OMRON Corporation.

3G8F7-DRM21-E
DeviceNet PCI Board
Operation Manual
Revised September 2013

TM

iv

Notice:
OMRON products are manufactured for use according to proper procedures by a qualified operator
and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this manual. Always heed
the information provided with them. Failure to heed precautions can result in injury to people or dam-
age to property.

!DANGER Indicates an imminently hazardous situation which, if not avoided, will result in death or
serious injury. Additionally, there may be severe property damage.

!WARNING Indicates a potentially hazardous situation which, if not avoided, could result in death or
serious injury. Additionally, there may be severe property damage.

!Caution Indicates a potentially hazardous situation which, if not avoided, may result in minor or
moderate injury, or property damage.

OMRON Product References
All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers to
an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation “Ch,” which appears in some displays and on some OMRON products, often means
“word” and is abbreviated “Wd” in documentation in this sense.

Visual Aids
The following headings appear in the left column of the manual to help you locate different types of
information.

Note Indicates information of particular interest for efficient and convenient opera-
tion of the product.

1,2,3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

 OMRON, 2000
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or
by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of
OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is con-
stantly striving to improve its high-quality products, the information contained in this manual is subject to change without
notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no responsibility
for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in
this publication.
v

vi

TABLE OF CONTENTS
PRECAUTIONS. xiii
1 Intended Audience . xiv

2 General Precautions . xiv

3 Safety Precautions . xiv

4 Operating Environment Precautions. xv

5 Application Precautions . xvi

6 Conformance to EC Directives. xvii

7 Components . xviii

SECTION 1
Introduction . 1

1-1 Product Configuration . 2

1-2 DeviceNet PCI Board . 2

1-3 Scanner SDK Functions and Features . 3

1-4 Scanner SDK Functions . 4

1-5 System Configuration . 7

1-6 Specifications . 8

1-7 Board Components . 10

1-8 Preparation for Operation . 11

SECTION 2
Software Installation . 13

2-1 Installation Procedure. 14

2-2 Installing the Board in the Computer . 14

2-3 Installing the Drivers . 16

2-4 Installing the Scanner SDK . 27

2-5 DeviceNet Connections . 34

SECTION 3
Using API Functions . 41

3-1 Application Development Environments . 42

3-2 API Functions. 42

3-3 Checking Events . 44

3-4 Checking for Errors . 45

3-5 Parameters . 45

3-6 Using I/O Communications Functions . 48

3-7 Using the Explicit Message Client Function . 49

3-8 Using the Explicit Message Server Function . 51

3-9 Reset Function . 54

3-10 Error Log Functions . 54

3-11 PC Watchdog Timer Management Function . 54
vii

TABLE OF CONTENTS
SECTION 4
API Function Reference . 57

4-1 Function Lists . 58

4-2 Board Status. 61

4-3 Board Management API Functions . 62

4-4 Master Function API Functions. 68

4-5 Slave Function API Functions . 80

4-6 Explicit Message API Functions . 85

4-7 Maintenance API Functions . 95

SECTION 5
Sample Programs . 105

5-1 Sample . 106

5-2 Using DeviceNet Scanner Demo . 106

SECTION 6
Communications Timing . 115

6-1 Remote I/O Communications Characteristics . 116

SECTION 7
Error Processing . 121

7-1 LED Indicators and Error Processing . 122

7-2 Identifying Errors Detected by Functions . 123

7-3 Error Log Function . 125

Revision History . 135
viii

About this Manual:

This manual describes the installation and operation of the 3G8F7-DRM21-E DeviceNet PCI Board
and includes the sections described below.

Please read this manual carefully and be sure you understand the information provided before
attempting to install and operate the 3G8F7-DRM21-E DeviceNet PCI Board.

Section 1 provides an overview of the DeviceNet PCI Board’s functions, specifications, and system
configurations.

Section 2 explains how to set the DeviceNet PCI Board’s board ID, install the Board in the computer,
and connect the communications cable.

Section 3 explains how to install the DeviceNet PCI Board’s drivers and Scanner SDK software.

Section 4 provides flowcharts showing how to use the API functions as well as precautions to observe
when using the API functions. Refer to this section when actually writing the applications required to
use the DeviceNet PCI Board.

Section 5 provides details on the various API functions in the BusDScan.DLL that are used with the
DeviceNet PCI Board.

Section 6 describes the sample programs that have been provided as reference when writing pro-
grams for the DeviceNet PCI Board.

Section 7 describes communications timing in remote I/O communications and message communica-
tions.

Section 8 describes troubleshooting and error processing procedures needed to identify and correct
errors that can occur during DeviceNet PCI Board operation.

!WARNING Failure to read and understand the information provided in this manual may result in per-
sonal injury or death, damage to the product, or product failure. Please read each section
in its entirety and be sure you understand the information provided in the section and
related sections before attempting any of the procedures or operations given.
ix

Terms and Conditions Agreement

Please read and understand this catalog before purchasing the products. Please consult your
OMRON representative if you have any questions or comments.

Exclusive Warranty
Omron’s exclusive warranty is that the Products will be free from defects in materials and work-
manship for a period of twelve months from the date of sale by Omron (or such other period
expressed in writing by Omron). Omron disclaims all other warranties, express or implied.

Limitations
OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, ABOUT
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OF
THE PRODUCTS. BUYER ACKNOWLEDGES THAT IT ALONE HAS DETERMINED THAT THE
PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE.

Omron further disclaims all warranties and responsibility of any type for claims or expenses based
on infringement by the Products or otherwise of any intellectual property right.

Buyer Remedy
Omron’s sole obligation hereunder shall be, at Omron’s election, to (i) replace (in the form origi-
nally shipped with Buyer responsible for labor charges for removal or replacement thereof) the
non-complying Product, (ii) repair the non-complying Product, or (iii) repay or credit Buyer an
amount equal to the purchase price of the non-complying Product; provided that in no event shall
Omron be responsible for warranty, repair, indemnity or any other claims or expenses regarding
the Products unless Omron’s analysis confirms that the Products were properly handled, stored,
installed and maintained and not subject to contamination, abuse, misuse or inappropriate modifi-
cation. Return of any Products by Buyer must be approved in writing by Omron before shipment.
Omron Companies shall not be liable for the suitability or unsuitability or the results from the use
of Products in combination with any electrical or electronic components, circuits, system assem-
blies or any other materials or substances or environments. Any advice, recommendations or
information given orally or in writing, are not to be construed as an amendment or addition to the
above warranty.

See http://www.omron.com/global/ or contact your Omron representative for published information.

OMRON COMPANIES SHALL NOT BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL, OR CON-
SEQUENTIAL DAMAGES, LOSS OF PROFITS OR PRODUCTION OR COMMERCIAL LOSS IN
ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED IN CON-
TRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY.

Further, in no event shall liability of Omron Companies exceed the individual price of the Product on
which liability is asserted.

Read and understand this Manual

Warranty, Limitations of Liability

Warranties

Limitation on Liability; Etc
x

Omron Companies shall not be responsible for conformity with any standards, codes or regulations
which apply to the combination of the Product in the Buyer’s application or use of the Product. At
Buyer’s request, Omron will provide applicable third party certification documents identifying ratings
and limitations of use which apply to the Product. This information by itself is not sufficient for a com-
plete determination of the suitability of the Product in combination with the end product, machine,
system, or other application or use. Buyer shall be solely responsible for determining appropriate-
ness of the particular Product with respect to Buyer’s application, product or system. Buyer shall take
application responsibility in all cases.

NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR
PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO
ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT(S) IS PROPERLY RATED AND
INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

Omron Companies shall not be responsible for the user’s programming of a programmable Product,
or any consequence thereof.

Data presented in Omron Company websites, catalogs and other materials is provided as a guide for
the user in determining suitability and does not constitute a warranty. It may represent the result of
Omron’s test conditions, and the user must correlate it to actual application requirements. Actual per-
formance is subject to the Omron’s Warranty and Limitations of Liability.

Product specifications and accessories may be changed at any time based on improvements and
other reasons. It is our practice to change part numbers when published ratings or features are
changed, or when significant construction changes are made. However, some specifications of the
Product may be changed without any notice. When in doubt, special part numbers may be assigned
to fix or establish key specifications for your application. Please consult with your Omron’s represen-
tative at any time to confirm actual specifications of purchased Product.

Information presented by Omron Companies has been checked and is believed to be accurate; how-
ever, no responsibility is assumed for clerical, typographical or proofreading errors or omissions.

Application Considerations

Suitability of Use

Programmable Products

Disclaimers

Performance Data

Change in Specifications

Errors and Omissions
xi

xii

PRECAUTIONS

This section provides general precautions for using the DeviceNet PCI Board and related devices.
The information contained in this section is important for the safe and reliable application of the DeviceNet PCI
Board. You must read this section and understand the information contained before attempting to set up or
operate a DeviceNet PCI Board as part of a control system.

1 Intended Audience . xiv
2 General Precautions . xiv
3 Safety Precautions . xiv
4 Operating Environment Precautions. xv
5 Application Precautions . xvi
6 Conformance to EC Directives. xvii

6-1 Applicable Directives. xvii
6-2 Concepts. xvii
6-3 Conformance to EC Directives . xviii

7 Components . xviii
xiii

Intended Audience 1
1 Intended Audience
This manual is intended for the following personnel, who must also have
knowledge of electrical systems (an electrical engineer or the equivalent).

• Personnel in charge of installing FA systems.

• Personnel in charge of designing FA systems.

• Personnel in charge of managing FA systems and facilities.

2 General Precautions
The user must operate the product according to the performance specifica-
tions described in the operation manuals.

Before using the product under conditions which are not described in the
manual or applying the product to nuclear control systems, railroad systems,
aviation systems, vehicles, combustion systems, medical equipment, amuse-
ment machines, safety equipment, and other systems, machines, and equip-
ment that may have a serious influence on lives and property if used
improperly, consult your OMRON representative.

Make sure that the ratings and performance characteristics of the product are
sufficient for the systems, machines, and equipment, and be sure to provide
the systems, machines, and equipment with double safety mechanisms.

This manual provides information for installing and operating the DeviceNet
PCI Board. Be sure to read this manual before operation and keep this man-
ual close at hand for reference during operation.

!WARNING It is extremely important that all control products be used for the specified pur-
pose and under the specified conditions, especially in applications that can
directly or indirectly affect human life. You must consult with your OMRON
representative before applying an OMRON control system to the abovemen-
tioned applications.

3 Safety Precautions

!WARNING Never attempt to disassemble the Board or touch the Board while power is
being supplied. Doing so may result in serious electrical shock or electrocu-
tion.

!WARNING Provide safety measures in external circuits, i.e., not in the Programmable
Controller (CPU Unit including associated Units; referred to as “PLC”), in
order to ensure safety in the system if an abnormality occurs due to malfunc-
tion of the PLC or another external factor affecting the PLC operation. Not
doing so may result in serious accidents.

1,2,3... 1. Emergency stop circuits, interlock circuits, limit circuits, and similar safety
measures must be provided in external control circuits.

2. The PLC will turn OFF all outputs when its self-diagnosis function detects
any error or when a severe failure alarm (FALS) instruction is executed.
Unexpected operation, however, may still occur for errors in the I/O control
section, errors in I/O memory, and other errors that cannot be detected by
the self-diagnosis function. As a countermeasure for all such errors, exter-
nal safety measures must be provided to ensure safety in the system.
xiv

Operating Environment Precautions 4
3. The PLC outputs may remain ON or OFF due to deposition or burning of
the output relays or destruction of the output transistors. As a countermea-
sure for such problems, external safety measures must be provided to en-
sure safety in the system.

4. When the 24-VDC output (service power supply to the PLC) is overloaded
or short-circuited, the voltage may drop and result in the outputs being
turned OFF. As a countermeasure for such problems, external safety mea-
sures must be provided to ensure safety in the system.

!WARNING The CPU Unit refreshes I/O even when the program is stopped (i.e., even in
PROGRAM mode). Confirm safety thoroughly in advance before changing the
status of any part of memory allocated to I/O Units, Special I/O Units, or CPU
Bus Units. Any changes to the data allocated to any Unit may result in unex-
pected operation of the loads connected to the Unit. Any of the following oper-
ation may result in changes to memory status.

• Transferring I/O memory data to the CPU Unit from a Programming
Device.

• Changing present values in memory from a Programming Device.

• Force-setting/-resetting bits from a Programming Device.

• Transferring I/O memory files from a Memory Card or EM file memory to
the CPU Unit.

• Transferring I/O memory from a host computer or from another PLC on a
network.

!Caution Confirm safety at the destination node before transferring a program to
another node or changing contents of the I/O memory area. Doing either of
these without confirming safety may result in injury.

4 Operating Environment Precautions
Do not install the PCI Board in any of the following locations.

• Locations subject to direct sunlight.

• Locations subject to temperatures or humidities outside the range
specified in the specifications.

• Locations subject to condensation as the result of severe changes in
temperature.

• Locations subject to corrosive or flammable gases.

• Locations subject to dust (especially iron dust) or salt.

• Locations subject to exposure to water, oil, or chemicals.

• Locations subject to shock or vibration.

Provide proper shielding when installing in the following locations:

• Locations subject to static electricity or other sources of noise.

• Locations subject to strong electromagnetic fields.

• Locations subject to possible exposure to radiation.

• Locations near to power supply lines.
xv

Application Precautions 5
5 Application Precautions
Observe the following precautions when using the DeviceNet PCI Board.

• Install failsafe safety mechanisms to provide safety in the event of incor-
rect signals that may result from signal line disconnections or power inter-
ruptions.

• Always use the power supply voltage specified in this manual.

• Mount the Board only after checking the connectors and terminal blocks
completely.

• Take appropriate measures to ensure that the specified power with the
rated voltage and frequency is supplied in places where the power supply
is unstable. An incorrect power supply may result in malfunction.

• Always connect to a ground of 100 Ω or less when installing. Not connect-
ing to a ground of 100 Ω or less may result in electric shock.

• Install external breakers and take other safety measures against short-cir-
cuiting in external wiring. Insufficient safety measures against short-cir-
cuiting may result in burning.

• Always turn OFF the power supply to the computer or slave before
attempting any of the following. Not turning OFF the power supply may
result in malfunction or electric shock.

• Mounting or dismounting DeviceNet PCI Board.

• Setting rotary switches.

• Assembling the Boards.

• Connecting cables or wiring the system.

• Connecting or disconnecting the connectors.

• Do not attempt to disassemble, repair, or modify any product.

• Be sure that all the board mounting screws, cable screws, and cable con-
nector screws are tightened to the torque specified in the relevant manu-
als. Incorrect tightening torque may result in malfunction.

• Use crimp terminals for wiring. Do not connect bare stranded wires
directly to terminals.

• Double-check all the wiring and switch settings before turning ON the
power supply.

• Wire all connections correctly.

• Observe the following precautions when wiring the cable.

• Separate the communications cables from the power lines or high-ten-
sion lines.

• Do not bend the communications cables.

• Do not pull on the communications cables.

• Do not place heavy objects on top of the communications cables.

• Be sure to wire communications cable inside ducts.

• Place communications cables in ducts.

• Use the specified communications cables.

• Always wire communications and signal lines within the specified con-
nection distances.

• Before touching the Board, be sure to first touch a grounded metallic
object in order to discharge any static built-up. Not doing so may result in
malfunction or damage.
xvi

Conformance to EC Directives 6
• Test the operation of the ladder program and other user programs com-
pletely before starting actual system operation.

• Always transfer the contents of any required DM Area words, HR Area
words, parameters, or other data to CPU Units, CPU Bus Units, and Spe-
cial I/O Units before restarting operating after replacing any of these
Units.

• Be sure that the communications cable connectors, and other items with
locking devices are properly locked into place. Improper locking may
result in malfunction.

• Do not touch circuit boards or the components mounted to them with your
bare hands. There are sharp leads and other parts on the boards that
may cause injury if handled improperly.

• When transporting or storing the product, cover the PCBs with electrically
conductive materials to prevent LSIs and ICs from being damaged by
static electricity, and also keep the product within the specified storage
temperature range.

• When transporting or storing circuit boards, cover them in antistatic mate-
rial to protect them from static electricity and maintain the proper storage
temperature.

• Always enable the scan list before operating the control system.

• Check the baud rate of any new node added to an existing network to be
sure that it agrees with the rest of the network.

• Do not use the computer’s standby or sleep function while you are using
the DeviceNet PCI Board Scanner. If the computer’s standby or sleep
function is activated during Scanner usage, communications may be bro-
ken or other unexpected errors may occur.

• The DeviceNet PCI Board Scanner does not support computer standby or
sleep functions. Do not use the computer’s standby or sleep function
while you are using the DeviceNet PCI Board Scanner.

6 Conformance to EC Directives

6-1 Applicable Directives
• EMC Directives

6-2 Concepts
EMC Directives
OMRON devices that comply with EC Directives also conform to the related
EMC standards so that they can be more easily built into other devices or
machines. The actual products have been checked for conformity to EMC
standards. (See the following note.) Whether the products conform to the
standards in the system used by the customer, however, must be checked by
the customer.

EMC-related performance of the OMRON devices that comply with EC Direc-
tives will vary depending on the configuration, wiring, and other conditions of
the equipment or control panel in which the OMRON devices are installed.
The customer must, therefore, perform final checks to confirm that devices
and the overall machine conform to EMC standards.

Note Applicable EMC (Electromagnetic Compatibility) standards are as follows:
xvii

Components 7
EMS (Electromagnetic Susceptibility): EN61131-2
EMI (Electromagnetic Interference): EN61000-6-4

(Radiated emission: 10-m regulations)

6-3 Conformance to EC Directives
DeviceNet products that meet EC directives must be installed as follows:

1,2,3... 1. Used reinforced insulation or double insulation for the DC power supplies
used for the communications power supply, internal circuit power supply,
and the I/O power supplies.

2. DeviceNet products that meet EC directives also meet the common emis-
sion standard (EN61000-6-4). When DeviceNet products are built into
equipment, however, the measure necessary to ensure that the standard
is met will vary with the overall configuration of the control panel, the other
devices connected to the control panel, and other conditions. You must
therefore confirm that EC directives are met for the overall machine or de-
vice, particularly for the radiated emission requirement (10 m).

The following examples show means of reducing noise.

1,2,3... 1. Noise from the communications cable can be reduced by installing a ferrite
core on the communications cable within 10 cm of the DeviceNet PCI
Board.

Contact:
Nisshin Electric Co., Sales Department No. 3
Tel: +81 4-2934-4151
Fax: +81 4-2934-4155

2. Keep DeviceNet communications cables as short as possible and ground
to 100 Ω min.

7 Components
Be sure that you have received the following components.

• One PCI Board (with communications connector)

• One installation disk (CD-ROM) for Scanner SDK

• One operation manual (this manual)

• One User Registration Card (which also serves as the software usage
license agreement)

Ferrite Core (Data Line Filter): 0443-164151 (manufactured by Nisshin Electric Co.)

30 mm

13 mm 29 mm

33 mm

Impedance Specifications
25 MHz: 156 Ω
100 MHz: 250 Ω
xviii

SECTION 1
Introduction

This section provides an overview of the DeviceNet Scanner SDK functions, specifications, and system configurations.

1-1 Product Configuration . 2
1-2 DeviceNet PCI Board . 2
1-3 Scanner SDK Functions and Features . 3
1-4 Scanner SDK Functions. 4

1-4-1 I/O Communications . 4
1-4-2 Message Communications Function . 5
1-4-3 Maintenance Functions . 6

1-5 System Configuration . 7
1-6 Specifications. 8

1-6-1 DeviceNet PCI Board General Specifications 8
1-6-2 DeviceNet Communications Specifications 8
1-6-3 Scanner SDK Communications Specifications 9
1-6-4 Development Environment . 9
1-6-5 Dimensions . 10

1-7 Board Components . 10
1-8 Preparation for Operation . 11
1

Product Configuration Section 1-1
1-1 Product Configuration
The 3G8F7-DRM21-E DeviceNet PCI Board includes the PCI Board (hard-
ware) and the Scanner SDK software on CD-ROM.

1-2 DeviceNet PCI Board
The PCI Board is used as an interface to other software, such as the
DeviceNet Configurator, NetXServer, and Analyzer.

DeviceNet Scanner SDK The DeviceNet Scanner SDK (this product) is a library for developing applica-
tions that operate as DeviceNet Masters or Slaves. It is supplied as a DLL file
for a Windows environment.

Use the Scanner SDK to develop Master/Slave applications with industry-
leading performance and functions.

PCI Board Scanner SDK

3G8F7-DRM21-E DeviceNet PCI Board Scanner

DeviceNet Scanner SDK

DeviceNet Configurator

NetXServer for DeviceNet

DeviceNet Analyzer

DeviceNet PCI Board Scanner

WS02-CFDC1-E DeviceNet
Configurator

WS02-NXD@-1 NetXServer
for DeviceNet

WS02-ALDF-E DeviceNet
Analyzer
2

Scanner SDK Functions and Features Section 1-3
DeviceNet Configurator The DeviceNet Configurator is a Windows-based application that supports
construction of DeviceNet networks. The Configurator is used not only for set-
ting parameters and monitoring OMRON Master and Slave devices, but also
for setting parameters for slaves from other manufacturers, simply by installing
the EDS files.

The Configurator provides extensive support for managing networks, from
design through to maintenance.

NetXServer for DeviceNet The NetXServer is middleware that operates in a Windows environment. The
NetXServer collects I/O data from a DeviceNet network and provides it to
monitoring and other applications. It operates as a DDE server.

NetXServer enables I/O data monitoring without affecting Master or Slave
communications.

The following two types of NetXServer are available:

DDE Edition: For monitoring I/O data using a DDE client (e.g., Microsoft
Excel)

SDK Edition: Library for developing monitoring applications using NetXServer
functions

DeviceNet Analyzer The DeviceNet Analyzer is a Windows-based application for analyzing mes-
sage frames on a DeviceNet network.

The DeviceNet Analyzer can display the message frames being transmitted
on a network and indicate traffic status. It can be used to find the source of
errors and for developing DeviceNet-compatible devices.

1-3 Scanner SDK Functions and Features
DeviceNet
Communications
Functions

The Scanner SDK is equipped with the following communications functions.

• I/O communications functions that exchange I/O data with other
DeviceNet nodes:

DeviceNet Master function
DeviceNet Slave function

• DeviceNet explicit messaging functions (client and server functions)

In addition to the communications functions above, the Scanner SDK has a
status function that reads the status of the node (Master/Slave) and the net-
work and an error log function that records errors and their time of occur-
rence.

Note The DeviceNet network is capable of exchanging I/O with distant Slaves
through a single cable. Moreover, Slaves and other Masters can be controlled
and monitored by sending and receiving explicit messages. Refer to the
DeviceNet Operation Manual (W267) for more details.

In this manual, the “client” is the node that sends a message requesting ser-
vices and the “server” is the node that receives the message, performs the
requested processing, and returns a response.

DeviceNet
Communications Features

The Scanner SDK has the following features:

Exchange I/O Data with DeviceNet Slaves

The status of I/O points on DeviceNet Slaves is mirrored in the DeviceNet PCI
Board. I/O can be performed with a specified Slave by calling the functions for
reading and writing I/O data.
3

Scanner SDK Functions Section 1-4
Use Other Vendor’s DeviceNet-compatible Devices

DeviceNet is a worldwide standard, so any manufacturer’s Slave can be con-
nected as long as it is DeviceNet compatible.

I/O Capacity of 37,800 Bytes for Up To 63 Slaves

The Scanner SDK provides 37,800 bytes for I/O allocation to up to 63 Slaves
(input: 25,200 bytes; output: 12,600 bytes).

Use API Functions to Control Devices

All Scanner SDK functions are provided as API functions. User applications
are created using the API functions.

Check Events with Windows Messaging or Polling

Events can be checked in two ways: automatic notification by Windows mes-
saging and monitoring (polling) of the Board’s event queue by user applica-
tions. Use the method most appropriate for each application.

1-4 Scanner SDK Functions

1-4-1 I/O Communications
Master Function The Scanner SDK Master function provides two 200-byte input areas (100

words or 1,600 points) and one 200-byte output area (100 words or 1,600
points) for allocation to each slave.

I/O communications are executed according to the scan list registered by the
Scanner SDK. Scan lists record information such as the number of input and
output bytes for each slave.

Computer

T-branch Tap

Output Slave

Solenoid

Relay

Input Slave

Sensor
Switch

One-cable, reduced
wiring
Max. network length
of 500 m

DeviceNet
communications
cable

Connect up to 63 DeviceNet
Slaves.

T-branching and multi-
drop wiring can be
combined freely.

Other company's Slaves
can be connected.

Application program

API functions

PCI Board
4

Scanner SDK Functions Section 1-4
Maximum Numbers of I/O Points and Slaves

The following table shows the max. number of I/O points, max. number of
Slaves, and max. number of I/O connections allowed by the Scanner SDK’s
Master function.

Note Two input areas have been provided for each slave, but normally only the first
area is used. If two connections are used at the same time, then the second
input area can be used.

Slave Function The Scanner SDK Slave function provides two 200-byte input areas (100
words or 1,600 bits) and one 200-byte of output area (100 words or 1,600
bits). The following methods can be used to register the Master in the slave
scan list.

1,2,3... 1. Use functions to register Slaves individually or in a group.

2. Register Slaves in a group by specifying a parameter file that was created
with the OMRON DeviceNet Configurator.

A slave scan list must be registered in the Scanner SDK for nodes to operate
as Slaves.

Maximum Numbers of I/O Points and Masters

The following table shows the max. number of I/O points and max. number of
Masters allowed by the Scanner SDK’s Slave function.

Note Two input areas have been provided, but normally only the first area is used. If
two connections are used at the same time, then the second input area can
be used.

1-4-2 Message Communications Function
Explicit Message
Communications

The DeviceNet PCI Board supports explicit message communications.

As a client, the DeviceNet PCI Board can send explicit messages to control or
monitor other nodes in the DeviceNet network when necessary.

As a server, the DeviceNet PCI Board can receive explicit messages from
other nodes. (The requested processing and responses must be handled in
user applications.)

Explicit message communications can be used to freely communicate with
DeviceNet-compatible devices produced by other companies.

Item Specification

Max. number of I/O
points

Input: 25,200 bytes (= 12,600 words or 201,600 points)
Output: 12,600 bytes (= 6,300 words or 100,800 points)

Max. number of I/O
points per Slave

Input: 200 bytes × 2 (= 100 words × 2 or 1,600 points × 2)
Output: 200 bytes (= 100 words or 1,600 points)

Max. number of Slaves 63 Slaves (Node addresses 0 to 63 can be used.)

Max. number of I/O con-
nections per Slave

2 max.

Item Specification

Max. number of I/O points Input: 200 bytes × 2 (= 100 words × 2 or 1,600 points × 2)
Output: 200 bytes (= 100 words or 1,600 points)

Max. number of Masters 1 Master
5

Scanner SDK Functions Section 1-4
Maximum Number of
Connections

The following table shows maximum number of connections allowed.

1-4-3 Maintenance Functions
Read Status Functions The DeviceNet PCI Board can read the following information, including set-

tings and the operating status of the nodes (Master/Slaves) and network.

• Scanner SDK’s DLL version

• DeviceNet PCI Board’s driver version

• Whether or not the DeviceNet PCI Board is installed

• Network status

• Operational status in the network/status in remote I/O communications

• Communications status

• Whether or not each Slave is registered in the scan list

• Each Slave’s device status

Reset Function The DeviceNet PCI Board can be reset (initialized) with a command from the
computer.

Communications Cycle
Time Management

This function can set the communications cycle time (interval between the
exchange of the Slave’s I/O) and read or clear the minimum and maximum
values.

Error Log The DeviceNet PCI Board has an error log function that records information
on errors that occur during operation. The error log can be checked to pin-
point errors for faster error processing and recovery.

PC Watchdog Timer
Management

Remote I/O can be made to stop automatically if the application that controls
the DeviceNet PCI Board stops for some reason. The Board’s PC watchdog
timer is refreshed regularly from the computer (application) to notify the Board
that the application is operating normally.

Item Specification

Max. number of client connec-
tions

63 connections (1 connection per server)

Max. number of server con-
nections

4 connections (1 connection per client)
6

System Configuration Section 1-5
1-5 System Configuration
The following diagram shows the various device connections allowed.

Note Refer to the following manuals for information on Slaves.

• DRT2 Series DeviceNet Slave Operation Manual (W404)

• C200HW-DRT21, CQM1-DRT21, and DRT1 Series DeviceNet Slave
Operation Manual (W347)

• DRT1-COM and GT1 Series DeviceNet MULTIPLE I/O TERMINAL Oper-
ation Manual (W348)

Baud Rate and Distance The following table shows the relationship between the baud rate and commu-
nications distance in the DeviceNet network.

Slave Connection
Methods

Slave devices can be connected in two ways. These connection methods can
be combined in the same network.

Note Refer to the DeviceNet Operation Manual (W267) for details on connection
methods and grounding.

Input Slave

Output Slave

Output Slave

Input Slave

Trunk line

DeviceNet Cable

Drop line

(A cable with terminators
connected on both ends.)

Slave connected by
the multi-drop method

Slave connected by the T-branch
method using a T-branch Tap

T-branch Tap with
terminator installed

PCI
Board

(A cable branching from the
trunk line, 6 m max.)

Baud rate Maximum network length Drop line
length

Total drop line
lengthThick cable Thin cable

500 kbps 100 m max. 100 m max. 6 m max. 39 m max.

250 kbps 250 m max. 78 m max.

125 kbps 500 m max. 156 m max.

Method Description

T-branch Method Slaves are connected to a drop line from the trunk line or
branch line created with a T-branch Tap.

Multi-drop Method Slaves are directly connected to the trunk line or the drop line.
7

Specifications Section 1-6
1-6 Specifications

1-6-1 DeviceNet PCI Board General Specifications

The DeviceNet PCI Board conforms to PCI Local Bus Specification Rev. 2.

1-6-2 DeviceNet Communications Specifications

Note Indicates the max. length when thick cables are used. Reduce the network
length to 100 m max. when using thin cables. When using both thick and thin
cables together, refer to the DeviceNet Operation Manual (W267) for details
on the maximum network length.

Item Specifications

Dimensions 119.9 × 106.7 mm (W × H)

Operating voltage range 5 VDC ± 5% (3.3 VDC is not used.)

Current consumption Internal power supply: 290 mA max. at 5 VDC
Communications power supply: 30 mA max. at 24 VDC

Vibration resistance 10 to 57 Hz, 0.075-mm double amplitude, 57 to 150 Hz, acceleration: 9.8 m/s2 in X, Y, and Z
directions for 80 minutes each (Time coefficient; 8 minutes × coefficient factor 10 = total time
80 minutes)
DIN Track installation: 2 to 55 Hz, 2.94 m/s2 in X, Y, and Z directions for 20 minutes each

Shock resistance 147 m/s2 three times each in X, Y, and Z directions

Ambient temperature Operating: 0 to 55°C
Storage: –20 to 60°C

Humidity 10% to 90% (with no condensation)

Atmosphere Must be free from corrosive gas

Weight 91 g max.

Max. number of Boards 3 Boards/computer max.

Item Specification

Communications protocol DeviceNet

Connection forms Multi-drop and T-branch connections can be used for trunk or drop lines.
Terminators must be connected at both ends of the trunk line.

Baud rate 500 kbps, 250 kbps, or 125 kbps (Specified with the SCAN_Online function.)

Communications media Special 5-wire cables (2 signal lines, 2 power lines, 1 shield line)

Communica-
tions distances

500 kbps Network length: 100 m max.
Drop line length: 6 m max.
Total drop line length: 39 m max.

250 kbps Network length: 250 m max. (see note 1)
Drop line length: 6 m max.
Total drop line length: 78 m max.

125 kbps Network length: 500 m max. (see note 1)
Drop line length: 6 m max.
Total drop line length: 156 m max.

Communications power supply 11 to 24 VDC, 30 mA (supplied through the communications connector)

Max. number of Slaves 63 Slaves

Communications cycle time (see
note 2)

Set between 1 and 500 ms with the SCAN_SetScanTimeValue() function.

Error control checks CRC error check, node address duplication check, scan list verification

Cable 5 conductors (two signal wires, two power supply wires, and one shield wire)
8

Specifications Section 1-6
1-6-3 Scanner SDK Communications Specifications

Note The communications cycle time is the maximum time from when remote I/O
communications are executed by the Master to a Slave until remote I/O com-
munications are executed again for the same Slave.

Minimum System
Requirements

Hardware Requirements

IBM PC/AT or Compatible

• At least one PCI bus slot (PCI bus Rev. 2.0 or later)

• 5 MB min. free hard disk space
(plus additional space for the user program)

• One CD-ROM drive is required to install the software.

• VGA or better display functions.

The processor, memory capacity, and other specifications not listed above
should conform to the recommendations for the operating system used.

OS

Microsoft Windows 95, 98, Me, NT 4.0, 2000, XP, 7, 3.1, and NT 3.5 are not
supported.

1-6-4 Development Environment
Recommended
Development Environment

Microsoft Visual C++ (Ver. 6.0 or later.)

Other Development
Environments

• Microsoft Visual Basic
Some functions are limited. Refer to Precautions when Using Other
Development Environments under 3-1 Application Development Environ-
ments for details.

• Borland C++ Builder
Refer to Refer to Precautions when Using Other Development Environ-
ments under 3-1 Application Development Environments for details.

Item Specifications

Supported I/O connections • Bit Strobe
• Polling
• Cyclic
• Change of State (COS)
• Explicit Peer-to-peer Messaging

Communications cycle time (See note.) 2 to 500 ms (Can be specified using API functions.)

Number of server nodes capable of simultaneous
communications as explicit clients

63 nodes

Number of client nodes capable of simultaneous
communications as explicit servers

4 nodes

Data length for explicit messages Client:
Explicit message request: 552 bytes
Explicit message response: 552 bytes

Server:
Explicit message request: 552 bytes
Explicit message response: 552 bytes

Response monitoring time for explicit messages (for
clients)

2 s (default) (Can be specified using API functions.)

Retries for explicit messages 0 (Retries must be performed by the user application.)
9

Board Components Section 1-7
1-6-5 Dimensions
The following diagram shows the dimensions of the DeviceNet PCI Board.
(The height of components on the Board is within specifications for a single
PCI slot.)

1-7 Board Components

132.3 mm

119.9 mm

10
6.

7
m

m

12
6.

4
m

m

21.6 mm

14.7 mm

(The height of the component surface
will fit in one PCI bus slot.)

LED indicators (MS and NS)

Board ID switch

Communications connector

PCI interface

These are the DeviceNet MS
(module status) and NS (net-
work status) indicators.

When two or more DeviceNet PCI
Boards are installed in a computer,
the computer uses the board ID
settings to distinguish the Boards
from each other. Set unique deci-
mal board IDs between 0 and 7.

Connects the Board to the DeviceNet
communications cable.

Connects the Board to the
computer's PCI slot.
10

Preparation for Operation Section 1-8
LED Indicators The following table explains the operation of the LED indicators.

Board ID When two or more DeviceNet PCI Boards are installed in a computer, the
computer uses the board ID settings to distinguish the Boards from each
other. Specify the board ID in API functions to identify the desired board.

Set the board ID in decimal as shown in the following diagram. The allowed
setting range is 0 to 7. (The factory setting is 0.)

Up to 3 DeviceNet PCI Boards can be installed in one computer.

Note Any board ID from 0 to 7 can be set, as long as the ID is not set on another
DeviceNet PCI Board in the computer. (It is physically possible to set board
IDs 8 and 9, but the Board cannot be used properly with these settings.)

1-8 Preparation for Operation
Hardware Settings If more than one DeviceNet PCI Board is being installed in one computer, set

the board IDs on the Boards’ rotary switches so that the different Boards can
be distinguished from one another. Refer to 2-2 Installing the Board in the
Computer for details.

Always set the rotary switches before turning ON the computer.

Installation on Computer Install the Board in the computer. Refer to 2-2 Installing the Board in the Com-
puter for details.

Software Installation Install the DeviceNet PCI Board driver and software required to use the Board
from the computer. Refer to 2-3 Installing the Drivers and 2-4 Installing the
Scanner SDK for details.

Writing the Program Write the programs (user applications) that make software settings and con-
trol the Board. Refer to SECTION 3 Using API Functions through SECTION 7
Error Processing for details.

Reference Information Refer to 2-5 DeviceNet Connections for information on communications cable
connections.

Refer to the DeviceNet Operation Manual (W267) for information on wiring
DeviceNet networks.

Refer to the DeviceNet Slave Operation Manuals (W404 and W347) and the
DeviceNet MULTIPLE I/O TERMINAL Operation Manual (W348) for informa-
tion on Slaves.

Indicator status Meaning

MS NS

OFF OFF Boot program initialization is in progress.

Flashing green OFF Scanner firmware initialization is in progress.

Lit green OFF Waiting for online request.

Lit green Flashing green A connection was established and I/O communi-
cations are in progress.

Waiting for a connection from the Master.

Lit green Lit green I/O communications or message communications
are in progress.
11

Preparation for Operation Section 1-8
12

SECTION 2
Software Installation

This section explains how to install the DeviceNet PCI Board in a computer, how to install the software, and how to connect
the communications cables.

2-1 Installation Procedure . 14
2-2 Installing the Board in the Computer. 14
2-3 Installing the Drivers . 16
2-4 Installing the Scanner SDK . 27
2-5 DeviceNet Connections . 34

2-5-1 Attaching Connectors to the DeviceNet Cable 34
2-5-2 Connecting Communications Cables . 36
13

Installation Procedure Section 2-1
2-1 Installation Procedure
There procedure for installing the DeviceNet PCI Board and its software is
outlined below.

Note For Windows 2000, XP, or 7, you must log in with administrator rights to install
the driver and Scanner SDK Software.

2-2 Installing the Board in the Computer
This section explains how to make the required settings on the DeviceNet PCI
Board and install the Board in the computer.

Preparation for
Installation

The DeviceNet PCI Board is plug-and-play compatible with MicroSoft Win-
dows. Check the following points before installing the Board.

Note Use the following procedure to identify which IRQ numbers are being used by
the ISA bus.

1,2,3... 1. Start the computer without the DeviceNet PCI Board installed.

2. Start the Device Manager (Control Panel/System/Device Manager).

3. Open the properties of the relevant devices and check their IRQ (Interrupt
Request) settings in the Resources tab.

Installing the Board in the Computer
Set the board ID (rotary switch) and install
the Board in the computer.

Installing the Driver
Install the DeviceNet PCI Board driver.

Installing the Scanner SDK Software
Install the provided Scanner SDK
software.

Windows NT 4.0
Windows 95, 98, Me, 2000, XP, or 7

Check point Description

Available PCI slot Make sure that the computer has an available PCI slot.

IRQ conflict The DeviceNet PCI Board uses an IRQ.

IRQ settings are allocated automatically to the PCI bus, but
not to the ISA bus. In computers with ISA slots, the computer
may not boot completely if there is an IRQ conflict with the ISA
bus. In this case, make one of the following changes in the
BIOS settings:

• Enter the BIOS setup and specify a non plug-and-play (PnP)
operating system.

• Enter the BIOS setup and reserve the IRQ numbers (disable
automatic allocation of these IRQ numbers) that are used by
the ISA bus so that these IRQ numbers will not be allocated
automatically to the PCI bus.

Refer to the computer’s User’s Guide for details on entering
the BIOS setup and changing the settings. (See note below for
details on identifying IRQ numbers.)
14

Installing the Board in the Computer Section 2-2
Board ID Setting Set the board ID on the DeviceNet PCI Board’s rotary switch before installing
the board.

Note Static electricity can damage the DeviceNet PCI Board’s electronic
components. Do not touch the Board’s connector or components.

Set a board ID between 0 and 7. If two or more DeviceNet PCI Boards are
being installed in the computer, be sure that each Board has a unique board
ID setting. The factory setting is 0.

Installing the Board in the
Computer

Install the DeviceNet PCI Board in one of the computer’s PCI slots.

Refer to your computer’s User’s Guide for details on installing a PCI card in
the computer.

Note (1) Turn OFF the computer power supply before installing the DeviceNet PCI
Board.

(2) Take precautions against static electricity.

1,2,3... 1. Disconnect all cables from the DeviceNet PCI Board.

2. Turn OFF the computer in which the board is being installed and unplug
the computer’s power cord.

3. Remove the computer’s case and make any other preparations needed to
install a PCI board. (Refer to your computer’s User’s Guide for details.)

4. Align the Board with the computer’s PCI slot, slide it into position, and
press it firmly into the slot. Check that the Board’s PCI interface is com-
pletely and evenly installed into the PCI slot. Do not use much force when
pressing the board; it should slide into the slot with little resistance.

5. Pull on the Board lightly to check that it is installed securely and won’t slip
out.

6. Secure the Board by tightening the retaining screw, indicated by (b) in the
diagram, to 0.5 N⋅m.

7. Attach the case to the computer and turn ON the power.

8. The installation method differs depending on the type of Windows operat-
ing system used. Refer to the following during installation.

• Windows 95, 98, Me, 2000, XP, or 7
After the computer is started, the Board will be detected as new hardware
and the InstallShield Wizard will start. Refer to 2-3 Installing the Drivers
for the rest of the installation procedure.

• Windows NT 4.0
The PCI Board will not be recognised when the computer is started.
Install the driver for the PCI Board at the same time as Scanner SDK.
Refer to 2-4 Installing the Scanner SDK for the rest of the installation pro-
cedure.

(b)

(a)
15

Installing the Drivers Section 2-3
2-3 Installing the Drivers
After the Board is installed in the computer and the computer is started, the
Board will be detected as new hardware (except for Windows NT computers,
see note). Install the driver to ensure correct operation of the Board.
The installation method and windows displayed when installing the driver will
differ depending on the Windows operating system used.
This section describes driver installation for Windows 98, XP, and 7.

Note The Board will not be automatically detected with Windows NT 4.0.
The driver must be installed with Scanner SDK. Perform the instal-
lation procedure described in 2-4 Installing the Scanner SDK.

Windows 98 Installation

1,2,3... 1. After the Board is installed in the computer and the computer is started, the
Board will be detected as new hardware and the Add New Hardware Wiz-
ard will start automatically as shown in the following diagram.
Click the Next Button.

2. A window will be displayed to select the driver search method. Select Dis-
play a list of all ... and click the Next Button.
16

Installing the Drivers Section 2-3
3. Select Other devices as the device type and click the Next Button.

4. Click the Have Disk Button to specify the hardware model.
17

Installing the Drivers Section 2-3
5. Insert the Scanner SDK CD-ROM disk in the CD-ROM drive.

6. Specify the CD-ROM drive’s Win98 directory as the source location and
click the OK Button.
(You can click the Browse Button to display a list of the actual directories
and select the Win98 directory from that list. The following example win-
dow shows the CD-ROM drive as drive A.)

7. When the driver information has been read from the CD-ROM, select
OMRON 3G8F7-DRM21-E PCI Adapter as shown in the following dia-
gram.
Click the Next Button.
18

Installing the Drivers Section 2-3
8. Check the displayed message and click the Next Button if the correct driver
is displayed. The drivers will be installed.

9. A completion message will be displayed when installation of the Windows
98 drivers is completed. Click the Finish Button to complete the installa-
tion.
19

Installing the Drivers Section 2-3
Windows XP Installation

Note You must login to Windows XP with Administrator rights to install the driver.

1,2,3... 1. After the Board is installed in the computer and the computer is started, the
Board will be detected as new hardware and the Found New Hardware
Wizard will start automatically as shown in the following diagram. Select In-
stall from a list or specific location (Advanced), as shown in the following
diagram, and then click the Next Button.

2. Insert the Scanner SDK CD-ROM into the CD-ROM drive.
20

Installing the Drivers Section 2-3
3. Select Search for the best driver in these locations for the search and in-
stall option, and select the Include this location in the search option.
Click the Browse Button, specify the CD-ROM drive’s Win2000 folder (see
following diagram), and then click the Next Button.

Note In this example, the CD-ROM drive is drive F.

4. The driver installation will start.
21

Installing the Drivers Section 2-3
5. The following window will be displayed during installation, but it does not
indicate an error. Click the Continue Button to continue the installation.

6. A completion message will be displayed when installation of the driver has
been completed (see diagram.) Click the Finish Button to complete the in-
stallation procedure.
22

Installing the Drivers Section 2-3
Windows 7 Installation

Note For Windows 7, you must log in with administrator rights to install the driver.

1,2,3... 1. After the Board is installed in the computer, start the Device Manager. New
hardware will be detected automatically.

Open the Device Manager,*1 and double-click Other devices.

*1.To open the Device Manager, click the Windows Start Button and select Control
Panel, Hardware and Sound, and Device Manager in that order.
23

Installing the Drivers Section 2-3
2. The Network Controller will appear under Other devices.
Right-click Network Controller and then select Update Driver Software
from the menu.

3. How do you want to search for driver software? will be displayed.
Click Browse my computer for driver software.

4. Place the CD-ROM containing the Scanner SDK into the CD-ROM drive.
24

Installing the Drivers Section 2-3
5. Browse for driver software on your computer will be displayed.
Click the Browse Button, specify the Win2000 folder on the CD-ROM drive
(see following figure), and click the Next Button

* The following figure shows an example for which drive D is the CD-ROM
drive.

6. The following dialog box will be displayed. Click Install this driver soft-
ware anyway to start installation.
25

Installing the Drivers Section 2-3
7. The installation will start.

8. A completion message (see the following figure) is displayed after the in-
stallation process is completed.
Click the Close Button to complete driver installation.
26

Installing the Scanner SDK Section 2-4
2-4 Installing the Scanner SDK
This section describes how to install the Scanner SDK.

Note The procedure and displays will vary with the Windows OS that you
are using.
This procedure is for Windows 7.

To install software on Windows 7, you must log in with administrator
rights.

Installation Procedure

1,2,3... 1. End all applications that are currently running.

2. Place the CD-ROM containing the Scanner SDK into the CD-ROM drive.

3. Click the Windows Start Menu and select Search for programs and files.
27

Installing the Scanner SDK Section 2-4
4. Enter d:\setup in the Search for programs and files box that is displayed.
Specify the drive into which you inserted the CD-ROM drive. For example,
if you inserted the CD-ROM to the F drive, enter f:\setup.

5. Click setup in the search results.

6. The User Account Control Dialog Box will be displayed. Click the Yes But-
ton to continue unless there is a problem.

7. Installation of the software will start.
The InstallShield will start preparations for installation.
28

Installing the Scanner SDK Section 2-4
8. When the setup dialog box is displayed, click the Next Button.

9. The software license agreement will be displayed.
Check all of the items in the agreement and click the Yes Button if you
agree to the license agreement.
If you do not agree, click the No Button.

Note If you do not agree, the installation will be stopped.
29

Installing the Scanner SDK Section 2-4
10. Select the installation folder.
The following folder is the default installation folder.
C:\Program Files\OMRON\DeviceNet Scanner SDK
To change the folder, click the Browse Button and specify the drive and
folder. (If you specify a folder that does not exist, it will be created automat-
ically.)
After you specify the drive and folder, click the Next Button.
A dialog box is displayed to specify the folder in which to register the pro-
gram in the Windows Start Menu.
30

Installing the Scanner SDK Section 2-4
11. Specify the program folder in the Windows Start Menu in which to create a
shortcut to the DeviceNet Scanner SDK.
The default is to create shortcut in a program folder called DeviceNet
Scanner SDK.
To change the program folder, select from the existing folders or enter the
folder name directly.

(If the specified folder does not exist, it will be created automatically.)
After you specify the drive and folder, click the Next Button.
The installation will be executed and the files will be copied.
The progress of the installation will be displayed as a percentage.
31

Installing the Scanner SDK Section 2-4
12. A completion message (see the following figure) is displayed after the in-
stallation process is completed.
Click the Finish Button to complete the installation.

Installed Files When the Scanner SDK is installed, the following folders are created and the
required files are installed.

The following table shows the folders and files that are created and installed
when the default folders are used.:

Removing the DeviceNet
Scanner SDK Software

If the DeviceNet Scanner SDK Software is no longer needed, the files and
other information can be removed with the following procedure. (Only the
installed files and information will be removed. Files created later will not be
removed.)

1,2,3... 1. Select Start/Settings/Control Panel from the Windows Start Button.

2. Double-click the Add/Remove Programs Icon in the Control Panel.

3. Select DeviceNet Scanner SDK from the list. Click the Add/Remove But-
ton.

Default Folder Contents

\Program Files\OMRON\DeviceNet Scanner
SDK\Manual\

The PDF file of this manual is
installed.

\Program Files\OMRON\DeviceNet Scanner
SDK\Program\

Execution files for the sample pro-
gram are installed.

\Program Files\OMRON\DeviceNet Scanner
SDK\SDK\Include\

A sample Include file is installed.

\Program Files\OMRON\DeviceNet Scanner
SDK\SDK\Lib\

The library files used for static links in
Microsoft Visual C++ are installed.

\Program Files\OMRON\DeviceNet Scanner
SDK\SDK\Sample\

A sample program is installed.
32

Installing the Scanner SDK Section 2-4
4. A confirmation message will be displayed. Click the OK Button to proceed.

5. Removal of the application will start.

6. During removal, messages asking if detected shared files are to be deleted
may be displayed (see diagram below).

• If other DeviceNet applications, such as the Configurator, NetXServer, or
Analyzer, are installed, click the No Button. Do not delete the shared files.
33

DeviceNet Connections Section 2-5
• If no other DeviceNet applications are installed, click the Yes Button. The
shared files can be deleted.

7. A completion message will be displayed when removal of the driver has
been completed (see diagram.) Click the Finish Button to complete the in-
stallation procedure.

2-5 DeviceNet Connections
Connect the DeviceNet communications cables after installing the Board.
This section explains how to prepare and connect the communications cables
to the DeviceNet PCI Board only. Refer to the DeviceNet Operation Manual
(W267) for details on connecting cables to Slaves.

2-5-1 Attaching Connectors to the DeviceNet Cable
This section explains how to attach connectors to the network communica-
tions cables. Use the following procedures prepare the communications
cables and attach connectors.
34

DeviceNet Connections Section 2-5
1,2,3... 1. Remove about 30 mm of the cable sheathing, being careful not to damage
the woven shielding underneath. Do not remove too much sheathing; re-
moving too much of the sheathing can result in short circuits and increase
the effect of noise.

2. Carefully peel back the woven shielding. The cable contains a shielding
wire along with the signal lines and power lines. The shielding wire is stiffer
than the woven shielding, so it can be identified by touch.

3. Remove the exposed woven shielding, remove the aluminum tape from the
signal and power lines, and strip the covering from the signal and power
lines to the proper length for the crimp terminal connectors being used.
Twist the wire strands on each of the signal and power lines so that there
are no loose strands.

4. Attach the crimp terminals (solderless pin terminals) to the lines and use
the proper Crimping Tool to crimp the terminal securely.

Note We recommend using the following crimp terminals and crimping tools.

• AI Series from Phoenix Contact

Approx. 30 mm

Shielding wire

Strip to match the crimp terminals

Crimp terminal

Connector

Cable type

XW4B-05C1-
H1-D

XW4B-05C1-
V1R-D

MSTB2.5/5-
ST-5.08AU

XW4B-
05C4-TF-D

XW4B-
05C4-T-D

XW4G-
05C1-H1-D

XW4G-
05C4-TF-D

Crimping
Tool

Thin cable Signal lines AI 0.25-6YE AI 0.25-8YE AI 0.25-8YE CRIMPFOX
ZA3Power lines AI 0.5-6WH AI 0.5-10WH AI 0.5-10WH

Thick
cable

Signal lines AI -6 AI 10 AI 10

Power lines AI 2.5-8BU AI 2.5-10BU AI 2.5-10BU
35

DeviceNet Connections Section 2-5
5. Cover the end of the cable with electrical tape or heat-shrink tubing as
shown in the following diagram.

2-5-2 Connecting Communications Cables
1,2,3... 1. Remove the connector from the Board’s DeviceNet Communications Con-

nector. (It isn’t necessary to remove the connector from the Board if it can
be wired in place.)

2. Orient the connector properly and then insert the lines in order from left to
right: black, blue, shield, white, and then red.

Note (1) Loosen the screws for securing the connector wires before inserting sig-
nal lines, power lines, or the shield wire. If the screws are not loosened
sufficiently, the wires cannot be inserted into the correct position. They
will enter the gap at the back where they cannot be secured in place.

(2) The connector and Board have colored stickers that match the wire col-
ors. The wire colors can be checked against the sticker color to check that
the cables are wired correctly.

(3) The wire colors are listed in the following table.

3. Tighten the line set screws for each line in the connector. Tighten the
screws to a torque between 0.25 and 0.3 N⋅m.

Electrical tape or
heat-shrink tubing

Black (-V)

Blue (CAN low)

Shield

White (CAN high)

Red (+V)

Color Signal Symbol

Black Communications power supply (negative) V−

Blue Signal LOW side CAN L

--- Shield S

White Signal HIGH side CAN H

Red Communications power supply (positive) V+
36

DeviceNet Connections Section 2-5
You will not be able to tighten these screws with a normal screwdriver,
which tapers at the end. You will need a screwdriver that does not taper at
the end, such as a large precision screwdriver.

When using a Thick Cable, allow sufficient cable to ensure that the tension
of the cable does not disconnect the connector.

Note The following diagram shows the dimensions of the OMRON
XW4Z-00C screwdriver, which is ideal for these DeviceNet connec-
tors.

4. Align the connector to the Board’s Connector and then insert the connector
until it is securely set in place. Firmly tighten the screws at both ends of the
connector. Tighten the connector mounting screws to a torque between
0.25 and 0.3 N⋅m.

Standard Connector (Thin Cables Only)

When thin cable is being used, a multi-drop connection can be made by
inserting each pair of wires into a single same pin terminal and crimping them
together.

Use a flat-blade screwdriver
that does not taper at the end.

Side Front

0.6 mm 3.5 mm
37

DeviceNet Connections Section 2-5
Note We recommend using the following PHOENIX CONTACT terminal for this

type of multi-drop connection.

Multi-drop Connector

The following OMRON Multi-drop Connectors (sold separately) can be used
to make a multi-drop connection with either thin or thick cable.

• XW4B-05C4-T-D Straight Multi-drop Connector without Attachment
Screws

• XW4B-05C4-TF-D Straight Multi-drop Connector with Attachment Screws

• XW4G-05C4-TF-D Straight Multi-drop Clamp Connector with Attachment
Screws

In some cases, the Multi-drop Connector cannot be used because there is not
enough space and other Units or connectors get in the way.

Note 1. Before connecting the communications cables, turn OFF the power supply
to all PCs, Slaves, and communications power supplies.

2. Use crimp terminals for wiring. Connecting bare twisted wires can cause
the cables to come OFF, break, or short circuit, most likely resulting in in-
correct operation and possibly damage to the Units.

3. Use suitable crimp tools and crimping methods when attaching crimp ter-
minals. Consult the manufacturer of the tools and terminals you are using.
Inappropriate tools or methods can result in broken wires.

4. Be extremely careful to wire all signal lines, power lines, and shielding wire
correctly.

Connector Crimp terminals Crimping Tool

XW4B-05C1-H1-D
MSTB2.5/5-ST-5.08

XW4B-05C1-V1R-D

AI-TWIN2×0.5-8WH from
Phoenix Contact

CRIMPFOX UD6 or
CRIMPFOX ZA3

XW4G-05C1-H1-D H0.5/16.5 ZH from
Weidmuller
38

DeviceNet Connections Section 2-5
5. Tighten all set screws firmly. Tighten to a torque of between 0.25 and
0.3 N⋅m.

6. Wire the signal lines, power lines, and shielding wire so that they do not
become disconnected during communications.

7. Do not pull on communications cables with excessive force. They may be-
come disconnected or wires may break.

8. Allow leeway so that communications cables do not have to be bent further
than natural. The Cables may become disconnected or wires may break if
the cables are bent too far.

9. Never place heavy objects on communications cables. They may break.

10. Double-check all wiring before turning ON the power supply.
39

DeviceNet Connections Section 2-5
40

SECTION 3
Using API Functions

This section provides flowcharts showing how to use the API functions as well as precautions to observe when using the
API functions. Refer to this section when actually writing the applications required to use the DeviceNet PCI Board.

3-1 Application Development Environments . 42
3-2 API Functions . 42
3-3 Checking Events . 44

3-3-1 Board Events . 44
3-3-2 Checking for Events . 44

3-4 Checking for Errors . 45
3-5 Parameters . 45
3-6 Using I/O Communications Functions . 48
3-7 Using the Explicit Message Client Function . 49
3-8 Using the Explicit Message Server Function. 51
3-9 Reset Function . 54
3-10 Error Log Functions. 54
3-11 PC Watchdog Timer Management Function . 54
41

Application Development Environments Section 3-1
3-1 Application Development Environments
Recommended
Development
Environment

Microsoft Visual C++ (Ver. 6.0 or later)

Precautions when Using
Other Development
Environments

Whether API can be used depends on the development environment.
Some examples are given below for development environments. Confirm
details with the provider of the development environment.

Microsoft Visual C++ Version 6.0

• API functions can be used without declaring them.

Microsoft Visual Basic 6.0

• API functions other than explicit messages can be used, but they must be
declared.

Microsoft Visual Basic 2005

• API functions cannot be used (even if you declare them).

3-2 API Functions
The PCI Board provides the following API functions.

API Functions for
Managing the Board

Board Service API Functions

Board Service API Functions check the Scanner SDK and driver versions,
open/close the Board, and connect/disconnect the Board to/from the network.
The PCI Board must be open and connected to the network to be used for
communications.

PCI Board Interrupt Service API Functions

Interrupt Service API functions detect interrupts from the PCI Board. Two
kinds of interrupts can be detected.

For interrupts to be detected, the interrupt control register must be set for the
Board to send interrupts to the computer. There are two ways the computer
can detect interrupts. Refer to 3-3 Checking Events for detection methods.

Master API Functions Scan List Operation API Functions

Slave information must be registered in a scan list to use the Master function
to perform I/O communications with Slaves. The Scan List Operation API
functions are used to create scan lists. Refer to Parameter Operation API
Functions on page 47 for information on the relationship between a scan list
and the Scan List Operation API functions.

I/O Communications Service API Functions

I/O Communications Service API functions are used to start and stop I/O
communications using the Master function, set the communications cycle
time, obtain real Slave information, etc.

Interrupt Name Function

BD_WDT Board Watchdog Timer
Timeout Interrupt

This interrupt occurs when the Board stops
operation as a result of an error. The error
can be cleared by detecting this interrupt.

SCAN One-scan (Communica-
tions Cycle) Completed
Interrupt

This interrupt occurs each time one com-
munications cycle is completed during I/O
communications. The latest input data (IN
data) can be retrieved when this interrupt
occurs.
42

API Functions Section 3-2
I/O Data Access Service API Functions

I/O Data Access Service API functions are used to read and write I/O data.
The PCI Board has two memory areas: the I/O area which can be read from
or written to using functions, and the Board’s internal buffer. Only the internal
buffer is used during I/O communications. Set to write all OUT data first,
refresh data between the two areas, and then obtain all IN data when I/O data
is to be used by user applications.

Slave Function API
Functions

Slave Scan List Operation API Functions

To use the Slave function, information to enable operation as a slave must be
registered in a slave scan list. The Slave Scan List Operation API functions
are used to register a slave scan list. Refer to Parameter Operation API Func-
tions on page 47 for information on the relationship between slave scan lists
and Slave Scan List Operation API function.

I/O Communications Service API Functions

I/O Communications Service API functions are used to temporarily stop/start
I/O communications with Masters when using the Slave function.

I/O Data Access Service API Functions

These functions are the same as the I/O Data Access Service API functions
for the Master function, but are used with the Slave function.

Explicit Message API
Functions

Message Monitoring Timer Service API Functions

The message monitoring timer monitors the time from when a explicit mes-
sage request is sent until an explicit message response is received from the
remote node. If the response is not be received within the response time, the
request is timed out. The Message Monitoring Timer Service API functions
are used to set the message monitoring timer for each remote device.

The default message time is 2 s (2,000 ms). Set a longer time if the response
from the remote nodes will take longer. The next request to the same device
cannot be sent while waiting for a response.

Client Message Service API Functions

Client Message Service API functions are used to sent explicit request mes-
sages and receive responses, to set parameters for any device, and to moni-
tor information for that device.

When the Scanner SDK receives a response for the sent request, it automati-
cally stores it in the response queue in the DLL file. There is a response
queue for each remote device and the response is queued for as long as
there is free memory on the computer. The response should be removed from
the queue as soon as possible after it is received.

Noise or other interference may cause the explicit message to be lost. Also,
the message may not be received, depending on the remote device. Always
enable retries when sending explicit requests.

There are two methods for detecting reception of explicit response messages.
Refer to 3-3 Checking Events for information on detection methods.

Server Message Service API Functions

Server Message Service API functions receive explicit request messages and
send responses to implement any device profile.
43

Checking Events Section 3-3
When Scanner SDK receives a request addressed to a registered object, that
request is automatically stored in the response queue in the DLL file. There is
a response queue for each registered object and the response is queued for
as long as there is free memory on the computer. The response should be
removed from the queue as soon as possible after it is received.

There are two methods for detecting reception of explicit request messages.
Refer to 3-3 Checking Events for information on detection methods.

Maintenance API
Functions

Status Service API Functions

Status Service API functions are used to monitor errors during I/O or explicit
message communications and monitor the communications cycle time for the
Master function. Monitor error status when creating user applications and per-
form error processing as required.

Error Log Access Service API Functions

Error Log Access Service API functions read and clear the error log registered
in the Board. Refer to 3-10 Error Log Functions for details.

PC Watchdog Timer Service API Functions

PC Watchdog Timer Service API functions monitor operation of user applica-
tions by the Board. Refer to 3-11 PC Watchdog Timer Management Function
for details.

3-3 Checking Events

3-3-1 Board Events
The following table shows the kinds of events that occur in the Scanner SDK.

3-3-2 Checking for Events
There are two ways to check events in the Board. Use the method that is eas-
iest for your application and system conditions.

• Detecting events with Windows messaging

• Checking events by polling

Detecting Events with
Windows Messaging

A Windows message is sent automatically when an event occurs. A thread or
window can be specified as the destination for the event notification. The noti-
fication can include event specific information such as the interrupt status or
reception data length.

When the user application receives the event notification, it will read (receive)
the event after preparing a data buffer to hold the event data.

When you use Windows messaging for event notification, the notification mes-
sage settings must be made in advance with the
SCAN_RegIrqEvtNotifyMessage(), SCAN_RegClientEvtNotifyMessage(),
and SCAN_RegServerEvtNotifyMessage() functions.

Event Description

Interrupt from Board This event occurs when an interrupt is sent from the Board to
the computer. (An interrupt control register must be set.)

Explicit client
response received

This event occurs when a response is received from the server
after an explicit client request message is sent.

Explicit server
request received

This event occurs when an explicit server request message is
received for a registered object.
44

Checking for Errors Section 3-4
Once event notification has been received by the user application, execute
the corresponding event processing. For example, when an explicit client
response is received, prepare a data buffer to hold the received service data
and read the response.

Checking Events by
Polling

The event queue can be checked from a user application with the
SCAN_PeekIrqEvent(), SCAN_PeekClientEvent(), and
SCAN_PeekServerEvent() functions.

If the check shows an event in the event queue, execute the corresponding
event processing. For example, for an explicit client response event, check
the received data size using the SCAN_ClientEventLength() function, prepare
a data buffer to hold the received service data, and read the response.

3-4 Checking for Errors
Checking for Errors with
Function Return Values

The value returned by the function shows whether an error occurred. The
Scanner SDK’s API functions are all bool type functions and the result of the
function’s execution is returned as one of the following boolean values:

FALSE: The function was completed with an error.
TRUE: The function was completed normally.

If an error occurred, detailed error information can be obtained with the Get-
LastError() function. Refer to 7-2 Identifying Errors Detected by Functions for
the meaning of the error codes obtained with the GetLastError() function and
appropriate error processing.

Note GetLastError is a Windows API function. Detailed error information can be
obtained by calling GetLastError immediately after executing the DeviceNet
PCI Board API function, as shown below.

Example: Using GetLastError() Function with Board Open API Call
DWORD dwErrCode;
//DeviceNet PCI Board Open API function call
if(SCAN_Open(DeviceNo,Handle)==false){

//Gets the detailed error code
//when the function returns an error.
dwErrCode=GetLastError();

}

3-5 Parameters
Parameter Types The PCI Board has the parameters listed in the following table.

Name Meaning Initial Value

Message Monitoring
Timer List

A list of message monitoring tim-
ers for all node addresses. The
monitoring time is from when the
explicit request message is sent
until the response is received.

0 (2 s) is set for all node
addresses as the default.

Communications
Cycle Time

Used with the Master function.

The communications cycle time is
the cycle for I/O communications.

0 (automatic) is set as the
default.
45

Parameters Section 3-5
(Master) Scan List Used with the Master function.
The scan list is the list of slave
node addresses for I/O communi-
cations. The list also registers the
parameters required for I/O com-
munications for each node.

The default is no scan
list.

API functions are
required to register a
scan list.

Slave Scan List Used with the Slave function.

The slave scan list registers the
parameters required for nodes to
operate as a slave.

The default is no slave
scan list.
API functions are
required to register a
slave scan list.

Name Meaning Initial Value
46

Parameters Section 3-5
Parameter Operation API Functions

Register
(1 node)

Message monitoring
timer list

Read
(1 node)

Set
(Whole list)

Read
(Whole list)

Set

Communications
cycle time

Read

Clear
(Whole list)

Read
(Whole list)

Read

Set

Slave
scan list

Clear

Register
(1 slave)

Scan list

Register
(Multiple slaves)

Remove
(1 slave)

Read
(1 slave)

Set
(Whole list)

Read
(Whole list)

Save
(Whole list)

Read

Save

Save
 (Whole list)

Save

Read

Read
(Whole list)

RAM
(parameters actually used)

Non-volatile memory
(storage area)

Download

Upload

Download

Upload

Download

Upload

Download

Upload

Configurator

SCAN_SetMessageTimerValue

SCAN_GetMessageTimerValue

SCAN_StoreMessageTimerValueList

SCAN_LoadMessageTimerValueList

SCAN_SetScanTimeValue

SCAN_GetScanTimeValue SCAN_StoreScanTimeValue

SCAN_LoadScanTimeValue

SCAN_RemoveDevice

SCAN_StoreScanlist

SCAN_LoadScanlist

SCAN_SetScanlist

SCAN_ClearScanlist

SCAN_RegisterSlaveDevice

SCAN_GetSlaveDevice

SCAN_Register
SlaveDeviceEx

SCAN_GetSlaveDeviceEx

SCAN_RegisterSelfSlaveDevice SCAN_LoadSlaveScanlist

SCAN_RemoveSelfSlaveDevice

SCAN_GetSelfSlaveDevice SCAN_StoreSlaveScanlist

Get

Get

Get

Get

Get
47

Using I/O Communications Functions Section 3-6
3-6 Using I/O Communications Functions
Procedure for Using
Master Function

Use the procedure shown in the following diagram to use API functions when
using the Master function of the Scanner SDK. Refer to SECTION 4 API
Function Reference for details on using API functions.

Note Several seconds are required after SCAN_StartScan() is called until I/O com-
munications actually start.

Open Board
SCAN_Open();

Register Scan List
SCAN_RegisterSlaveDevice();

Join Network
SCAN_Online();

Start I/O Communications
SCAN_StartScan();

A

Check Network Status
SCAN_GetScannerStatus();

A

Get Slave Status
SCAN_GetSlaveDeviceStatus();

Get Slave Status
SCAN_GetSlaveDeviceStatus();

Finished?

Output Data to Slave
SCAN_SetOutData()

Get Slave Data
SCAN_GetInData()

Stop I/O Communications
SCAN_StopScan();

Disconnect from Network
SCAN_Offline();

Close Board
SCAN_Close();

Refresh I/O data.
SCAN_IoRefresh();

Error
processing

Error
processing

Error
processing

Error

Normal

Performing I/O communications

Performing I/O communications

Other

Other

Repeat output
for number of
target slaves.

Error

Error

No

Yes

In
iti

al
iz

at
io

n

D
at

a
I/O

 p
ro

ce
ss

in
g

E
nd

 p
ro

ce
ss

in
g

Repeat for number
of input slaves.

(There are several ways to register
scan lists. Refer to Parameter
Operation API Functions on page 47
for details.)
48

Using the Explicit Message Client Function Section 3-7
Procedure for Using Slave
Function

Use the procedure shown in the following diagram to use API functions when
using the Slave function of the Scanner SDK. Refer to SECTION 4 API Func-
tion Reference for details on how to use API functions.

3-7 Using the Explicit Message Client Function
There are two ways to detect response reception when using the explicit mes-
sage client function of the Scanner SDK. Each method uses API functions in
the procedures outlined in the following diagrams. Refer to SECTION 4 API
Function Reference for details.

Note Always execute retries with explicit message communications. Sometimes
messages cannot be received due to the status of the remote node or an error
response is returned.

Open Board
SCAN_Open();

Register Slave Scan List
SCAN_RegisterSelfSlaveDevice();

Join Network
SCAN_Online();

Check status of Slave functions.
SCAN_GetSlaveModeStatus();

Finished?

Get Slave Input Data
SCAN_SetSlaveInData();

Get Slave Output Data
SCAN_GetSlaveOutData();

Stop Slave Function
(Clear Slave Scan List)

SCAN_RemoveSelfSlaveDevice();

Disconnect from Network
SCAN_Offline();

Close Board
SCAN_Close();

Refresh I/O Data
SCAN_SlaveIoRefresh();

Error
processingError

Performing I/O communications

Other
(e.g., waiting
for connection
with Master)

No

Yes

S
la

ve
 d

at
a

in
pu

t
In

iti
al

iz
at

io
n

E
nd

 p
ro

ce
ss

in
g

(There are several ways to register
scan lists. Refer to Parameter
Operation API Functions on page 47
for details.)
49

Using the Explicit Message Client Function Section 3-7
Using Windows Messages for Event Notification

Open Board
SCAN_Open();

Send Client Explicit Message
SCAN_SendClientExplicit();

Join Network
SCAN_Online();

Check Network Status
SCAN_GetScannerStatus();

Expected message?

Receive Windows Message
PeekMessage();

(Windows function)

Clear Client Event
Notification Message

SCAN_UnRegClientEvtNotifyMessage();

Disconnect from Network
SCAN_Offline();

Receive Client Explicit Message
SCAN_ReceiveClientExplicit();

Close Board
SCAN_Close();

Register Client Event
Notification Message

SCAN_RegClientEvtNotifyMessage();

Error
processing

Offline

Normal response? Retry?

Error response Yes

Online

Receive message

Expected message

Normal response

M
es

sa
ge

 c
lie

nt
 p

ro
ce

ss
in

g

Unexpected
message

Wait for Set Time
Sleep();

(Windows function)

No message

Error
processing

No

In
iti

al
iz

at
io

n
E

nd
 p

ro
ce

ss
in

g

50

Using the Explicit Message Server Function Section 3-8
Checking Events by Polling the Event Queue

3-8 Using the Explicit Message Server Function
There are two methods for detecting request messages when using the
explicit message server function with Scanner SDK. Each method uses API
functions in the procedures shown in the following diagram. Refer to SEC-
TION 4 API Function Reference for details.

Open Board.
SCAN_Open();

Send Client Explicit Message.
SCAN_SendClientExplicit();

Join Network.
SCAN_Online();

Check Network Status.
SCAN_GetScannerStatus();

Check Response Received.
SCAN_PeekClientEvent();

Disconnect from Network.
SCAN_Offline();

Get Explicit Response Message.
SCAN_ReceiveClientExplicit();

Close Board.
SCAN_Close();

Online

Response received

M
es

sa
ge

 c
lie

nt
 p

ro
ce

ss
in

g

Wait Set Time.
Sleep();

(Windows function)

Error
processing

Offline

Normal response? Retry?

Error response Yes

Normal response

Error
processing

No

In
iti

al
iz

at
io

n
E

nd
 p

ro
ce

ss
in

g

51

Using the Explicit Message Server Function Section 3-8

E
nd

 p
ro

ce
ss

in
g

Using Windows Messages for Event Notification

Open Board.
SCAN_Open();

Register Request
Notification Events

SCAN_RegServerEvtNotifyMessage();

Join Network.
SCAN_Online();

Check Network Status.
SCAN_GetScannerStatus();

Expected message?

Receive Windows Message.
PeekMessage();

(Windows function)

Server functions finished?

Get Explicit Request Message.
SCAN_ReceiveServerExplicit();

Server processing.

Send Explicit Response Message.
SCAN_SendServerExplicit();

Register Application
Object Class.

SCAN_RegObjectClass();

Offline

No message

Online

Message received

Expected message

M
es

sa
ge

 s
er

ve
r

pr
oc

es
si

ng

Unexpected message

Wait Set Time.
Sleep();

(Windows function)

Yes

No

A

Clear Request Notification Event.
SCAN_UnRegServerEvtNotifyMessage();

Clear Application
Object Class.

SCAN_UnRegObjectClass();

Disconnect from Network.
SCAN_Offline();

Close Board.
SCAN_Close();

A

In
iti

al
iz

at
io

n

52

Using the Explicit Message Server Function Section 3-8
Checking Events by Polling the Event Queue

Open Board.
SCAN_Open();

Join Network.
SCAN_Online();

Check Network Status.
SCAN_GetScannerStatus();

Check Request Received.
SCAN_PeekServerEvent();

Server functions finished?

Server processing

Send Explicit Response Message.
SCAN_SendServerExplicit();

Register application object class.
SCAN_RegObjectClass();

Offline

No request

Online

Request received

M
e
ss

a
g
e
 s

e
rv

e
r

p
ro

ce
ss

in
g

Wait Set Time.
Sleep();

(Windows function)

Yes

No

Disconnect from Network.
SCAN_Offline();

Close Board.
SCAN_Close();

Clear Application Object Class.
SCAN_UnRegObjectClass();

In
iti

al
iz

at
io

n
E

nd
 p

ro
ce

ss
in

g

Get Explicit Request Message.
SCAN_ReceiveServerExplicit();
53

Reset Function Section 3-9
3-9 Reset Function
Use the SCAN_Reset() function to reset the Board and initialize the Board to
the same status it had at startup. When the Board is reset, all of the resources
set aside for the Board will be cleared and all of the information set from user
applications will be lost. All required information must be set again after exe-
cuting SCAN_Reset().

Note The Board reset will be completed when the TRUE return value is returned
from SCAN_Reset(). The next function can be executed immediately after the
TRUE return value is recognized.

3-10 Error Log Functions
The PCI Board provides an error log function that records and holds error
information. When an error occurs, one record per error is stored in the
Board’s internal RAM error log table, up to a maximum of 64 records. When
the maximum number of 64 records has been stored in the error log table, the
oldest record will be discarded when another error occurs and the new error
data will be recorded in the table.

The following information is recorded in the error log table.

• Error code (Refer to Error Log Data on page 126.)

• Details code (Refer to Error Log Data on page 126.)

• Data and time of error (The computer time and data information is used.)

Saving Error Logs When an error is detected, the error log and the date and time of the error are
recorded in the Board’s internal RAM.

Serious errors are also recorded in EEPROM. (Refer to Error Code Table on
page 126.) Error logs stored in EEPROM are held even if the computer power
is turned OFF or the Board is reset. When the Board is started, the error log
recorded in EEPROM is copied to RAM.

API functions can be used to read the error logs held in RAM. When error logs
are cleared, the error logs held in both RAM and EEPROM are cleared.

Reading and Clearing
Error Logs

The functions listed in the following table are used to read and clear error logs
stored in the Board.

3-11 PC Watchdog Timer Management Function
The DeviceNet PCI Board is equipped with a PC watchdog timer function that
can stop remote I/O communications automatically if the application that con-
trols the Board stops for some reason. While the PC watchdog timer function
is running, remote I/O communications will be stopped automatically if the PC
watchdog timer value is not refreshed from the user application within the set
timeout detection period.

The Board’s PC watchdog timer is refreshed regularly from the computer
(application) to notify the Board that the application is operating normally. The
timeout detection period is 2 × (the monitoring time + 10 ms).

Use the API functions as outlined in the following flowchart when using the PC
watchdog timer function.

Function Name Operation Page

SCAN_GetErrorLog() Read Error Log Reads all of the error records stored in the Board. 101

SCAN_ClearErrorLog() Clear Error Log Clears all of the error records stored in the Board. 102
54

PC Watchdog Timer Management Function Section 3-11
Note The Board’s PC watchdog timer function is disabled when the Board starts
operation. It is also disabled by the SCAN_Reset() function.

When using the PC watchdog timer function, execute the SCAN_Enable
PCWDTTimer() to enable the PC watchdog timer and refresh the timer value.
If the timer isn’t refreshed, the function will determine that the application has
stopped and will stop remote I/O communications if the set time has elapsed
since the last refresh.

Initialization

End processing

Open Board
SCAN_Open();

Enable PC Watchdog Timer
SCAN_EnablePCWDTTimer();

Close Board
SCAN_Close();

Disable PC Watchdog Timer
SCAN_EnablePCWDTTimer();

Refresh PC Watchdog Timer Value
SCAN_RefreshPCWDTTimer();

PC watchdog timer
monitoring
55

PC Watchdog Timer Management Function Section 3-11
56

SECTION 4
API Function Reference

This section provides details on the various API functions in the DN 3G8F7 Scanner.DLL that are used with the DeviceNet
PCI Board.

4-1 Function Lists . 58
4-2 Board Status. 61
4-3 Board Management API Functions . 62

4-3-1 Board Service API Functions . 62
4-3-2 PC Board Interrupt Service API Functions . 65

4-4 Master Function API Functions. 68
4-4-1 Scan List Operation API Functions. 68
4-4-2 I/O Communications Service API Functions 73
4-4-3 I/O Data Access Service API Functions . 78

4-5 Slave Function API Functions . 80
4-5-1 Slave Scan List Operation API Functions. 80
4-5-2 I/O Communications Service API Functions 82
4-5-3 I/O Data Access Service API Functions . 83

4-6 Explicit Message API Functions . 85
4-6-1 Message Monitoring Timer Service API Functions 85
4-6-2 Client Message Service API Functions. 87
4-6-3 Server Message Service API Functions . 90

4-7 Maintenance API Functions . 95
4-7-1 Status Service API Functions . 95
4-7-2 Error Log Access Service API Functions . 101
4-7-3 PC Watchdog Timer Service API Functions 102
57

Function Lists Section 4-1
4-1 Function Lists
Board Management API
Functions

Board Service API Functions

Use the following API functions for initialization and end processes such as
reading the DLL version, reading the driver version, opening the Board, or
closing the Board.

PC Board Interrupt Service API Functions

Use the following API functions to set interrupts from the Board to the PC, set
the interrupt notification message, and clear the interrupt notification mes-
sage.

Master Function API
Functions

Scan List Operations API Functions

Use the following API functions for scan list operations when the Master func-
tion is operating.

I/O Communications Service API Functions

Use the following API functions for operations such as starting remote I/O
communications (Master function), stopping remote I/O communications
(Master function), or establishing a connection.

API function Operation

SCAN_GetVersion Reads the Scanner Software’s DLL version.

SCAN_GetDriverVersion Reads the Board’s driver version.

SCAN_IsExistCard Checks whether a Board is installed.

SCAN_Open Opens the Board.

SCAN_Close Closes the Board.

SCAN_Online Adds the Board to the network (online).

SCAN_Offline Removes the Board from the network (offline).

SCAN_Reset Resets the Board.

API function Operation

SCAN_GetIrqControl Reads the PC interrupt control register.

SCAN_SetIrqControl Sets the PC interrupt control register.

SCAN_RegIrqEvtNotifyMessage Registers the interrupt notification message.

SCAN_UnRegIrqEvtNotifyMessage Clears the interrupt notification message.

SCAN_PeekIrqEvent Checks the PC interrupt status

SCAN_ClearIrqEvent Clears the PC interrupt status.

API function Operation

SCAN_RemoveDevice Removes a Slave from the scan list.

SCAN_StoreScanlist Saves the scan list to non-volatile memory.

SCAN_LoadScanlist Loads the scan list from non-volatile memory.

SCAN_SetScanlist Registers multiple slaves to the scan list.

SCAN_ClearScanlist Deletes the scan list.

SCAN_RegisterSlaveDevice Registers a Slave in the scan list.

SCAN_GetSlaveDevice Reads Slave information from the scan list.

SCAN_RegisterSlaveDeviceEx Registers a Slave in the scan list (detailed
information.)

SCAN_GetSlaveDeviceEx Reads Slave information from the scan list
(detailed information.)

API function Operation

SCAN_StartScan Starts remote I/O.

SCAN_StopScan Stops remote I/O.
58

Function Lists Section 4-1
I/O Data Access Service API Functions

Use the following API functions to refresh, set, and read I/O data when using
the Master function.

Slave Function API
Functions

Slave Scan List Operations API Functions

Use the following API functions for scan list operations when the Slave func-
tion is operating.

I/O Communications Service API Functions

Use the following API functions for operations such as starting remote I/O
communications (Slave function), stopping remote I/O communications (Slave
function), or establishing a connection.

I/O Data Access Service API Functions

Use the following API functions to refresh, set, and read I/O data.

SCAN_GetActualSlaveDevice Reads existing Slave information.

SCAN_ConnectSlaveDevice Starts I/O communications with a specified
Slave.

SCAN_DisconnectSlaveDevice Stops I/O communications with a specified
Slave.

SCAN_SetScanTimeValue Sets the communications cycle time.

SCAN_GetScanTimeValue Reads the communications cycle time.

SCAN_StoreScanTimeValue Writes the communications cycle time to non-
volatile memory.

SCAN_LoadScanTimeValue Loads the communications cycle time from
non-volatile memory.

API function Operation

SCAN_IoRefresh Executes I/O refreshing.

SCAN_GetInData Reads Slave input data.

SCAN_SetOutData Sets Slave output data.

SCAN_SendMasterCosToSlave Immediately sends output data to Slaves from
the Master performing COS communications.

API function Operation

API function Operation

SCAN_RegisterSelfSlaveDevice Registers the Slave scan list.

SCAN_RemoveSelfSlaveDevice Deletes the Slave scan list.

SCAN_GetSelfSlaveDevice Reads the Slave scan list information.

SCAN_StoreSlaveScanlist Saves the Slave scan list to non-volatile mem-
ory.

SCAN_LoadSlaveScanlist Loads the Slave scan list from non-volatile
memory.

API function Operation

SCAN_ConnectMasterDevice Starts I/O communications with a Master.

SCAN_DisconnectMasterDevice Stops I/O communications with a Master.

API function Operation

SCAN_SlaveIoRefresh Executes Slave I/O refreshing.

SCAN_GetSlaveOutData Reads Master output data.

SCAN_SetSlaveInData Sets Master input data.

SCAN_SendSlaveCosToMaster Immediately sends input data to the Master from
Slaves performing COS communications.
59

Function Lists Section 4-1
Explicit Message API
Functions

Message Monitoring Timer Service API Functions

Use the following API functions to manage the explicit message monitoring
timer.

Client Message Service API Functions

Use the following API functions when the Board is operating as an explicit
message client.

Server Message Service API Functions

Use the following API functions when the Board is operating as an explicit
message server.

Maintenance API
Functions

Status Service API Functions

Use the following API functions to read various kinds of status information.

API function Operation

SCAN_SetMessageTimerValue Sets the message monitoring timer.

SCAN_GetMessageTimerValue Reads the message monitoring timer.

SCAN_StoreMessageTimerValueList Saves the message monitoring timer list to
non-volatile memory.

SCAN_LoadMessageTimerValueList Loads the message monitoring timer list
from non-volatile memory.

API function Operation

SCAN_RegClientEvtNotifyMessage Registers the client response event notifi-
cation message.

SCAN_UnRegClientEvtNotifyMessage Clears the client response event notifica-
tion message.

SCAN_SendClientExplicit Sends an explicit client message.

SCAN_ReceiveClientExplicit Receives an explicit client message.

SCAN_PeekClientEvent Checks the client response event.

SCAN_GetClientEventLength Reads the size of the client response.

API function Operation

SCAN_RegObjectClass Registers the object class ID.

SCAN_UnRegObjectClass Clears the object class ID.

SCAN_RegServerEvtNotifyMessage Sets the server request event notification
message.

SCAN_UnRegServerEvtNotifyMessage Clears the server request event notification
message.

SCAN_SendServerExplicit Sends an explicit server message.

SCAN_ReceiveServerExplicit Gets an explicit server message.

SCAN_PeekServerEvent Checks the server request event.

SCAN_GetServerEventLength Reads the size of the server request.

API function Operation

SCAN_GetNetworkStatus Reads the network status.

SCAN_GetScannerStatus Reads the scanner status.

SCAN_GetMasterModeStatus Reads the Master function status.

SCAN_GetSlaveModeStatus Reads the Slave function status.

SCAN_IsScanlistSlaveDeviceRegist Checks if a Slave is registered in the scan
list.

SCAN_IsDeviceConnection Checks that the connection with a Slave is
open.

SCAN_GetSlaveDeviceStatus Reads the Slave’s status.
60

Board Status Section 4-2
Error Log Access Service API Functions

Use the following API functions to read and clear the error log.

PC Watchdog Timer Service API Functions

Use the following API functions to control the PC watchdog timer function.

4-2 Board Status
The following diagram shows how the Board status is changed by API func-
tions. There are restrictions on what API functions can be used, depending on
the Board status. Refer to Application Range under each function description
for details.

SCAN_GetCycleTime Reads the present value of the communi-
cations cycle time.

SCAN_GetMaxCycleTime Reads the maximum value of the communi-
cations cycle time.

SCAN_GetMinCycleTime Reads the minimum value of the communi-
cations cycle time.

SCAN_ClearCycleTime Clears the maximum and minimum com-
munications cycle times.

API function Operation

SCAN_GetErrorLog Reads the error log.

SCAN_ClearErrorLog Clears the error log.

API function Operation

SCAN_EnablePCWDTTimer Enables or disables the PC watchdog timer.

SCAN_RefreshPCWDTTimer Refreshes the PC watchdog timer.

API function Operation

I/O communications active
(Master functions)

Start Remote I/O Scan
SCAN_StartScan

Stop Remote I/O Scan
SCAN_StopScanJoin Network

SCAN_Online

Disconnect from Network
SCAN_Offline

I/O communications active
(Slave functions)

Start Master I/O Communications
SCAN_ConnectMasterDevice

Stop Master I/O Communications
SCAN_DisconnectMasterDevice

Open Board
SCAN_Open

Close Board
SCAN_Close

Closed state Open state

Offline state Online state

I/O commu-
nications
stopped
61

Board Management API Functions Section 4-3
Closed State

All of the Board’s resources are disengaged in this status. Control operations
cannot be performed on the Board in this status.

The Board will be in this status after it is started or reset.

Open State

All of the Board’s resources are engaged in this status. Control operations can
be performed on the Board in this status.

The Board’s “device handle” is determined when the Board is switched to
open status by the SCAN_Open() function. Specify the Board with the device
handle to use the API functions while the Board is open.

Offline State

The Board is open but is not participating in the DeviceNet network.

Online State

The Board is open and participating in the DeviceNet network.

Remote I/O Stopped State

The Board is open and participating in the DeviceNet network but remote I/O
communications are stopped.

Remote I/O Active State

The Board is open, participating in the DeviceNet network, and performing
remote I/O communications.

4-3 Board Management API Functions

4-3-1 Board Service API Functions

Reading the DLL Version: SCAN_GetVersion()

Application Range Unlimited (Can be executed in closed status.)

Function Reads the version information for the API (DN 3G8F7 Scanner.DLL) that is
being used.

Call Format BOOL SCAN_GetVersion(DWORD *Version)

Arguments

Return Value TRUE is returned when the function is completed normally and FALSE is
returned when an error occurs during processing. Detailed error information
can be read with the GetLastError() function.

Description Use this function when the DLL version needs to be checked.

The DLL version is stored in BCD in the following format:

For example, DLL version 1.13 will be represented as 0x00010013.

Reading the Driver Version: SCAN_GetDriverVersion()

Application Range Open status

Type Name Contents

DWORD* Version Buffer address for obtaining version information.

31 16 15 0

Minor versionMajor version
62

Board Management API Functions Section 4-3
Function Reads the version information for the driver being used for the DeviceNet PCI
Board.

Call Format BOOL SCAN_GetDriverVersion(DWORD Handle, DWORD *Version)

Arguments

Return Value TRUE is returned when the function is completed normally and FALSE is
returned when an error occurs during processing. Detailed error information
can be read with the GetLastError() function.

Description Use this function when the driver version needs to be checked.

The driver version is stored in BCD in the following format:

For example, DLL version 1.13 will be represented as 0x00010013.

Checking the Board: SCAN_lsExistCard()

Application Range Unlimited (Can be executed in closed status.)

Function Checks whether or not there is a DeviceNet PCI Board with the specified
board ID.

Call Format BOOL SCAN_lsExistCard(DWORD BoardId)

Arguments

Return Value TRUE is returned if there is a DeviceNet PCI Board with the specified board
ID and FALSE is returned if there is not. Detailed error information can be
read with the GetLastError() function.

Description Use to check the ID of the mounted Board.

Set the board ID with the Board’s rotary switch.

Opening the Board: SCAN_Open()

Application Range Closed status

Function Opens the DeviceNet PCI Board with the specified board ID and makes it
usable.

Call Format BOOL SCAN_Open(DWORD BoardId, DWORD *Handle)

Arguments

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

DWORD* Version Buffer address for obtaining version information.

31 16 15 0

Minor versionMajor version

Type Name Contents

DWORD BoardId Board ID of the Board that you want to check
Setting range: 0x0 to 0x7 (0 to 7)

Type Name Contents

DWORD BoardId Board ID of the Board that you want to open
Setting range: 0x0 to 0x7 (0 to 7)

DWORD* Handle Buffer address for obtaining device handle.
63

Board Management API Functions Section 4-3
Return Value TRUE is returned if the DeviceNet PCI Board with the specified board ID was
opened successfully. FALSE is returned if an error occurred or there is not a
Board with the specified board ID. Detailed error information can be read with
the GetLastError() function.

Description The Board must be open before it can be used.

Each Board can be opened from one application (process) only.

The Board ID is the value set using the rotary switch on the Board.

Closing the Board: SCAN_Close()

Application Range Open status

Function Closes the specified device handle and makes the Board unusable.

Call Format BOOL SCAN_Close(DWORD Handle)

Arguments

Return Value TRUE is returned if the specified device handle was closed successfully.
FALSE is returned if an error occurred. Detailed error information can be read
with the GetLastError() function.

Description When this function is executed, the device handle is released, the Board is
reset, and all set information is cleared. Perform any end processing for the
application before executing this function.

Joining the Network (Online): SCAN_Online()

Application Range Offline status

Function Adds the specified DeviceNet PCI Board to the network and puts it in online
status.

Call Format BOOL SCAN_Online(DWORD Handle, WORD Macld, WORD BaudRate)

Arguments

Return Value TRUE is returned if the specified Board was successfully switched to online
status. FALSE is returned if an error occurred. Detailed error information can
be read with the GetLastError() function.

Description It takes approximately 3 seconds for online processing to be completed.

FALSE is returned and the Board is not switched to online status in the follow-
ing cases. Use GetLastError() to find the source of the error, clear the error,
and execute the function again.

• Bus OFF error
• Node address duplication
• Network power supply error

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

WORD Macld Node address setting for the Board
Setting range: 0x00 to 0x3F (0 to 63)

WORD BaudRate Communications speed setting for the Board
Setting range: ONLINE125K(0): 125 kbps

ONLINE250K(1): 250 kbps
ONLINE500K(2): 500 kbps
64

Board Management API Functions Section 4-3
• Send timeout
A network error may occur if the other nodes in the network have a different
baud rate setting.

When connecting to slaves with an automatic baud rate recognition function, a
transmission timeout may occur. If this error occurs, perform SCAN_Online()
retry processing.

Leaving the Network (Offline): SCAN_Offline()

Application Range Online status

Function Removes the specified DeviceNet PCI Board from the network and puts it in
offline status.

Call Format BOOL SCAN_Offline(DWORD Handle)

Arguments

Return Value TRUE is returned if the specified Board was successfully switched to offline
status. FALSE is returned if an error occurred. Detailed error information can
be read with the GetLastError() function.

Resetting the Board: SCAN_Reset()

Application Range Open status

Function Resets the specified DeviceNet PCI Board.

Call Format BOOL SCAN_Reset(DWORD Handle)

Arguments

Return Value TRUE is returned if the processing was completed properly. FALSE is
returned if an error occurred. Detailed error information can be read with the
GetLastError() function.

Description When this function is executed the Board will be reset and all of the informa-
tion that has been set will be cleared. It will be necessary to redo all of the
procedures that were executed since the Board was opened.

The TRUE return value is returned when initialization of the Board is com-
pleted, so other functions can be executed immediately after TRUE is
returned.

If remote I/O functions are being used and the Board is communicating with
other nodes as a client, a communications timeout will occur at the remote
node and the NS indicator will flash red when the Board is reset.

4-3-2 PC Board Interrupt Service API Functions

Reading the Interrupt Control Register: SCAN_GetIrqControl()

Application Range Open status

Function Reads the value of the interrupt control register that determines whether or
not the computer is notified of interrupts that occur in the specified DeviceNet
PCI Board.

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()
65

Board Management API Functions Section 4-3
Call Format BOOL SCAN_GetIrqControl(DWORD Handle, BYTE *IrqReg)

Arguments

Return Value TRUE is returned if the register value was read from the specified Board suc-
cessfully. FALSE is returned if an error occurred. Detailed error information
can be read with the GetLastError() function.

Description Use this function to check the value set in the interrupt control register.

The interrupt control register value is stored in IrqReg with the following for-
mat:

BD_WDT: Board watchdog timer interrupt
SCAN: One-scan completed interrupt

Writing the Interrupt Control Register: SCAN_SetIrqControl()

Application Range Open status

Function Sets the value of the interrupt control register that determines whether or not
the computer is notified of interrupts that occur in the specified DeviceNet PCI
Board.

Call Format BOOL SCAN_SetIrqControl(DWORD Handle, BYTE IrqReg)

Arguments

Return Value TRUE is returned if the register value was written to the specified Board suc-
cessfully. FALSE is returned if an error occurred. Detailed error information
can be read with the GetLastError() function.

Description Once the interrupt control register has been set, the computer will be notified
when the corresponding interrupts occur.

Registering an Interrupt Notification Message: SCAN_RegIrqEvtNotifyMessage()

Application Range Open status

Function Registers the Windows message that notifies that an interrupt from the Board
occurred.

Call Format BOOL SCAN_RegIrqEvtNotifyMessage(DWORD Handle, DWORD ThreadId,
HWND hWnd, UNIT Msg)

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

BYTE* IrqReg Buffer address for obtaining interrupt control regis-
ter.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Bit
name

Reserved BD_
WDT

SCAN

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

BYTE IrqReg New register value setting
(The data format is the same as it is in
SCAN_GetIrqControl().)
66

Board Management API Functions Section 4-3
Arguments

Return Value TRUE is returned if registration of the notification message was completed
successfully. FALSE is returned if an error occurred such as null values for
both the thread ID and window handle. Detailed error information can be read
with the GetLastError() function.

Description Specifies the thread ID or window handle for the event notification.

The interrupt status and notification message are sent to WPARAM and the
notification message is sent to LPARAM.

Clearing an Interrupt Notification Message: SCAN_UnRegIrqEvtNotifyMessage()

Application Range Open status

Function Clears the notification message.

Call Format BOOL SCAN_UnRegIrqEvtNotifyMessage(DWORD Handle)

Arguments

Return Value TRUE is returned if the registered notification message was cleared success-
fully. FALSE is returned if an error occurred. Detailed error information can be
read with the GetLastError() function.

Reading Interrupt Event: SCAN_PeekIrqEvent()

Application Range Open status

Function Reads the cause of the interrupt that occurred in the specified Board.

Call Format BOOL SCAN_PeekIrqEvent(DWORD Handle, BYTE *IrqStatus)

Arguments

Return Value TRUE is returned if the status value was read successfully from the specified
Board. FALSE is returned if an error occurred. Detailed error information can
be read with the GetLastError() function.

Description To check the interrupt status of a specified Board, use the SCAN_
SetIrqControl() function and specify notification to the computer of the
interrupt that occurred in the Board.

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

DWORD ThreadId The thread ID to notify.
(No setting = NULL)

HWND hWnd Specifies the window handle to notify.
(No setting = NULL)

UNIT Msg Notification message
Range: WM_USER + 0x100 to WM_USER + 0x7FFF

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

BYTE* IrqStatus Buffer address for obtaining the cause of the inter-
rupt.
(The data format is the same as it is in
SCAN_GetIrqControl().)
67

Master Function API Functions Section 4-4
Clearing Interrupt Status: SCAN_ClearIrqEvent()

Application Range Open status

Function Clears the cause of the interrupt that occurred in the specified Board.

Call Format BOOL SCAN_ClearIrqEvent(DWORD Handle, BYTE IrqClrMask)

Arguments

Return Value TRUE is returned when the value was successfully written in the specified
Board’s register. FALSE is returned if an error occurred. Detailed error infor-
mation can be read with the GetLastError() function.

Description Use this function to clear the cause of an interrupt after an interrupt has been
detected by event notification or by SCAN_PeekIrqEvent() and the corre-
sponding processing has been executed.

4-4 Master Function API Functions

4-4-1 Scan List Operation API Functions

Registering a Slave in the Scan List: SCAN_RegisterSlaveDevice()

Application Range Open status

Function Registers information in the scan list for a specified Slave.

Call Format BOOL SCAN_RegisterSlaveDevice(DWORD Handle, WORD, MacId, WORD
Outsize, WORD Insize)

Arguments

Return Value TRUE is returned if the specified Slave was successfully registered in the
scan list. FALSE is returned if an error occurred. Detailed error information
can be read with the GetLastError() function.

Description I/O communications can be performed with Slaves registered in the scan list.
Slaves do not need to be registered in the scan list for message communica-
tions unless they are involved in I/O communications.

Previously registered Slaves will be overwritten when re-registered.

The scan type for Slaves registered using this function will be automatically
selected. Use SCAN_RegisterSlaveDeviceEx() to specify the scan type.

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

BYTE IrqClrMask Interrupt mask to clear
Clearing is specified when the corresponding inter-
rupt bit position is ON.
(The data format is the same as it is in
SCAN_GetIrqControl().)

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

WORD MacId Address to register in the scan list.
Setting range: 0x00 to 0x3F (0 to 63)

WORD Outsize Output data size (bytes)

Setting range: 0x00 to 0xC8 (0 to 200)

WORD Insize Input data size (bytes)

Setting range: 0x00 to 0xC8 (0 to 200)
68

Master Function API Functions Section 4-4
The I/O data for Slaves registered using this function will be output data 1 and
input data 1.

Reading a Scan List Slave: SCAN_GetSlaveDevice()

Application Range Open status

Function Reads Slave information registered in the scan list.

Call Format BOOL SCAN_GetSlaveDevice(DWORD Handle, WORD, MacId, WORD*Out-
size, WORD*Insize)

Arguments

Return Value TRUE is returned if the specified Slave information was successfully read
from the scan list. FALSE is returned if an error occurred. Detailed error infor-
mation can be read with the GetLastError() function.

Description When this function is completed, the output data size and input data size
(both in bytes, between 0 and 200) will be stored in the buffer at the specified
addresses.

Removing a Slave from the Scan List: SCAN_RemoveDevice()

Application Range Open status

Function Deletes the specified Slave’s registration information from the scan list.

Call Format BOOL SCAN_RemoveDevice(DWORD Handle, WORD MacId)

Arguments

Return Value TRUE is returned if the specified Slave was successfully removed from the
scan list. FALSE is returned if an error occurred. Detailed error information
can be read with the GetLastError() function.

Clearing the Scan List: SCAN_ClearScanlist()

Application Range Open status

Function Deletes the scan list as a group.

Call Format BOOL SCAN_ClearScanlist(DWORD Handle)

Arguments

Return Value TRUE is returned if the specified Board’s scan list was deleted successfully.
FALSE is returned if an error occurred. Detailed error information can be read
with the GetLastError() function.

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

WORD MacId Node address for obtaining Slave information.
Setting range: 0x00 to 0x3F (0 to 63)

WORD Outsize Buffer address for receiving output data size.

WORD Insize Buffer address for receiving input data size.

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

WORD MacId Slave’s node address
Setting range: 0x00 to 0x3F (0 to 63)

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()
69

Master Function API Functions Section 4-4
Storing the Scan List: SCAN_StoreScanlist()

Application Range Open status

Function Saves the scan list information to non-volatile memory.

Call Format BOOL SCAN_StoreScanlist(DWORD Handle)

Arguments

Return Value TRUE is returned if the scan list was successfully written to non-volatile mem-
ory. FALSE is returned if an error occurred. Detailed error information can be
read with the GetLastError() function.

Description The scan list information saved to non-volatile memory can be read using
SCAN_LoadScanlist() and registered as the scan list.

Loading the Scan List: SCAN_LoadScanlist()

Application Range Open status

Function Loads the scan list information from non-volatile memory and registers it as
the scan list.

Call Format BOOL SCAN_LoadScanlist(DWORD Handle)

Arguments

Return Value TRUE is returned if the scan list was successfully loaded from non-volatile
memory. FALSE is returned if an error occurred. Detailed error information
can be read with the GetLastError() function.

Description Use SCAN_StoreScanlist() to save the scan list information to non-volatile
memory.

When scan list information is loaded, the previous scan list is overwritten and
the newly read scan list is enabled.

SCAN_DEV Structure This structure defines the format of the registration information used when
registering a node (Master) in the scan list. This structure is used in the
SCAN_RegisterSlaveDeviceEx() and SCAN_GetSlaveDeviceEx() functions.
When nodes are registered in the scan list as a group, the FSCAN_DEV and
FILE_SCAN_DEV structures are used.

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

Type Name Contents

WORD VendorID Vendor ID
Scan list disabled mode:0xFFFF (65535)
Specify the vendor ID to be verified when perform-
ing a vender ID verification check.

WORD ProductType Product type
Scan list disabled mode:0xFFFF (65535)
Specify the product type to be verified when per-
forming a product type verification check.

WORD ProductCode Product code
Scan list disabled mode:0xFFFF (65535)
Specify the product code to be verified when per-
forming a product code verification check
70

Master Function API Functions Section 4-4
WORD ScanType Scan type
Specifies the type of connection to be used.

Up to two can be selected. However, COS and cyclic
connections cannot be selected at the same time.

Specify 0×8000 (32768) for automatic selection.

WORD Output1 Size of output data 1 in bytes 0x00 to 0xC8 (0 to 200)

WORD Input1 Size of input data 1 in bytes 0x00 to 0xC8 (0 to 200)

WORD Output2 Size of output data 2 in bytes 0x00 to 0xC8 (0 to 200)
Set this area to 0 if specifying automatic selection for
the scan type or specifying only one connection.

WORD Input2 Size of input data 2 in bytes 0x00 to 0xC8 (0 to 200)

Set this area to 0 if specifying automatic selection for
the scan type or specifying only one connection.

WORD ConnectAccept Connected/Not connected
Not connected:0xFFFF (65535)
Connected: Some other value

Normally set to 0 (when connected).

Select 0xFFFF (when not connected) if Slaves are to
be added later or reserved in the scan list. When
0xFFFF is selected, I/O communications do not
occur even if the Slave is registered in the scan list.
No communications errors will occur either. Once the
Slave has been added use
SCAN_ConnectSlaveDevice() to start I/O communi-
cations.

WORD HeatBeatTime COS/cyclic send interval time (ms)

Setting range:
0x0000 (0): Default (1 s)

0x000A to 0xFFFF (10 to 65535): 10 to 65,535 ms

The actual HeatBeatTime will be the greater of the
following values:

• The value set here
• Communications cycle time x 2
• 10 ms

WORD Output1PathLen Output 1 connection path size: 0x00 to 0x10 (0 to 16)

WORD Output1Path[16] Output 1 connection path

WORD Input1PathLen Input 1 connection path size: 0x00 to 0x10 (0 to 16)

WORD Input1Path[16] Input 1 connection path

WORD Output2PathLen Output 2 connection path size: 0x00 to 0x10 (0 to 16)
Set this area to 0 if specifying automatic selection for
the scan type or specifying only one connection.

WORD Output2Path[16] Output 2 connection path

WORD Input2PathLen Input 2 connection path size: 0x00 to 0x10 (0 to 16)
Set this area to 0 if specifying automatic selection for
the scan type or specifying only one connection.

WORD Input2Path[16] Input 2 connection path

WORD Reserve Reserved area, so set to 0.

WORD Reserve2 Reserved area, so set to 0.

Type Name Contents

Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ReservedCY COS BS Poll Reserved

BS: Bit Strobe
CY: Cyclic
71

Master Function API Functions Section 4-4
Note When not specifying a connection path, set the connection path size to 0 and
the connection path to NULL.

Registering a Slave in the Scan List (Detailed): SCAN_RegisterSlaveDeviceEx()

Application Range Open status

Function Registers detailed information in the scan list for a Slave.

Call Format BOOL SCAN_RegisterSlaveDeviceEx(DWORD Handle, WORD, MacId,
SCAN_DEV *DeviceInfo)

Arguments

Return Value TRUE is returned if the specified Slave was successfully registered in the
scan list. FALSE is returned if an error occurred. Detailed error information
can be read with the GetLastError() function.

Description Slave information that is already registered in the scan list will be overwritten.

Reading a Scan List Slave (Detailed): SCAN_GetSlaveDeviceEx()

Application Range Open status

Function Reads detailed Slave information registered in the scan list.

Call Format BOOL SCAN_GetSlaveDeviceEx(DWORD Handle, WORD, MacId, SCAN_
DEV *DeviceInfo)

Arguments

Return Value TRUE is returned if the specified Slave information was successfully read
from the scan list. FALSE is returned if an error occurred. Detailed error infor-
mation can be read with the GetLastError() function.

FSCAN_DEV
Structure

This structure defines the format of the individual Slave information used
when nodes are registered in the scan list as a group.
This structure is used within the FILE_SCAN_DEV structure and in the
SCAN_SetScanList() function.

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

WORD MacId Node address to register in the scan list.
Setting range: 0x00 to 0x3F (0 to 63)

SCAN_DEV * Device Buffer address where detailed Slave information is
stored.

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

WORD MacId Node address to register Slave information.
Setting range: 0x00 to 0x3F (0 to 63)

SCAN_DEV * Device Buffer address where detailed Slave information is
stored.

Type Name Contents

WORD MacId Node address to register

SCAN_DEV ScanDevice Slave information
72

Master Function API Functions Section 4-4
FILE_SCAN_DEV This structure defines the format of the grouped Slave information used when
nodes are registered in the scan list as a group.
This structure is used in the SCAN_SetScanList() function.

Registering Multiple Slaves in the Scan List: SCAN_SetScanlist()

Application Range Open status

Function Registers multiple Slaves in the scan list as a group.

Call Format BOOL SCAN_SetScanlist(DWORD Handle, LPCTSTR FilePath,)

Arguments

Return Value TRUE is returned if the scan list was registered successfully. FALSE is
returned if an error occurred. Detailed error information can be read with the
GetLastError() function.

4-4-2 I/O Communications Service API Functions

Starting Remote I/O Communications: SCAN_StartScan()

Application Range Online status

Function Starts remote I/O communications.

Call Format BOOL SCAN_StartScan(DWORD Handle, BOOL ErrStop)

Arguments

Return Value TRUE is returned if remote I/O communications started normally in the speci-
fied Board. FALSE is returned if an error occurred, such as the lack of a corre-
sponding event. Detailed error information can be read with the
GetLastError() function.

Description Performs remote I/O communications with the Slaves registered in the scan
list.

Several seconds are required after this function is called before I/O communi-
cations will actually start.

Scan list operation API Functions must be used to create a scan list before
this function is called.

When TRUE has been specified for the ErrStop variable, remote I/O commu-
nications with all of the Slaves will be stopped if a communications error
occurs during remote I/O communications.

Type Name Contents

WORD DeviceCount Number of Slaves set

FSCAN_DEV Device[DEVICE_MAX] Scan Slave information

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

LPCTSTR LPCTSTR Buffer address of the scan list file path
(FILE_SCAN_DEV structure format file)

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

BOOL ErrStop Specifies whether to continue or stop remote I/O
when a communications error occurs.

TRUE: Stop after a communications error
FALSE: Continue after a communications error
73

Master Function API Functions Section 4-4
Stopping Remote I/O Communications: SCAN_StopScan()

Application Range I/O communications execution status

Function Stops remote I/O communications.

Call Format BOOL SCAN_StopScan(DWORD Handle)

Arguments

Return Value TRUE is returned if remote I/O communications stopped normally in the spec-
ified Board. FALSE is returned if an error occurred, such as the lack of a cor-
responding event. Detailed error information can be read with the
GetLastError() function.

Writing the Communications Cycle Time: SCAN_SetScanTimeValue()

Application Range Open status

Function Sets the communications cycle time.

Call Format BOOL SCAN_SetScanTimeValue(DWORD Handle, WORD ScanTime)

Arguments

Return Value TRUE is returned if the communications cycle time was set successfully.
FALSE is returned if an error occurred. Detailed error information can be read
with the GetLastError() function.

Description The default communications cycle time is automatic (maximum). The commu-
nications cycle time for the automatic setting is calculated using the formula
listed in 6-1-1 Communications Cycle Time.

If a value shorter than the communications cycle time used under the auto-
matic setting is set, the set value changes to that specified value but the
actual communications use the communications cycle time from the auto-
matic setting.

Reading the Communications Cycle Time: SCAN_GetScanTimeValue()

Application Range Open status

Function Reads the set communications cycle time.

Call Format BOOL SCAN_GetScanTimeValue(DWORD Handle, WORD*ScanTime)

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

WORD ScanTime Communications cycle time (ms)
Setting range:

0x000 (0): Automatic (Always executed at the fastest
speed.)

0x0001 to 0x01F4 (1 to 500): 1 to 500 ms
74

Master Function API Functions Section 4-4
Arguments

Return Value TRUE is returned if the communications cycle time was read successfully.
FALSE is returned if an error occurred. Detailed error information can be read
with the GetLastError() function.

Description This function gets the set value (in ms).

Use SCAN_GetCycleTime(), SCAN_GetMaxCycleTime(), or SCAN_GetMin
CycleTime() to get the real cycle time.

Storing the Communications Cycle Time: SCAN_StoreScanTimeValue()

Application Range Open status

Function Saves the set communications cycle time to non-volatile memory.

Call Format BOOL SCAN_StoreScanTimeValue(DWORD Handle)

Arguments

Return Value TRUE is returned if the communications cycle time was successfully written to
non-volatile memory. FALSE is returned if an error occurred. Detailed error
information can be read with the GetLastError() function.

Description The value for the communications cycle time saved to non-volatile memory is
enabled when SCAN_LoadScanTimeValue() is used.

Loading the Communications Cycle Time: SCAN_LoadScanTimeValue()

Application Range Open status

Function Loads the communications cycle time from non-volatile memory and uses it
as the set value.

Call Format BOOL SCAN_LoadScanTimeValue(DWORD Handle)

Arguments

Return Value TRUE is returned if the communications cycle time was successfully loaded
from non-volatile memory. FALSE is returned if an error occurred. Detailed
error information can be read with the GetLastError() function.

Description If this function is used without executing SCAN_SetScanTimeValue(), the
communications cycle time will be the default (automatic).

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

WORD ScanTime Buffer address for receiving the communications cycle
time

Receiving range:

0x0000 (0): Automatic (Always executed at the fast-
est speed.)

0x0001 to 0x01F4 (1 to 500): 1 to 500 ms

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()
75

Master Function API Functions Section 4-4
ACTUAL_SLAVE_INFO Structure
This structure stores information obtained when reading information about the
Slaves connected to the network. This structure is used in the SCAN_Get
ActualSlaveDevice() function.

Reading Slave Information: SCAN_GetActualSlaveDevice()

Application Range I/O communications execution status

Function Reads information about the specified Slave.

Call Format BOOL SCAN_GetActualSlaveDevice(DWORD Handle, WORD MacId,
ACTUAL_SLAVE_INFO*SlaveInfo)

Arguments

Return Value TRUE is returned if the Slave information was read successfully. FALSE is
returned if an error occurred. Detailed error information can be read with the
GetLastError() function.

Description This function gets information from Slaves connected to the network.

Information can even be obtained for Slaves with verification errors.

Type Name Contents

WORD VendorID Vendor ID
Scan list disabled mode:0xFFFF (65535)
No Slaves connected:0xFF00 (65280)

WORD ProductType Product type
Scan list disabled mode:0xFFFF (65535)
No Slaves connected:0xFF00 (65280)

WORD ProductCode Product code
Scan list disabled mode:0xFFFF (65535)
No Slaves connected:0xFF00 (65280)

WORD ScanType

WORD Output1 Size of output data 1 in bytes
No Slaves connected: 0xFF00 (65280)

WORD Input1 Size of input data 1 in bytes
No Slaves connected: 0xFF00 (65280)

WORD Output2 Size of output data 2 in bytes
Two I/O connections not set: 0×000 (0)

No slaves connected: 0×FF00 (65280)

WORD Input2 Size of input data 2 in bytes
Two I/O connections not set: 0×000 (0)

No slaves connected: 0×FF00 (65280)

Scan type
 0x8000 (32768) for automatic selection

Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ReservedCY

BS: Bit Strobe
CY: Cyclic

COS BS Poll Reserved

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

WORD MacId Node address of the Slave whose information is
being read

ACTUAL_SLAVE_
INFO*

SlaveInfo Buffer address for receiving slave information

Slave information is stored to the buffer address
specified here when the function is completed.
76

Master Function API Functions Section 4-4
Use SCAN_GetSlaveDevice() or SCAN_GetSlaveDeviceEx() to get Slave
information for Slaves registered on the scan list.

Starting Slave I/O Communications: SCAN_ConnectSlaveDevice()

Application Range I/O communications execution status

Function Starts I/O communications with the specified Slave.

Call Format BOOL SCAN_ConnectSlaveDevice(DWORD Handle, WORD MacId)

Arguments

Return Value TRUE is returned if the I/O communications with the specified Slave were
started successfully. FALSE is returned if an error occurred. Detailed error
information can be read with the GetLastError() function.

Description This function can be used in I/O communications execution status.

During execution of I/O communications, this function clears I/O communica-
tions stop status (withdrawal status) for a specific Slave and starts I/O com-
munications.

Use this function with SCAN_DisconnectSlaveDevice() when replacing Slaves
or to make reservations for expected additional Slaves (when registering to
the scan list but not performing I/O communications).

Stopping Slave I/O Communications: SCAN_DisconnectSlaveDevice()

Application Range I/O communications execution status

Function Stops I/O communications with the specified Slave.

Call Format BOOL SCAN_DisconnectSlaveDevice(DWORD Handle, WORD MacId);

Arguments

Return Value TRUE is returned if the I/O communications with the specified Slave were
stopped successfully. FALSE is returned if an error occurred. Detailed error
information can be read with the GetLastError() function.

Description This function can be used in I/O communications execution status.

During execution of I/O communications, this function clears I/O communica-
tions stop status (withdrawal status) for a specific Slave and stops I/O commu-
nications.

Use this function with SCAN_ConnectSlaveDevice() when replacing Slaves or
to make reservations for expected additional Slaves (when registering to the
scan list but not performing I/O communications).

Slaves for which I/O communications were stopped (withdrawn) using this
function will not have verification or communications errors.

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

WORD MacId Slave’s node address

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

WORD MacId Slave’s node address
77

Master Function API Functions Section 4-4
4-4-3 I/O Data Access Service API Functions

Refreshing Master I/O Data: SCAN_IoRefresh()

Application Range Open status

Function Refreshes the all Slave data in the I/O area of the Board’s Master function.

Call Format BOOL SCAN_IoRefresh(DWORD Handle)

Arguments

Return Value TRUE is returned if the input and output areas of the specified Board’s Master
function were successfully refreshed. FALSE is returned if an error occurred.
Detailed error information can be read with the GetLastError() function.

Description This function executes data exchange between the I/O areas accessible using
API functions and I/O areas on the Board used for actual communications,
and refreshes these I/O areas.

This function refreshes all Slave I/O areas.

Use the SCAN_GetInData() after this function is completed to get the input
data.

For output data, first execute SCAN_SetOutData() for the required Slaves,
and then execute this function.

IO_DATA_CTL Structure
This structure defines the data format used when accessing the Board’s I/O
areas. This structure is used in the SCAN_GetInData(), SCAN_SetOutData(),
SCAN_GetSlaveOutData(), and SCAN_SetSlaveInData() functions.

Specify the read data size or write data size under DataSize.

Reading Slave Input Data: SCAN_GetInData()

Application Range Open status

Function Reads the specified Slave’s input data from the Board’s input area.

Call Format BOOL SCAN_GetInData(DWORD Handle, WORD MacId, IO_DATA_CTL
*InData1, IO_DATA_CTL *InData2)

Arguments

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

Type Name Contents

DWORD DataSize Amount of data in bytes
Setting range: 0x00 to 0xC8 (0 to 200 bytes)

BYTE Data[200] Buffer where data is stored

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

WORD MacId Node address to read
Setting range: 0x00 to 0x3F (0 to 63)

IO_DATA_CTL* InData1 Buffer address where input data 1 is stored

IO_DATA_CTL* InData2 Buffer address where input data 2 is stored (NULL
when not used.)
78

Master Function API Functions Section 4-4
Return Value TRUE is returned if the specified input data was read successfully. FALSE is
returned if an error occurred. Detailed error information can be read with the
GetLastError() function.

Description The most recent Slave inputs will not be reflected in the Board’s input area
unless this function is executed after SCAN_IoRefresh().

Specify NULL as the input data 2 storage buffer address if only one I/O con-
nection is used with Slaves (e.g., when using SCAN_RegisterSlaveDevice()).

Specify the input data size for the specified node address as the data size for
the IO_DATA_CTL structure. The read I/O data is stored in the data storage
buffer of the IO_DATA_CTL structure.

Writing Slave Output Data: SCAN_SetOutData()

Application Range Open status

Function Writes the specified Slave’s output data to the Board’s output area.

Call Format BOOL SCAN_SetOutData(DWORD Handle, WORD MacId, IO_DATA_CTL
*OutData1, IO_DATA_CTL *OutData2)

Arguments

Return Value TRUE is returned if the specified output data was written successfully. FALSE
is returned if an error occurred. Detailed error information can be read with
the GetLastError() function.

Description The Board’s output area will not be reflected in the most recent Slave outputs
unless SCAN_IoRefresh() is executed after this function.

Specify NULL as the input data 2 storage buffer address if only one I/O con-
nection is used with Slaves (e.g., when using SCAN_RegisterSlaveDevice()).

Specify the output data size for the specified node address as the data size for
the IO_DATA_CTL structure. The output data to Slaves is stored in the data
storage buffer of the IO_DATA_CTL structure.

Sending COS Output Data: SCAN_SendMasterCosToSlave()

Application Range I/O communications executing status

Function Sends output data to a Slave communicating through a COS connection.

Call Format BOOL SCAN_SendMasterCosToSlave(DWORD Handle DWORD MacId)

Arguments

Return Value TRUE is returned if the transmission of output data to the Slave proceeded
normally. FALSE is returned if an error occurred. Detailed error information
can be read with the GetLastError() function.

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

WORD MacId Node address to write
Setting range: 0x00 to 0x3F (0 to 63)

IO_DATA_CTL* OutData1 Buffer address where output data 1 is stored

IO_DATA_CTL* OutData2 Buffer address where output data 2 is stored
(NULL when not used.)

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

DWORD MacId Node address to write output data
Designation range: 0X0 to 0X3F (0 to 63)
79

Slave Function API Functions Section 4-5
Description Before output data is sent to Slaves through a COS connection, the
SCAN_SetOutData() function must be used to set the output data.

COS connections do not always produce immediate communications. Trans-
mission may be delayed when several nodes are using COS communications.

4-5 Slave Function API Functions

4-5-1 Slave Scan List Operation API Functions

SELF_DEV Structure This structure defines the format of the registration information used when
registering I/O information in the Slave’s scan list. This structure is used in the
SCAN_RegisterSelfSlaveDevice() and SCAN_GetSelfSlaveDevice() func-
tions. When nodes are registered in the scan list as a group, the FSCAN_DEV
and FILE_SCAN_DEV structures are used.

Type Name Contents

WORD ScanType Scan type
Specifies the connection type used.

Up to 2 scan types can be selected, although COS
and cyclic cannot be selected simultaneously.

0x8000 (32768) for automatic selection

WORD Output1 Output data 1 (Master to Slave)

Size (bytes): 0x00 to 0xC8 (0 to 200)

WORD Input1 Input data 1 (Slave to Master)
Size (bytes): 0x00 to 0xC8 (0 to 200)

WORD Output2 Output data 2 (Master to Slave)

Size (bytes): 0x00 to 0xC8 (0 to 200)

Set this area to 0 if specifying automatic selection for
the scan type or specifying only one connection.

WORD Input2 Input data 2 (Slave to Master)

Size (bytes): 0x00 to 0xC8 (0 to 200)

Set this area to 0 if specifying automatic selection for
the scan type or specifying only one connection.

WORD ConnectAccept Connected/Not connected
Not connected:0xFFFF (65535)
Connected:Some other value

Normally set to 0 (when connected).

Set to 0xFFFF (when not connected) if not performing
I/O communications even though the slave is regis-
tered in the scan list. A “No Slave” error will occur on
the Master.

WORD ErrorOutData Indicates whether output data is retained or cleared
when a communications error occurs.

Retain output data: 0xFFFF (65535)
Clear output data: Some other value

Specifies the output data (Master to Slave) status for
when a communications error occurs with the Master.

Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ReservedCY COS BS Poll Reserved

BS: Bit Strobe
CY: Cyclic
80

Slave Function API Functions Section 4-5
Registering a Slave Scan List: SCAN_RegisterSelfSlaveDevice()

Application Range Open status

Function Registers Slave function information in the Slave scan list.

Call Format BOOL SCAN_RegisterSelfSlaveDevice(DWORD Handle, SELF_DEV* Devi-
ceInfo)

Arguments

Return Value TRUE is returned if the specified Slave information was successfully regis-
tered in the scan list. FALSE is returned if an error occurred. Detailed error
information can be read with the GetLastError() function.

Description If connection is specified, I/O communications will automatically start if a
request to establish a connection is received from the Master after this func-
tion is completed.

Deleting a Slave Scan List: SCAN_RemoveSelfSlaveDevice()

Application Range Open status

Function Deletes the Slave scan list information.

Call Format BOOL SCAN_RemoveSelfSlaveDevice(DWORD Handle)

Arguments

Return Value TRUE is returned if the Slave scan list was successfully deleted. FALSE is
returned if an error occurred. Detailed error information can be read with the
GetLastError() function.

Reading a Slave Scan List: SCAN_GetSelfSlaveDevice()

Application Range Open status

Function Reads the Slave scan list information.

Call Format BOOL SCAN_GetSelfSlaveDevice(DWORD Handle, SELF_DEV* DeviceInfo)

Arguments

Return Value TRUE is returned if the Slave scan list was read successfully. FALSE is
returned if an error occurred. Detailed error information can be read with the
GetLastError() function.

Description The Slave scan list information is stored in the SELF_DEV structure when this
function is completed.

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

SELF_DEV* DeviceInfo Buffer address where Slave function information is
stored.

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

SELF_DEV* DeviceInfo Buffer address for receiving the Slave function infor-
mation.
81

Slave Function API Functions Section 4-5
Storing a Slave Scan List: SCAN_StoreSlaveScanlist()

Application Range Open status

Function Saves the Slave scan list information to non-volatile memory.

Call Format BOOL SCAN_StoreSlaveScanlist(DWORD Handle)

Arguments

Return Value TRUE is returned if the Slave scan list was successfully written to non-volatile
memory. FALSE is returned if an error occurred. Detailed error information
can be read with the GetLastError() function.

Description The Slave scan list information saved to non-volatile memory can be regis-
tered as the Slave scan list by using SCAN_LoadSlaveScanlist().

Loading a Slave Scan List: SCAN_LoadSlaveScanlist()

Application Range Open status

Function Loads the Slave scan list information from non-volatile memory and registers
the information as the Slave scan list.

Call Format BOOL SCAN_LoadSlaveScanlist(DWORD Handle)

Arguments

Return Value TRUE is returned if the Slave scan list was successfully loaded from non-vola-
tile memory. FALSE is returned if an error occurred. Detailed error information
can be read with the GetLastError() function.

Description Use SCAN_StoreSlaveScanlist() to save the Slave scan list to non-volatile
memory.

4-5-2 I/O Communications Service API Functions

Starting Master I/O Communications: SCAN_ConnectMasterDevice()

Application Range Online status

Function Starts I/O communications with the specified Master.

Call Format BOOL SCAN_ConnectMasterDevice(DWORD Handle, WORD ErrorOutData)

Arguments

Return Value TRUE is returned if the I/O communications with the specified Master were
started successfully. FALSE is returned if an error occurred. Detailed error
information can be read with the GetLastError() function.

Description Starts I/O communications with Masters that have stopped communications.

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

WORD ErrorOutData Holds/clears output data at communications errors
Hold output data: 0×FFFF (65535)

Clear: Any other value
82

Slave Function API Functions Section 4-5
Slave information must be registered using SCAN_RegisterSelfSlaveDevice()
to use this function.

Stopping Master I/O Communications: SCAN_DisconnectMasterDevice()

Application Range I/O communications execution status

Function Stops I/O communications with the specified Master.

Call Format BOOL SCAN_DisconnectMasterDevice(DWORD Handle);

Arguments

Return Value TRUE is returned if the I/O communications with the specified Master were
stopped successfully. FALSE is returned if an error occurred. Detailed error
information can be read with the GetLastError() function.

Description Stops I/O communications with Masters. The Master will have a communica-
tions error.

The stopped I/O communications can be restarted using SCAN_Connect
MasterDevice().

4-5-3 I/O Data Access Service API Functions

Refreshing Slave I/O Data: SCAN_SlaveIoRefresh()

Application Range Open status

Function Refreshes the input and output areas of the Board’s Slave function with the
most recent data from remote I/O communications. Refreshes the data in the
I/O areas of the Slave function.

Call Format BOOL SCAN_SlaveIoRefresh(DWORD Handle)

Arguments

Return Value TRUE is returned if the input and output areas of the specified Board’s Slave
function were successfully refreshed. FALSE is returned if an error occurred.
Detailed error information can be read with the GetLastError() function.

Description This function executes data exchange between the Slave function’s I/O areas
accessible using API functions and Slave function’s I/O areas on the Board
used for actual communications, and refreshes these I/O areas.

Use the SCAN_GetSlaveOutData() after this function is completed to get the
input data.

For output data, first execute SCAN_SetSlaveInData() for the required Slaves,
and then execute this function.

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()
83

Slave Function API Functions Section 4-5
IO_DATA_CTL Structure
This structure defines the data format used when accessing the Board’s I/O
areas. This structure is used in the SCAN_GetInData(), SCAN_SetOutData(),
SCAN_GetSlaveOutData(), and SCAN_SetSlaveInData() functions.

Specify the read data size or write data size under DataSize.

Reading Master Output Data: SCAN_GetSlaveOutData()

Application Range Open status

Function Reads output data from the Master from the Board’s Slave function output
area.

Call Format BOOL SCAN_GetSlaveOutData(DWORD Handle, IO_DATA_CTL *OutData1,
IO_DATA_CTL *OutData2)

Arguments

Return Value TRUE is returned if the specified output data was read successfully. FALSE is
returned if an error occurred. Detailed error information can be read with the
GetLastError() function.

Description The Board’s Slave function output area will not reflect in the most recent
outputs from the Master unless this function is executed after SCAN_
SlaveIoRefresh().

Specify NULL as the output data 2 storage buffer address if only one I/O con-
nection is used with the Slave function.

Specify the output data size from the Master when using the Slave function
(OUT size) as the data size for the IO_DATA_CTL structure. The output data
read from the Master is stored in the data storage buffer of the IO_DATA_CTL
structure.

Writing Master Input Data: SCAN_SetSlaveInData()

Application Range Open status

Function Writes input data to the Master to the Board’s Slave function input area.

Call Format BOOL SCAN_SetSlaveInData(DWORD Handle, WORD MacId, IO_DATA_
CTL *InData1, IO_DATA_CTL *InData2)

Arguments

Type Name Contents

DWORD DataSize Amount of data in bytes
Setting range: 0x00 to 0xC8 (0 to 200 bytes)

BYTE Data[256] Buffer where data is stored

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

IO_DATA_CTL* OutData1 Buffer address where output data 1 is stored

IO_DATA_CTL* OutData2 Buffer address where output data 2 is stored
(NULL when not used.)

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

IO_DATA_CTL* InData1 Buffer address where input data 1 is stored

IO_DATA_CTL* InData2 Buffer address where input data 2 is stored (NULL
when not used.)
84

Explicit Message API Functions Section 4-6
Return Value TRUE is returned if the specified input data was written successfully. FALSE is
returned if an error occurred. Detailed error information can be read with the
GetLastError() function.

Description The Board’s Slave function input area will not reflect in the most recent Master
inputs unless SCAN_IoRefresh() is executed after this function.

Specify NULL as the input data 2 storage buffer address if only one I/O con-
nection is used with the Slave function.

Specify the input size (IN size) for the Master using the Slave function as the
data size for the IO_DATA_CTL structure. The input data to the Master is
stored in the data storage buffer of the IO_DATA_CTL structure.

Sending COS Input Data: SCAN_SendSlaveCosToMaster()

Application Range I/O communications executing status

Function Sends input data to a Master communicating through a COS connection.

Call Format BOOL SCAN_SendSlaveCosToMaster(DWORD Handle)

Arguments

Return Value TRUE is returned if the transmission of input data to the Master proceeded
normally. FALSE is returned if an error occurred. Detailed error information
can be read with the GetLastError() function.

Description The SCAN_SetSlaveInData() function must be used to set the input data
before the input data is sent to the Master through a COS connection.

COS connections do not guarantee immediate communications. Transmission
may be delayed when several nodes are using COS communications.

4-6 Explicit Message API Functions

4-6-1 Message Monitoring Timer Service API Functions

Registering the Message Monitoring Timer: SCAN_SetMessageTimerValue()

Application Range Open status

Function Registers the message monitoring timer value of the explicit client connection
with the specified node address.

Call Format BOOL SCAN_SetMessageTimerValue(DWORD Handle, WORD MacId,
WORD Epr)

Arguments

Return Value TRUE is returned when the message monitoring timer value was successfully
registered. FALSE is returned if an error occurred. Detailed error information
can be read with the GetLastError() function.

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

WORD MacId Desired node address
Setting range: 0x00 to 0x3F (0 to 63)

WORD Epr Message monitoring timer value to be registered
(ms)
Setting range: 0x1F4 to 0x7530 (500 to 30,000)
85

Explicit Message API Functions Section 4-6
Description Use this function to change the message monitoring timer value.

The default value (2 s, or 2,000 ms) will be used when 0 is set as the message
monitoring timer value.

Reading the Message Monitoring Timer: SCAN_GetMessageTimerValue()

Application Range Open status

Function Reads the message monitoring timer value of the explicit client connection
with the specified node address.

Call Format BOOL SCAN_GetMessageTimerValue(DWORD Handle, WORD MacId,
WORD *Epr)

Arguments

Return Value TRUE is returned when the message monitoring timer value was successfully
read. FALSE is returned if an error occurred. Detailed error information can be
read with the GetLastError() function.

Description Use this function to check the current message monitoring timer value.

The default message monitoring timer value, 0 (2 s), will be read when the
value is not set using SCAN_SetMessageTimerValue().

Storing the Message Monitoring Timer List: SCAN_StoreMessageTimerValueList()

Application Range Open status

Function Saves the explicit client connection’s message monitoring timer list to non-vol-
atile memory.

Call Format BOOL SCAN_StoreMessageTimerValueList(DWORD Handle)

Arguments

Return Value TRUE is returned when the message monitoring timer list was successfully
saved to non-volatile memory. FALSE is returned if an error occurred.
Detailed error information can be read with the GetLastError() function.

Description Message monitoring timer values for all node addresses are saved.

The message monitoring timer list saved to non-volatile memory is enabled
when SCAN_LoadMessageTimerValueList() is used.

Loading the Message Monitoring Timer List: SCAN_LoadMessageTimerValueList()

Application Range Open status

Function Reads the explicit client connection monitoring timer list from non-volatile
memory and registers it as the message monitoring timers.

Call Format BOOL SCAN_LoadMessageTimerValueList(DWORD Handle)

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

WORD MacId Desired node address
Setting range: 0x00 to 0x3F (0 to 63)

WORD* Epr Buffer address for obtaining the message monitor-
ing timer value (ms).

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()
86

Explicit Message API Functions Section 4-6
Arguments

Return Value TRUE is returned when the message monitoring timer list was successfully
loaded from non-volatile memory. FALSE is returned if an error occurred.
Detailed error information can be read with the GetLastError() function.

Description The message monitoring timer values for all node addresses are refreshed
using the saved values.

If this function is used without SCAN_StoreMessageTimerValueList() being
executed, the default value, 0 (2 s), will be used as the message monitoring
timer value for all node addresses.

4-6-2 Client Message Service API Functions

Registering a Client Response Message: SCAN_RegClientEvtNotifyMessage()

Application Range Open status

Function Registers the Windows message sent when a client response reception event
occurs from the specified node address.

Call Format BOOL SCAN_RegClientEvtNotifyMessage(DWORD Handle, WORD MacId,
DWORD ThreadId, HWND hWnd, UINT Msg)

Arguments

Return Value TRUE is returned if the message registration was completed successfully.
FALSE is returned if an error occurred such as null values for both the thread
ID and window handle. Detailed error information can be read with the Get-
LastError() function.

Description The client response source (remote) node address is sent to WPARAM with
the notification message. The reception response size (in bytes) is sent to
LPARAM with the notification message.

Clearing a Client Response Message: SCAN_UnRegClientEvtNotifyMessage()

Application Range Open status

Function Clears the registered notification message of the specified node address.

Call Format BOOL SCAN_UnRegClientEvtNotifyMessage(DWORD Handle, WORD
MacId)

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

WORD MacId Node address to check for events
Setting range: 0x00 to 0x3F (0 to 63)

DWORD ThreadId The thread ID to notify.
(No setting = NULL)

HWND HWnd Specifies the window handle to notify.
(No setting = NULL)

UINT Msg Notification message (event ID)
Range: WM_USER + 0x100 to WM_USER + 0x7FFF
87

Explicit Message API Functions Section 4-6
Arguments

Return Value TRUE is returned if the message registration was cleared successfully.
FALSE is returned if an error occurred. Detailed error information can be read
with the GetLastError() function.

Checking for Client Response Events: SCAN_PeekClientEvent()

Application Range Online status

Function Checks whether there is a client response event.

Call Format BOOL SCAN_PeekClientEvent(DWORD Handle, WORD MacId,)

Arguments

Return Value TRUE is returned if there is a client response event in the event queue.
FALSE is returned if an error occurred or there is not a client response event
in the event queue. Detailed error information can be read with the GetLastEr-
ror() function.

Reading the Length of a Client Response: SCAN_GetClientEventLength()

Application Range Online status

Function Determines the length of the client response.

Call Format BOOL SCAN_GetClientEventLength(DWORD Handle, WORD MacId,
DWORD*Length)

Arguments

Return Value TRUE is returned if the size of the event was read successfully. FALSE is
returned if an error occurred, such as the lack of a client event. Detailed error
information can be read with the GetLastError() function.

Description Before getting the response message using SCAN_ReceiveClientExplicit(),
set aside a buffer for storing service data that is at least as large as the
response read using this function.

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

WORD MacID Desired node address

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

WORD MacId Node address being checked for response destina-
tion (remote)
Setting range: 0x00 to 0x3F (0 to 63)

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

WORD MacId Destination (remote) node address for response for
which response size is being read.

DWORD* Length Buffer address where response size is received.
88

Explicit Message API Functions Section 4-6
CLIENT_REQ Structure
This structure defines the format of client request explicit messages. It is used
with the SCAN_SendClientExplicit() function.

Sending a Client Explicit Message: SCAN_SendClientExplicit()

Application Range Online status

Function Sends a client request message.

Call Format BOOL SCAN_SendClientExplicit(DWORD Handle, CLIENT_REQ*Msg)

Arguments

Return Value TRUE is returned if the send event registration was completed successfully.
FALSE is returned if an error occurred. Detailed error information can be read
with the GetLastError() function.

Description The message ID, destination node address, service data size, the data for the
service being sent as a request (service code, class ID, instance ID, and ser-
vice data) needs to be saved in the CLIENT_REQ structure.

Set a value to the message ID in the CLIENT_REQ structure when the mes-
sage needs to be identified by the application. Set 0 if the message doesn’t
need to be identified.
The set message ID is saved in the CLIENT_RES structure’s message ID
after SCAN_ReceiveClientExplicit() has been completed.

Note Always enable retries when sending explicit messages because explicit mes-
sages may not be received, depending on the type of destination Slave.

CLIENT_RES Structure
This structure defines the format of client response explicit messages. This
structure is used in the SCAN_ReceiveClientExplicit() function.

Type Name Contents

DWORD MessageID Message ID
Set a value to enable the application to identify the
message. Set 0 if no identification is required.

WORD MacId Destination (remote) node address

WORD ServiceCode Service code

WORD ClassID Class ID

WORD InstanceID Instance ID

WORD DataLength The amount of service data in bytes
Setting range: 0x0 to 0x228 (0 to 552)

BYTE* ServiceData Buffer address where the service data is stored.
The buffer stores the number of bytes of service
data specified under Data Length.

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

CLIENT_REQ* Msg Buffer address where the request message is stored

Type Name Contents

DWORD MessageID Message ID
The message ID set when the request was sent is
stored when the function is completed.

WORD MacId Destination (remote) node address
Specifies the remote node address for the client
response to be obtained before calling the function.
89

Explicit Message API Functions Section 4-6
Reading a Client Explicit Message: SCAN_ReceiveClientExplicit()

Application Range Online status

Function Gets a client response message from the reception queue.

Call Format BOOL SCAN_ReceiveClientExplicit(DWORD Handle, CLIENT_RES*Msg)

Arguments

Return Value TRUE is returned if the response message was read successfully from the
specified node address. FALSE is returned if an error occurred. Detailed error
information can be read with the GetLastError() function.

Description The CLIENT_RES structure’s destination (remote) node address, service
data storage buffer size, and service data storage buffer address must be set
when calling this function.

Reserve a buffer large enough to store the response message. Check the
event data length with the notification message or SCAN_GetClient
EventLength() function.

If this function is completed normally, the message ID, service code, and size
of the buffer containing service data are saved in the CLIENT_RES structure
and the received service data (response) is stored in the specified service
data storage buffer.

4-6-3 Server Message Service API Functions

Registering an Object Class ID: SCAN_RegObjectClass()

Application Range Open status

Function Registers the object class implemented in the application program.

WORD ServiceCode Service code
Stores the service code when function processing is
completed.

WORD DataLength The size (in bytes) of the buffer containing the ser-
vice data
Setting range: 0x0 to 0x228 (0 to 552)

Specifies the size of the buffer for storing the service
data before calling the function.
A buffer for storing service data must be reserved
that is the size of the reception response buffer
obtained using the client response communications
message or SCAN_GetClientEventLength().

When the function is completed, the number of
bytes of service data that was actually stored will be
set.

BYTE* ServiceData Buffer address where service data is stored.

A buffer of the number of bytes specified under
DataLength must be set aside before the function is
called.

When the function is completed, the received ser-
vice data is stored to the buffer address specified
here.

Type Name Contents

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

CLIENT_RES* Msg Buffer address where the response message is
stored
90

Explicit Message API Functions Section 4-6
Call Format BOOL SCAN_RegObjectClass(DWORD Handle, WORD ClassId)

Arguments

Return Value TRUE is returned if the object class ID was successfully registered to the
specified Board. FALSE is returned if an error occurred. Detailed error infor-
mation can be read with the GetLastError() function.

Description To register an object, a server request message addressed to that object must
be received and a response returned.

The following list shows the object class IDs that can be registered. Up to 16
can be registered.

0x0000 to 0x0063 (excluding 0x0002, 0x0003, 0x0005, 0x002B, and
0x002F), 0x0064 to 0x007F, 0x0088 to 0x008F, 0x0098 to 0x009F, 0x00A8
to 0x00AF, 0x00B8 to 0x00BF, 0x00C0 to 0x00C7

When Identity Object Class (ID=1) is registered, the service code must sup-
port Reset processing.

Clearing an Object Class ID: SCAN_UnRegObjectClass()

Application Range Open status

Function Clears registration of an object class.

Call Format BOOL SCAN_UnRegObjectClass(DWORD Handle, WORD ClassId)

Arguments

Return Value TRUE is returned if the object class ID was successfully deleted from the
specified Board. FALSE is returned if an error occurred. Detailed error infor-
mation can be read with the GetLastError() function.

Registering a Server Notification Message: SCAN_RegServerEvtNotifyMessage()

Application Range Open status

Function Registers the Windows message that notifies when a server request recep-
tion event for the registered object has occurred.

Call Format BOOL SCAN_RegServerEvtNotifyMessage(DWORD Handle, WORD
ClassId, DWORD ThreadId, HWND hWnd, UINT Msg)

Arguments

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

WORD ClassId Registers object class ID.

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

WORD ClassId Object class ID of the object class being deleted.

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

WORD ClassId Object class ID used in server request reception
event.

DWORD ThreadId The thread ID to notify.
(No setting = NULL)
91

Explicit Message API Functions Section 4-6
Return Value TRUE is returned if registration of the notification message was completed
successfully. FALSE is returned if an error occurred such as null values for
both the thread ID and window handle. Detailed error information can be read
with the GetLastError() function.

Description Along with the notification message, notification of the object class ID of the
server request recipient is sent as WPARAM and notification of the reception
request size (in bytes) is sent as LPARAM.

Clearing a Server Notification Message: SCAN_UnRegServerEvtNotifyMessage()

Application Range Open status

Function Clears registration of the notification message for the specified object class
ID.

Call Format BOOL SCAN_UnRegServerEvtNotifyMessage(DWORD Handle, WORD
ClassId,)

Arguments

Return Value TRUE is returned if registration of the notification message was cleared suc-
cessfully. FALSE is returned if an error occurred. Detailed error information
can be read with the GetLastError() function.

Checking Server Request Events: SCAN_PeekServerEvent()

Application Range Open status

Function Checks whether there is a server request event addressed to the specified
class ID.

Call Format BOOL SCAN_PeekServerEvent(DWORD Handle, WORD ClassId,)

Arguments

Return Value TRUE is returned if there is a server request event addressed to the specified
class ID; FALSE is returned if an error occurred or there is not. Detailed error
information can be read with the GetLastError() function.

Reading the Server Request Size: SCAN_GetServerEventLength()

Application Range Open status

Function Gets the server request size (in bytes) for the specified object class ID.

Call Format BOOL SCAN_GetServerEventLength(DWORD Handle, WORD ClassId,
DWORD*Length)

HWND hWnd Specifies the window handle to notify.
(No setting = NULL)

UINT Msg Notification message
Range: WM_USER + 0x100 to WM_USER +
0x7FFF

Type Name Contents

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

WORD ClassId Object class ID being cleared

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

WORD ClassId Class ID being checked for event
92

Explicit Message API Functions Section 4-6
Arguments

Return Value TRUE is returned if the size of the event was read successfully. FALSE is
returned if an error occurred, such as the lack of a corresponding event.
Detailed error information can be read with the GetLastError() function.

Description Set aside a buffer for storing service data that is at least as large as the
request obtained using this function, before using SCAN_Receive
ServerExplicit() to get the request message.

SERVER_REQ Structure
This structure defines the format of server request explicit messages. This
structure is used in the SCAN_ReceiveServerExplicit() function.

Reading a Server Explicit Message: SCAN_ReceiveServerExplicit()

Application Range Online status

Function Gets a server request message from the reception queue.

Call Format BOOL SCAN_ReceiveServerExplicit(DWORD Handle, SERVER_REQ*Msg)

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

WORD ClassId Class ID of the destination for the request for which
the request size is being read.

DWORD* Length Buffer address for receiving the request size.

Type Name Contents

DWORD MessageID Message ID
Stores the server request message ID when the
function is completed.

WORD ServiceCode Service code
Stores the service code for the server request when
the function is completed.

WORD ClassID Class ID
Specifies the class ID for the server request to be
obtained, before the function is called.

WORD InstanceID Instance ID
Stores the instance ID for the server request when
the function is completed.

WORD DataLength The size (in bytes) of the buffer containing the ser-
vice data
Setting range: 0x0 to 0x228 (0 to 552)
Specifies the size of the buffer reserved for storing
the service data before calling the function.

A buffer for storing service data must be reserved
that is the size of the reception request buffer
obtained using the server notification message or
SCAN_GetServerEventLength().
When the function is completed, the number of
bytes of service data that was actually stored will be
set.

BYTE* ServiceData Service data storage buffer address
The number of bytes of service data specified under
DataLength must be set aside.

When the function is completed, the received ser-
vice data is stored in the buffer at the address spec-
ified here.
93

Explicit Message API Functions Section 4-6
Arguments

Return Value TRUE is returned if the request message was read successfully from the
specified Board. FALSE is returned if an error occurred. Detailed error infor-
mation can be read with the GetLastError() function.

Description The SERVER_REQ structure’s ClassID, size of the service data storage
buffer, and address of the service data storage buffer must be set before call-
ing this function.

Reserve a buffer large enough to store the request message. Check the event
data length with the notification message or SCAN_GetServerEventLength()
function.

When this function is completed normally, the message ID automatically set
by the Board and the service code, class ID, instance ID, and service data
size sent from the client will be stored in the SERVER_REQ structure. The
received service data (request) will be stored in the specified service data
storage buffer.

Specify the obtained message ID as the message ID for the SERVER_RES
structure when sending the server response corresponding to the server
request.

SERVER_RES Structure
This structure defines the format of server response explicit messages. This
structure is used in the SCAN_SendServerExplicit() function.

Sending a Server Explicit Message: SCAN_SendServerExplicit()

Application Range Online status

Function Sends a server response message.

Call Format BOOL SCAN_SendServerExplicit(DWORD Handle, SERVER_RES*Msg)

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

SERVER_REQ* Msg Buffer address where the request message is
stored

Type Name Contents

DWORD MessageID Message ID
Specifies the request message ID obtained by
SCAN_ReceiveServerExplicit().

WORD ServiceCode Service code

Specifies the service code sent as the response.

For normal responses:
Turns ON the leftmost bit (bit 15) of the service code
obtained using SCAN_ReceiveServerExplicit and
uses it as the response service code.
For error responses:

Specifies 0×94(148) as the service code for the
error response.

WORD DataLength The amount of service data in bytes
Setting range: 0x0 to 0x228 (0 to 552)

BYTE* ServiceData Provide the number of bytes of service data indi-
cated by the DataLength parameter.
94

Maintenance API Functions Section 4-7
Arguments

Return Value TRUE is returned if the send event registration was completed successfully.
FALSE is returned if an error occurred. Detailed error information can be read
with the GetLastError() function.

Description The message ID, service code, service data size, and buffer address where
the service data must be saved in the SERVER_RES structure. The data cor-
responding to the service to be sent as the response (service data) must be
stored in the specified service data storage buffer.

Make sure that the value saved as MessageID in the SERVER_REQ structure
when SCAN_ReceiveServerExplicit() is completed is saved as the message
ID for the SERVER_RES structure.

4-7 Maintenance API Functions

4-7-1 Status Service API Functions

Reading Network Status: SCAN_GetNetworkStatus()

Application Range Open status

Function Gets the network (CAN) status.

Call Format BOOL SCAN_GetNetworkStatus(DWORD Handle, WORD *Status)

Arguments

Return Value TRUE is returned if the specified Board’s network status was read success-
fully. FALSE is returned if an error occurred. Detailed error information can be
read with the GetLastError() function.

Description The following table shows the location and meaning of the network status
flags. The flags are contained within 16 bits.

The status obtained using this function is not required for control, but is useful
for determining whether or not a communications error originated in the net-
work.

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

SERVER_RES* Msg Buffer address where the response message is
stored

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

WORD * Status Buffer address for receiving the status.

Bit Code Meaning

0 B00 CAN active

1 B01 Network frame detected

8 B08 Network power supply error

9 B09 Transmission timeout error

10 B10 Reception overwrite occurred

11 B11 Reception overload warning

12 B12 Transmission overload warning

14 B14 Bus off error

15 --- Not used
95

Maintenance API Functions Section 4-7
Reading Scanner Status: SCAN_GetScannerStatus()

Application Range Open status

Function Gets the scanner status.

Call Format BOOL SCAN_GetScannerStatus(DWORD Handle, DWORD *Status)

Arguments

Return Value TRUE is returned if the specified Board’s scanner status was read success-
fully. FALSE is returned if an error occurred. Detailed error information can be
read with the GetLastError() function.

Description The following table shows the location and meaning of the scanner status
flags. The flags are contained within 32 bits.

Monitor scanner status bit 0 to check if errors have occurred when using Mas-
ter or Slave functions to perform I/O communications.

Bits 0 to 13 notify if errors have occurred. Bit 0 is an OR of bits 1 to 13.

Bit 1 turns ON if an error occurs with the Master function. Bit 1 is an OR of bits
0 and 2 of the Master function status obtained using SCAN_Get
MasterModeStatus().

Bit 3 turns ON if an error occurs with the Slave function. Bit 3 is an OR of bits
2 and 3 of the Slave function status obtained using SCAN_Get
SlaveModeStatus().

Reading Master Function Status: SCAN_GetMasterModeStatus()

Application Range Open status

Function Gets the Master function status.

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

DWORD * Status Buffer address for receiving the status.

Bit Code Meaning

0 B00 Scanner function error occurred

1 B01 Master function error occurred

2 --- Not used

3 B03 Slave function error occurred

4 B04 Memory error

5 B05 Bus off error

6 B06 MAC ID duplication error

7 B07 Network power supply error

8 B08 Transmission timeout error

9 to 12 --- Not used

13 B13 Invalid message monitoring timer

14 and 15 --- Not used

16 B16 Online

17 B17 Scanning (I/O communications being executed)

18 to 20 --- Not used

21 B21 Slave function enabled mode

22 B22 Automatic setting of Slave scan type

23 to 30 --- Not used

31 B31 Error log in use
96

Maintenance API Functions Section 4-7
Call Format BOOL SCAN_GetMasterModeStatus(DWORD Handle, WORD *Status)

Arguments

Return Value TRUE is returned if the specified Board’s Master function status was read suc-
cessfully. FALSE is returned if an error occurred. Detailed error information
can be read with the GetLastError() function.

Description The following table shows the location and meaning of the Master function
status flags. The flags are contained in 16 bits.

Bit 15 indicates that the node has started I/O communications as the Master.
Execute I/O data I/O processing with Slaves only after checking the status of
each Slave using SCAN_GetSlaveDeviceStatus().

Check verification error details for each Slave using SCAN_Get
SlaveDeviceStatus().

Bits 0 and 2 indicate Master function errors. When either bit 0 or 2 turn ON, bit
1 of the scanner status obtained using SCAN_GetScannerStatus() will turn
ON.

Reading Slave Detailed Status: SCAN_GetSlaveDeviceStatus()

Application Range Open status

Function Gets the specified Slave’s detailed status.

Call Format BOOL SCAN_GetSlaveDeviceStatus(DWORD Handle, WORD MacId, WORD
*Status)

Arguments

Return Value TRUE is returned if the specified Slave’s device status was read successfully.
FALSE is returned if an error occurred. Detailed error information can be read
with the GetLastError() function.

Description The following table shows the location and meaning of the Slave device status
flags.

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

WORD * Status Buffer address for receiving the status.

Bit Code Meaning

0 B00 Verification error

1 --- Not used

2 B02 I/O communications error

3 to 14 --- Not used

15 B15 I/O communications in progress

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

WORD MacId Node address for reading detailed Slave status.
Setting range: 0x00 to 0x3F (0 to 63)

WORD * Status Buffer address for receiving status.

Bit Code Meaning

0 B00 Error occurred

1 B01 Verification error

2 B02 Invalid Slave

3 B03 Vendor ID discrepancy
97

Maintenance API Functions Section 4-7
Bit 0 is an OR of bits 1 and 10.

Bit 1 is an OR of bits 2 to 8. The details of the verification error are indicated
by bits 2 to 8.

Check that bit 15 is ON before performing I/O processing with Slaves using
the Master function.

Checking Slave Registration: SCAN_IsScanlistSlaveDeviceRegist()

Application Range Open status

Function Checks whether or not a Slave is registered in the scan list.

Call Format BOOL SCAN_IsScanlistSlaveDeviceRegist(DWORD Handle, WORD MacId)

Arguments

Return Value TRUE is returned if the specified Slave is registered in the scan list; FALSE is
returned if an error occurred or the Slave is not registered in the scan list.
Detailed error information can be read with the GetLastError() function.

Checking Slave Connection Established: SCAN_IsDeviceConnection()

Application Range Open status

Function Checks whether or not a connection has been established with a Slave.

Call Format BOOL SCAN_IsDeviceConnection(DWORD Handle, WORD MacId)

Arguments

Return Value TRUE is returned if a connection has been established successfully with the
specified device. FALSE is returned if a connection has not been opened nor-
mally. Detailed error information can be read with the GetLastError() function.

Reading the Current Communications Cycle Time: SCAN_GetCycleTime()

Application Range Open status

Function Gets the present value of the communications cycle time.

Call Format BOOL SCAN_GetCycleTime(DWORD Handle, WORD *CycleTime)

4 B04 Product type discrepancy

5 B05 Product code discrepancy

6 B06 Unsupported connection

7 B07 I/O size discrepancy

8 B08 Connection path discrepancy

10 B10 I/O communications error

15 B15 I/O communications in progress

Bit Code Meaning

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

WORD MacId Node address to check
Setting range: 0x00 to 0x3F (0 to 63)

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

WORD MacId Node address for which the connection is to be
checked.
Setting range: 0x00 to 0x3F (0 to 63)
98

Maintenance API Functions Section 4-7
Arguments

Return Value TRUE is returned if the communications cycle time was read successfully
from the specified Board. FALSE is returned if an error occurred. Detailed
error information can be read with the GetLastError() function.

Description The present value of the communications cycle time will be stored in ms.

Reading the Maximum Communications Cycle Time: SCAN_GetMaxCycleTime()

Application Range Open status

Function Gets the maximum value of the communications cycle time.

Call Format BOOL SCAN_GetMaxCycleTime(DWORD Handle, WORD *CycleTime)

Arguments

Return Value TRUE is returned if the maximum communications cycle time was read suc-
cessfully from the specified Board. FALSE is returned if an error occurred.
Detailed error information can be read with the GetLastError() function.

Description The maximum value after the SCAN-ClearCycleTime() function is executed,
power is turned ON, or the Board is reset is held as the maximum communi-
cations cycle time.

Reading the Minimum Communications Cycle Time: SCAN_GetMinCycleTime()

Application Range Open status

Function Gets the minimum value of the communications cycle time.

Call Format BOOL SCAN_GetMinCycleTime(DWORD Handle, WORD *CycleTime)

Arguments

Return Value TRUE is returned if the minimum communications cycle time was read suc-
cessfully from the specified Board. FALSE is returned if an error occurred.
Detailed error information can be read with the GetLastError() function.

Description The minimum value after the SCAN_CycleTime function is executed, the
power is turned ON, or the Board is reset is held in the minimum communica-
tions cycle time.

Clearing the Minimum and Maximum Communications Cycle Time:
SCAN_ClearCycleTime()

Application Range Open status

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

WORD * CycleTime Buffer address for receiving the present value for the
communications cycle time.

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

WORD * CycleTime Buffer address for receiving the maximum communi-
cations cycle time.

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

WORD * CycleTime Buffer address for receiving the minimum communi-
cations cycle time.
99

Maintenance API Functions Section 4-7
Function Clears the maximum and minimum communications cycle time values held in
the Board.

Call Format BOOL SCAN_ClearCycleTime(DWORD Handle)

Arguments

Return Value TRUE is returned if the maximum and minimum communications cycle times
were cleared successfully from the specified Board. FALSE is returned if an
error occurred. Detailed error information can be read with the GetLastError()
function.

Reading Slave Function Status: SCAN_GetSlaveModeStatus()

Application Range Open status

Function Gets the Slave function status.

Call Format BOOL SCAN_GetSlaveModeStatus(DWORD Handle, WORD *Status, WORD
*MacId)

Arguments

Return Value TRUE is returned if the specified Board’s Slave function status was read suc-
cessfully. FALSE is returned if an error occurred. Detailed error information
can be read with the GetLastError() function.

Description The following table shows the location and meaning of the Slave function sta-
tus flags. The flags are contained in 16 bits.

The correct value for the Master node address is stored when bit 12 or bit 13
turns ON.

Bits 2 and 3 indicate Slave function errors. When either bit 2 or 3 turns ON, bit
3 of the scanner status obtained using SCAN_GetScannerStatus() turns ON.

Check that bits 14 or 15 is ON before performing I/O data I/O processing
using the Slave function.

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

WORD* Status Buffer address for receiving the status.

WORD* MacId Buffer address for receiving the Master node
address.

Bit Code Meaning

0 and 1 --- Not used

2 B02 I/O communications error (Output data 1 and input data 1)

3 B03 I/O communications error (Output data 2 and input data 2)

4 to 11 --- Not used

12 B12 Connection 2 established

13 B13 Connection 1 established

14 B14 I/O communications in progress (Output data 2 and input data 2)

15 B15 I/O communications in progress (Output data 1 and input data 1)
100

Maintenance API Functions Section 4-7
4-7-2 Error Log Access Service API Functions

ERROR_TIME Structure
This structure defines the format of the error time stamp data.
This structure is used within the ERROR_INFO structure and in the
SCAN_GetErrorLog() function.

ERROR_INFO Structure
This structure defines the format of the error log data.
This structure is used within the ERROR_LOG structure and in the
SCAN_GetErrorLog() function.

ERROR_LOG Structure
This structure consolidates all of the error log data. It is used with the
SCAN_GetErrorLog() function.

Reading an Error Log: SCAN_GetErrorLog()

Application Range Open status

Function Reads the error log from the specified Board.

Call Format BOOL SCAN_GetErrorLog(DWORD Handle, ERROR_LOG *Log)

Arguments

Return Value TRUE is returned if the error log was read successfully from the specified
Board. FALSE is returned if an error occurred. Detailed error information can
be read with the GetLastError() function.

Description Refer to 7-3 Error Log Function for details on the error log function such as the
meaning of error codes.

Error logs not saved to non-volatile memory are held only in open status. The
error log is cleared when the Board is closed, the power turned OFF, or the
Board is reset. Error logs saved to non-volatile memory can be read again
even after the Board is re-opened or restarted.

Type Name Contents (BCD)

BYTE Second Second when error occurred

BYTE Minute Minute when error occurred

BYTE Hour Hour when error occurred

BYTE Day Day when error occurred

BYTE Month Month when error occurred

BYTE Year Year when error occurred

Type Name Contents

WORD ErrorCode Error code

WORD DetailCode Detail code

ERROR_TIME Time Time when error occurred

Type Name Contents

WORD ErrorCount Number of error records contained in the error log

ERROR_INFO ErrorInfo[64] Error log information

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

ERROR_LOG * Log Buffer address for receiving the error log data.
101

Maintenance API Functions Section 4-7
Clearing an Error Log: SCAN_ClearErrorLog()

Application Range Open status

Function Clears the error log from the specified Board.

Call Format BOOL SCAN_ClearErrorLog(DWORD Handle)

Arguments

Return Value TRUE is returned if the error log data was successfully cleared from the spec-
ified Board. FALSE is returned if an error occurred. Detailed error information
can be read with the GetLastError() function.

Description Clears the error log stored in non-volatile memory.

4-7-3 PC Watchdog Timer Service API Functions

Setting the PC WDT: SCAN_EnablePCWDTTimer()

Application Range Open status

Function Enables or disables the Board’s PC watchdog timer management function.

Call Format BOOL SCAN_EnablePCWDTTimer(DWORD Handle, BOOL Enable, WORD
Timer)

Arguments

Return Value TRUE is returned if the processing was completed normally. FALSE is
returned if an error occurred. Detailed error information can be read with the
GetLastError() function.

Description Refer to 3-11 PC Watchdog Timer Management Function for details on the
PC watchdog timer management function.

Refreshing the PC WDT: SCAN_RefreshPCWDTTimer()

Application Range Open status

Function Refreshes the PC watchdog timer’s timer value in the specified Board.

Call Format BOOL SCAN_RefreshPCWDTTimer(DWORD Handle)

Arguments

Return Value TRUE is returned if the processing was completed normally. FALSE is
returned if an error occurred. Detailed error information can be read with the
GetLastError() function.

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()

BOOL Enable PC watchdog timer setting
TRUE: Enabled (PC-WDT is used.)
FALSE: Disabled (PC-WDT is stopped.)

WORD Timer Monitoring time setting
0x0 to 0xFFFF (0 to 65535) (Monitoring time = Set
value × 10 ms)

Type Name Contents

DWORD Handle Device handle obtained by SCAN_Open()
102

Maintenance API Functions Section 4-7
Description When using the PC watchdog timer management function, be sure to refresh
the timer value with this function within the PC-WDT timer value. Remote I/O
communications will stop if the set timer value elapses before the timer value
is refreshed.

Refer to 3-11 PC Watchdog Timer Management Function for details on the
PC watchdog timer management function.
103

Maintenance API Functions Section 4-7
104

SECTION 5
Sample Programs

This section describes the sample programs that have been provided as reference when writing programs for the DeviceNet
PCI Board.

5-1 Sample . 106
5-2 Using DeviceNet Scanner Demo. 106

5-2-1 DeviceNet Scanner Demo Functions . 106
5-2-2 Usage Example for I/O Communications . 107
5-2-3 Usage Example for Explicit Message Communications 114
105

Sample Section 5-1
5-1 Sample
The following sample programs are extracted into the “Sample” directory
when the Scanner SDK is installed.

The sample programs can be started from the program folder specified when
the Scanner SDK Software was installed.

The following diagram shows the starting window of the Scanner Error History
Viewer.

MicroSoft Visual C++ version 6.0 or higher is required to build the sample pro-
gram.

The sample programs are provided to show how to use the API functions;
they are not intended to be used as-is.

5-2 Using DeviceNet Scanner Demo

5-2-1 DeviceNet Scanner Demo Functions
The DeviceNet Scanner Demo program performs the following functions:

• Opens the Board.

• Closes the Board.

• Connects to network (goes online).

Path Function

Sample\BusDELog This sample program displays the Scanner’s error log.

Sample\DemoToo This sample program operates the Scanner function and exe-
cutes remote I/O communications and message communica-
tions.
106

Using DeviceNet Scanner Demo Section 5-2
• Disconnects from the network (offline).

• Creates scan lists.

• Registers scan lists.

• Refreshes and monitors output and input data.

• Starts I/O communications.

• Stops I/O communications.

• Sends explicit client request messages and receives responses.

5-2-2 Usage Example for I/O Communications
This section provides an example of performing I/O communications with
Slaves using the DeviceNet Scanner Demo program.

Opening the Board Use the following procedure to open the Board and prepare it for use.

1,2,3... 1. Select Open from the Board menu.

2. The following Open Board Window will be displayed.

3. Select the Board to be used and click Open.

4. The specified Board will be opened and ready for use.
The Board number (Board ID) will be displayed on the status bar.

Creating Scan Lists Use the following procedure to create a scan list in the DeviceNet Scanner
Demo program.

1,2,3... 1. Select Register to ScanList from the Edit menu.

2. The following Add Device Window for registering Slaves will be displayed.
107

Using DeviceNet Scanner Demo Section 5-2
3. Set the Slave node address (MAC ID) and I/O size (OUT Size and IN Size).
Select User Setup to specify the I/O connection, and set the connection to
be used and the I/O size.

4. Click OK to register the Slave in the main window.

5. Once all the Slaves have been registered, click Cancel, to display the cre-
ated scan list in the main window, as shown below.

Note The icons in the MAC ID column will be displayed in gray until the scan list is
registered to the Board.

Registering Scan Lists Use the following procedure to register the created scan list to the Board.

1,2,3... 1. Select Set ScanList from the Board menu.

2. The icons in the MAC ID column will change from gray, as shown below,
when the scan list is registered correctly.
108

Using DeviceNet Scanner Demo Section 5-2
Connecting to the
Network

Use the following procedure to connect the Board to the DeviceNet network
(i.e., go online).

1,2,3... 1. Select Online from the Scanner menu.

2. The following Go Online Window will be displayed.

3. Set the Board’s node address (MAC ID) and baud rate, and click OK.

4. The Board will go online, i.e., will be connected to the DeviceNet network.
The status bar will indicate the online status (“OL” at the far right) and the
node address will be displayed next to the Board number.

Note I/O communications have not started yet, even though the Board is online.

Setting Initial Output Data Use the following procedure to set the initial output data before starting I/O
communications.

1,2,3... 1. Select the Slave with the output data.

2. Select I/O Data from the Scanner menu.

3. The following window will be displayed.
109

Using DeviceNet Scanner Demo Section 5-2
4. Enter the output data to be set and click Write.

Note The output data will not be sent yet.

5. Perform the above operation for all Slaves that have output data.

Starting I/O
Communications

Use the following procedure to start I/O communications with Slaves.

1,2,3... 1. Select Start Cycle from the Scanner menu.

2. The following Start Cycle Window will be displayed.

3. Set the communications cycle time (Cycle Time) and click OK.
Specify 0 to automatically set the communications cycle time.

4. I/O communications will start.
The status will be displayed in the Status column for each Slave, as shown
in the following diagram, if I/O communications have been started correct-
ly.
110

Using DeviceNet Scanner Demo Section 5-2
Note It takes several seconds for a connection to be established (and until the sta-
tus is displayed).

Refreshing and
Monitoring Output and
Input Data

Use the following procedure to refresh output data and monitor input data for
each Slave during I/O communications.

1,2,3... 1. Select the desired Slave.

2. Select I/O Data from the Scanner menu.

3. The I/O Data Window will be displayed, as shown below.
111

Using DeviceNet Scanner Demo Section 5-2
• Output Data

• Input Data

The input data will be displayed.

4. Multiple I/O data setting and monitoring windows can be displayed at the
same time.

Automatically Refreshing Output Data

Use the following procedure to automatically refresh output data to be sent to
Slaves.

1,2,3... 1. Display the I/O Data Window for the corresponding Slave.

2. Click Increment.

3. The current output data will be automatically incremented and sent.
112

Using DeviceNet Scanner Demo Section 5-2
4. Click Stop to stop automatic refresh.

Changing Input Data Monitor Interval and Output Data Automatic Refresh
Interval

Use the following procedure to change the monitor interval for input data and
the automatic refresh interval for output data.

1,2,3... 1. Display the I/O Data Window for the corresponding Slave.

2. Click Option.

3. The following Option Window will be displayed.

4. Set the Monitor Interval or Increment Interval timer value, and click OK.

5. The input data monitoring and output data automatic refresh will be per-
formed at the set intervals.

Stopping I/O
Communications

Use the following procedure to stop I/O communications with Slaves.

1,2,3... 1. Select Stop Cycle from the Scanner menu.

2. I/O communications with Slaves will be stopped.

Disconnecting from the
Network

Use the following procedure to disconnect from the DeviceNet network (i.e.,
go offline).

1,2,3... 1. Select Offline from the Scanner menu.

2. The PCI Board will go offline, i.e., be disconnected from the DeviceNet net-
work.
The status bar will no longer show “OL” at the far right and the node ad-
dress will no longer be displayed next to the Board number.

Closing Boards Use the following procedure to close the Board.

1,2,3... 1. Select Close from the Board menu.

2. The following confirmation message will be displayed.

3. Click Yes to close the Board.
113

Using DeviceNet Scanner Demo Section 5-2
5-2-3 Usage Example for Explicit Message Communications
The DeviceNet Scanner Demo program has explicit message client functions.
Explicit request messages can be sent to remote nodes and responses
received.

Use the following procedure to send explicit request messages and receive
explicit response messages.

1,2,3... 1. Open the Board and connect online to the network.
Explicit request messages can be sent regardless if I/O communications
are being performed or are stopped.

2. Select Send Explicit Message from the Scanner menu.

3. The following Send Explicit Message Window will be displayed.

4. Set the destination node address (MAC ID) and explicit request message
parameters, and click Send.

5. The explicit request message will be sent and the response data displayed.

6. Click Close to finish sending explicit request messages.
114

SECTION 6
Communications Timing

This section describes communications timing in remote I/O communications and message communications.

6-1 Remote I/O Communications Characteristics . 116
6-1-1 Communications Cycle Time . 116
6-1-2 More than One Master in Network . 118
115

Remote I/O Communications Characteristics Section 6-1
6-1 Remote I/O Communications Characteristics
This section describes the characteristics of remote I/O communications
when a DeviceNet PCI Board is used with OMRON Slaves. Use this section
for reference when planning operations that require precise I/O timing.

The equations provided here are valid under the following conditions:

1,2,3... 1. All of the required Slaves are participating in communications.

2. No errors have occurred in any of the nodes in the network.

3. There are no I/O refreshing requests or command requests from the com-
puter to the board.

Note The values provided by these equations may not be accurate if the conditions
described above are not satisfied.

6-1-1 Communications Cycle Time
The communications cycle time is the time from the completion of a Slave’s
remote I/O communications processing until remote I/O communications with
the same Slave are processed again. The communications cycle time is used
to calculate the maximum I/O response time.

The communications cycle time depends on a variety of factors such as the
number of Masters in the Network and on whether or not message communi-
cations are being performed. The following explanation is for a network with
one Master. For networks with two or more Masters, refer to 6-1-2 More than
One Master in Network.

Communications Cycle
Time Graph

The following graph plots the communications cycle time against the number
of Slaves, for a mixture of 16-output point Slaves and 16-input point Slaves.
Bit-strobe input and poll connection output are used.

Equations for Calculating
Communications Cycle
Time

Use the equations shown below to calculate the communications cycle time
(TRM) for a network with one Master. (The minimum communications cycle
time is actually 2 ms even if the result of this calculation is less than 2 ms.)

TRM = Σ (Communications time per Slave)
+ High-density Unit processing time
+ Explicit message processing time
+ COS/Cyclic connection communications time [ms]
+ 0.01 × N + 1.0 [ms]

2
0

10

20

30

40

50

60

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

No. of Slaves

Communications cycle time (500 kbps) [ms] : Communications cycle time (250 kbps) [ms] : Communications cycle time (125 kbps) [ms]

C
om

m
un

ic
at

io
ns

 c
yc

le
 ti

m
e

(m
s)

34 36 38 40 42 44 46 48 50 52 54 56 58 60 62
116

Remote I/O Communications Characteristics Section 6-1
Communications Time Per Slave:
This is the communications time required for a single Slave (see below).
“Σ (Communications time per Slave)” represents the total of the “Commu-
nications time per Slave” for all the Slaves in the network.

High-density Unit Processing Time:
3.5 [ms]
This is added if there are any Slaves in the network that use at least 8 bytes
for input, output, or both.

Explicit Message Processing Time:
(0.11 × TB) × n [ms]
Only added when explicit communications (transmission or reception) are
performed.
n: Number of explicit messages that occur at the same time during one
CPU Unit cycle (including transmission and reception).

TB = Baud rate factor
(TB = 2 for 500 kbps, TB = 4 for 250 kbps, and TB = 8 for 125 kbps)

COS/Cyclic Connection Communications Time [ms]:
{(0.05 + 0.008 × S) × TB} × n [ms]
S: Total input and output size (in bytes) for COS/Cyclic connection.
TB = 2 for 500 kbps, TB = 4 for 250 kbps, and TB = 8 for 125 kbps
n: Number of nodes for COS/Cyclic connections that are used at the
same time in one communications cycle.

N: Number of Slaves

Communications Time/
Slave

The communications time per Slave is the time required for communications
with a single Slave. Use the following equations to calculate the communica-
tions time/Slave (TRT) for each kind of Slave.

Output Slaves with less than 8 Bytes of Output

TRT = 0.016 ×TB × SOUT1 + 0.11 × TB + 0.07 [ms]

SOUT1: The number of Output Slave output words
TB: Baud rate factor

(TB = 2 for 500 kbps, TB = 4 for 250 kbps, and TB = 8 for 125 kbps)

Input Slaves with less than 8 Bytes of Input

TRT = 0.016 ×TB × SIN1 + 0.06 × TB + 0.05 [ms]

SIN1: The number of Input Slave input words
TB: Baud rate factor

(TB = 2 for 500 kbps, TB = 4 for 250 kbps, and TB = 8 for 125 kbps)

Mixed I/O Slaves with less than 8 Bytes each of Input and Output

TRT = 0.016 × TB × (SOUT2 + SIN2) + 0.11 × TB + 0.07 [ms]

SOUT2: The number of Mixed I/O Slave output words
SIN2: The number of Mixed I/O Slave input words
TB: Baud rate factor

(TB = 2 for 500 kbps, TB = 4 for 250 kbps, and TB = 8 for 125 kbps)

Slaves with more than 8 Bytes of Input or Output or both

TRT = TOH + TBYTE-IN × BIN + TBYTE-OUT × BOUT [ms]
117

Remote I/O Communications Characteristics Section 6-1
TOH : Protocol overhead
TBYTE-IN : The input byte transmission time
BIN : The number of input bytes
TBYTE-OUT : The output byte transmission time
BOUT : The number of output bytes

For Input Slaves use BOUT = 0, and for Output Slaves use BIN = 0.

6-1-2 More than One Master in Network
This section explains how to calculate the remote I/O communications cycle
time (TRM) when there is more than one Master in the Network. In this exam-
ple there are two Master Units in the Network.

First, the Network is divided into two groups: Master A and the Slaves in
remote I/O communications with it and Master B and the Slaves in remote I/O
communications with it.

Note The Slaves are physically separated into two groups for clarity in this diagram,
but the actual physical positions in the Network are irrelevant.

Next, we refer to the equations introduced in 6-1-1 Communications Cycle
Time and calculate the communications cycle time for each group as if they
were separate Networks.

In a Network with two Masters, the communications cycle time for the entire
Network is the sum of the communications cycle times for the two groups.

TRM = TRM-A + TRM-B

Baud rate TOH TBYTE-IN TBYTE-OUT

500 kbps 0.306 ms 0.040 ms 0.036 ms

250 kbps 0.542 ms 0.073 ms 0.069 ms

125 kbps 1.014 ms 0.139 ms 0.135 ms

Group A

Master A

Slave A Slave B Slave C

Group B

Master B

Slave D Slave E Slave F

Slaves in remote I/O commu-
nications with Master A

Slaves in remote I/O commu-
nications with Master B

Master A

Group A

Slave A Slave B Slave C

Group B

Master B

Slave D Slave E Slave F

Group A communications
cycle time: TRM-A

Group B communications
cycle time: TRM-B
118

Remote I/O Communications Characteristics Section 6-1
Although this example shows only two Masters in the Network, the total com-
munications cycle time for any Network can be calculated by dividing it into
groups and adding the communications cycle times of all groups.
119

Remote I/O Communications Characteristics Section 6-1
120

SECTION 7
Error Processing

This section describes troubleshooting and error processing procedures needed to identify and correct errors that can occur
during DeviceNet PCI Board operation.

7-1 LED Indicators and Error Processing . 122
7-2 Identifying Errors Detected by Functions . 123
7-3 Error Log Function . 125
121

LED Indicators and Error Processing Section 7-1
7-1 LED Indicators and Error Processing
The DeviceNet PCI Board have an MS (Module Status) indicator that indi-
cates the status of the Board itself and an NS (Network Status) indicator that
indicates the status of the Network. These indicators show when an error has
occurred and what type of error it is.

This section explains the meaning of the LED indicators and the processing
required when an error has occurred. This explanation assumes that the
Board has been installed and set up properly.

Indicator Status during
Normal Operation

The following table shows the status of the MS and NS indicators during nor-
mal operation.

Indicator Status when an
Error has Occurred

The following table shows the status of the MS and NS indicators when an
error has occurred and lists probable causes for the errors.

Indicator status Network/Board status Comments

MS NS

OFF OFF Waiting for initialization Boot program initialization processing is being executed.

Flashing
(green)

OFF Waiting for start of scanner pro-
gram

Scanner firmware initialization processing is being executed.

ON
(green)

OFF MAC ID (node address) duplica-
tion check in progress

Waiting for online request or the request has been received and
a node address duplication check is in progress between the
Board and other nodes in the network.

ON
(green)

Flashing
(green)

Remote I/O communications
stopped and message communi-
cations not established.

Communications have not been established with other nodes
even though the Board is online.

With message communications, this indicates that the local
node has not sent a message to another node and that a mes-
sage has not been received from another node.

ON
(green)

ON
(green)

Remote I/O or message commu-
nications in progress.

Indicates normal communications when remote I/O and/or mes-
sage communications are active.

Indicator status Error Probable cause and remedy

MS NS

Flashing
(red)

No
change

Hardware error
(EEPROM)

An EEPROM error occurred.
Replace the Board.

Flashing
(red)

OFF PC watchdog timer error The Board’s PC watchdog timer management function detected a
PC watchdog timer error. (The computer application has stopped.)

Restart the computer application or the computer itself.

ON
(red)

OFF Hardware error
(Watchdog timer or RAM)

One of the following hardware errors occurred:
• Board watchdog timer error
• RAM error

Replace the Board

No
change

ON
(red)

Node address duplication The Board’s node address has been set on another node.

Change the node address settings to eliminate the duplication.
Restart the computer or reset the Board.

Bus off detected Communications were stopped because a large number of data
errors occurred.

• Check the communications baud rate settings in all of the nodes.
• Check that the cable lengths (trunk and drop lines) are within

specifications.
• Check for loose or broken cables.
• Check that there are Terminating Resistors at each end of the

trunk line and nowhere else in the network.
• Check for excessive noise.
122

Identifying Errors Detected by Functions Section 7-2
7-2 Identifying Errors Detected by Functions
This section lists the errors that can be identified using the Board’s Master
API functions. The return value returned by API functions indicates when an
error has occurred during execution of the function. (Refer to Checking for
Errors with Function Return Values on page 45)

Error Codes All of the Board’s Master API functions are bool-type functions, so FALSE is
returned as the return value when an error has occurred during execution.
When FALSE is returned, the GetLastError() function can be used to read
more detailed error information (the error code.)

No
change

OFF Send error:
Network power supply error

The communications power supply isn’t being supplied properly.
Check the network power supply and network cable wiring.

Send error:
Transmission timeout

A transmission couldn’t be completed successfully for one of the
following reasons:

• There are no Slaves in the network.
• There is another Master in the Network.
• There is an error in the CAN controller.
• The Master and Slave baud rate settings don’t agree.
Check the following:

• Check the communications baud rate settings in all of the nodes.
• Check that the cable lengths (trunk and drop lines) are within

specifications.
• Check for loose or broken cables.
• Check that there are Terminating Resistors at each end of the

trunk line and nowhere else in the network.
• Check for excessive noise.

No
change

Flashing
(red)

Verification error:
Slave doesn’t exist

A Slave registered in the scan list does not exist in the network.

Check the following:

• Check the communications baud rate settings in all of the nodes.
• Check that the cable lengths (trunk and drop lines) are within

specifications.
• Check for loose or broken cables.
• Check that there are Terminating Resistors at each end of the

trunk line and nowhere else in the network.
• Check for excessive noise.

Unsupported Slave A Slave is connected that has an I/O size exceeding 200 bytes.

Remove Slaves from the network if they have an I/O size greater
than 200 bytes.

Verification error:
Slave I/O size mismatch

The I/O size of a Slave registered in the scan list doesn’t match the
actual Slave in the network.

Check the Slave and create the scan list again.

I/O Communications error A timeout occurred in I/O communications. Check the following:

• Check the communications baud rate settings in all of the nodes.
• Check that the cable lengths (trunk and drop lines) are within

specifications.
• Check for loose or broken cables.
• Check that there are Terminating Resistors at each end of the

trunk line and nowhere else in the network.
• Check for excessive noise.

OFF OFF System error Replace the Board.

Indicator status Error Probable cause and remedy

MS NS
123

Identifying Errors Detected by Functions Section 7-2
The following table lists the error codes and the and the probable causes for
those errors.

Note Refer to Checking for Errors with Function Return Values on page 45 for infor-
mation on how to check errors using error codes.

Error code Value Likely cause and remedy

SCAN_INVALID_HANDLE 0x20000001 The driver handle is invalid. Specify a valid driver handle and
execute the function again.

SCAN_ALREADY_USED 0x20000002 The specified driver is already being used by another applica-
tion. Execute the function again after the other application
ends.

SCAN_ERROR_DRIVER_FUNCTION 0x20000003 An error occurred in the driver function. Check the parameters
and execute the function again.

SCAN_NOT_EXIST_DEVICE 0x20000004 There isn’t a Board with the specified Board ID. Specify the
Board ID set on a Board in the computer.

SCAN_TIMEOUT 0x20000005 The command timed out. Reset the Board and execute the
function again.

SCAN_NOT_MODULE_PATH 0x20000006 The communications module path cannot be found. Install
again.

SCAN_NOT_EXIST_MODULE 0x20000007 The communications module cannot be found. Install again.

SCAN_NOT_ALLOCATE_MEMORY 0x20000008 Memory cannot be allocated. Close other applications and
execute the function again.

SCAN_NOT_OPEN_DRIVER 0x20000009 The driver cannot be opened. Check that the driver is installed
properly and execute the function again.

SCAN_NOT_CREATE_EVENT 0x2000000A The interrupt event cannot be created.

SCAN_INVALID_PARAMETER 0x2000000B A parameter is invalid. Specify the parameter correctly and
execute the function again.

SCAN_NOT_EXECUTECOMMAND 0x2000000C An error occurred during execution of the command. Check
the parameters and execute the function again.

SCAN_NOT_DOWNLOAD 0x2000000D An error occurred while downloading the communications
module. Check that there isn’t a problem with the hardware
and execute the function again.

SCAN_NOT_ENOUGH_BUFFER 0x20001000 There isn’t enough buffer space to store the data. Increase the
size of the buffer.

SCAN_RES_NOT_RECEIVED 0x20001001 The client response has not been received.

SCAN_REQ_NOT_RECEIVED 0x20001002 The server request has not been received.

SCAN_INVALID_REGISTHANDLE 0x20001003 The window or thread handle being registered is invalid. Spec-
ify a valid handle.

SCAN_INVALID_REGISTMSG 0x20001004 The notification message being registered is invalid. Specify a
valid message.

SCAN_NOT_EVENTDATA 0x20001005 There is no event data.

SCAN_NOT_EVENT 0x20001006 There isn’t such an event.

SCAN_FILE_IO_ERROR 0x20001007 An error occurred during file access. Check that the file exists
and isn’t corrupted and then execute the function again.

SCAN_INVALID_CMD 0x20010010 The command code is invalid. Specify a valid code.

SCAN_SYSTEM_BUSY 0x20010011 The system is busy.

SCAN_OFF_LINE 0x20010020 The function can’t be executed because the Board is offline.
Switch online and execute the function again.

SCAN_PROCESSING_ON_LINE 0x20010021 The function can’t be executed because the connection is ini-
tializing. Wait a moment and execute the function again.

SCAN_ON_LINE 0x20010022 The function can’t be executed because the Board is online.
Switch offline and execute the function again.

SCAN_SCANNING 0x20010023 The function can’t be executed because scanning is in
progress. Stop scanning and execute the function again.

SCAN_NOT_SCANNING 0x20010024 The function can’t be executed because scanning is stopped.
Start scanning and execute the function again.
124

Error Log Function Section 7-3
7-3 Error Log Function
The DeviceNet PCI Board is equipped with an error log function that can store
up to 64 error records on errors that occur. The records show the error code
and time of occurrence.

SCAN_AUTO_SCANNING 0x20010025 The function can’t be executed because the Board is operating
in disabled mode. Switch to enabled mode and execute the
function again.

SCAN_FIXED_SCANNING 0x20010026 The Board is already operating in disabled mode.

SCAN_BUS_OFF 0x20010029 The function can’t be executed because a bus off error
occurred. Clear the error and execute the function again.

SCAN_CONNECTED 0x2001002A The connection is already established.

SCAN_DISCONNECTED 0x2001002B The connection is already disconnected.

SCAN_NO_NET_POWER 0x2001002C The network power supply is not being supplied. Connect the
network power supply and execute the function again.

SCAN_TX_TIME_OUT 0x2001002D A timeout occurred in the transmission. Check that the desti-
nation node is connected and the network isn’t overloaded
with high-priority messages. Wait a moment and execute the
function again.

SCAN_DUP_MAC_ERROR 0x2001002E The specified node address is duplicated on another device.
Specify another node address.

SCAN_INVALID_BAUD_RATE 0x20010040 The communications baud rate is invalid. Specify a valid baud
rate.

SCAN_INVALID_MAC_ID 0x20010041 The node address is invalid. Specify a valid node address.

SCAN_INVALID_SCAN_TYPE 0x20010042 The scan type is invalid. Specify a valid scan type and execute
the function again.

SCAN_INVALID_IO_SIZE 0x20010043 The data size is invalid. Specify a valid data size and execute
the function again.

SCAN_INVALID_CLASS_ID 0x20010044 The specified class ID is not registered.

SCAN_INVALID_INSTANCE_ID 0x20010045 The instance ID is invalid. Specify a valid instance ID.

SCAN_INVALID_ATTRIBUTE_ID 0x20010046 The attribute ID is invalid. Specify a valid attribute ID.

SCAN_INVALID_SELF_SLAVE 0x20010047 An effective Slave scan list is not registered. Register in the
Slave scan list.

SCAN_TOO_MANY_CLASS 0x20010048 Too many class IDs have been registered.

SCAN_INVALID_SCAN_LIST 0x20010049 There are no devices registered in the scan list. Register the
devices.

SCAN_NO_COS_CNXN 0x20010060 A COS connection has not been established. Establish the
connection and execute the function again.

SCAN_NO_EMC_CNXN 0x20010061 An explicit message connection has not been established.
Establish the connection and execute the function again.

SCAN_EMC_CNXN_TIME_OUT 0x20010062 A timeout occurred when establishing the explicit message
connection. Check the target of the connection and execute
the function again.

SCAN_SND_MSG_TOO_LONG 0x20010063 The transmission data size is too long.

SCAN_RSP_MSG_TOO_LONG 0x20010064 The reception data size is too long.

SCAN_DEST_DEVICE_OVERFLOW 0x20010065 The transmission buffer overflowed. Allow a little more time
between transmissions and execute the function again.

SCAN_MEMORY_ACCESS_CONFLICT 0x20010080 The I/O allocations overlap. Set the I/O allocations again to
eliminate the overlap.

SCAN_MEMORY_ERROR 0x20010081 An EEPROM write error occurred.

SCAN_SUM_CHECK_ERROR 0x20010082 An checksum error occurred.

Error code Value Likely cause and remedy
125

Error Log Function Section 7-3
The error log data can be read from the Board with the SCAN_GetErrorLog()
function. (See page 101 for details.) The error log can be cleared with the
SCAN_ClearErrorLog() function. (See page 102 for details.)

Note 1. Important error data in the error log is saved to non-volatile memory. Error
data not saved to non-volatile memory is held only while the Board is open.
All error data not saved to non-volatile memory is cleared when the Board
is closed, the power turned OFF, or the Board reset.

2. Error data saved to non-volatile memory can be read once the Board is
opened or started again.

3. Error logs saved to non-volatile memory can also be read with the Scanner
Error History Viewer utility that is included with the Board’s software.

Error Log Data Each error log record has the following structure. The Board’s error log can
store up to 64 error records. If an error occurs when the error log is full, the
oldest record is erased to make room for the new record.

Note The error log data is defined in the ERROR_INFO structure. (See page 101
for details.)

Error Code Table The following table shows the error codes that can be recorded by the error
log function and the corresponding errors. Refer to 7-1 LED Indicators and
Error Processing for details on error processing.

Variable name Data type Contents (BCD)

ErrCode WORD Error code

DetailCode WORD Detail code

Second BYTE Second when error occurred

Minute BYTE Minute when error occurred

Hour BYTE Hour when error occurred

Day BYTE Day when error occurred

Month BYTE Month when error occurred

Year BYTE Year when error occurred

Error
code
(Hex)

Error Detailed information EEPROM
storage

1st byte
(Offset = 0002h)

2nd byte
(Offset = 0003h)

0001 PC watchdog timer error

A timeout occurred in the PC_WDT moni-
toring function.

00 Hex 00 Hex Yes

0101 Can’t send response message when offline. 80 Hex Bits 0 to 5:
Client device MAC ID

Bit 6: OFF

Bit 7: ON

No

0106 Can’t send response message because
MAC ID duplication error occurred.

80 Hex Bits 0 to 5:
Client device MAC ID

Bit 6: OFF

Bit 7: ON

No

0107 Response message transmission failed
because connection is not established yet.

80 Hex Bits 0 to 5:
Client device MAC ID

Bit 6: OFF

Bit 7: ON

No

0109 Destination node’s buffer full 80 Hex Bits 0 to 5:
Client device MAC ID

Bit 6: OFF

Bit 7: ON

No
126

Error Log Function Section 7-3
0111 Service data too long 80 Hex Bits 0 to 5:
Client device MAC ID

Bit 6: OFF
Bit 7: ON

No

0117 Internal buffer full 00 Hex Bits 0 to 5:
Server device MAC ID

Bit 6: OFF
Bit 7: ON

No

0112 Response message discarded because the
message ID is invalid

80 Hex Bits 0 to 5:
Client device MAC ID

Bit 6: OFF
Bit 7: ON

No

0211 MAC ID duplication error 00 Hex Local MAC ID No

021A Setting table logic error 00 Hex 0A Hex:
Scan list

0B Hex:
Slave scan list

0C Hex:
Message monitoring timer
list

Yes

0340 Bus off error 00 Hex 00 Hex No

0341 Network power supply error 00 Hex 00 Hex No

0342 Transmission timeout error 00 Hex 00 Hex No

0343 I/O configuration error 03 Hex
Unsupported Slave

Unsupported Slave’s MAC
ID

No

0344 Verification error 01 Hex:
Non-existent Slave
(including use of the local
MAC ID)

02 Hex:
Invalid vendor ID
03 Hex:
Invalid product type

04 Hex:
Invalid product code

05 Hex:
Unsupported connection
06 Hex:
I/O size mismatch

07 Hex:
Invalid connection path

Slave’s MAC ID No

0345 I/O communications error 01 Hex:
Master function

02 Hex:
Slave function

With Master function:
Slave’s MAC ID

With Slave function:
Master’s MAC ID

No

0346 Scanning stopped due to I/O communica-
tions error

01 Hex:
I/O communications error

02 Hex:
Network power supply
error

03 Hex:
Transmission timeout

I/O communications error:
Faulty Slave’s MAC ID

Network power supply
error:
Local MAC ID

Transmission timeout:
Local MAC ID

No

Error
code
(Hex)

Error Detailed information EEPROM
storage

1st byte
(Offset = 0002h)

2nd byte
(Offset = 0003h)
127

Error Log Function Section 7-3
Note The error record will not be recorded in EEPROM if the memory error
occurred in the error log area of EEPROM.

0348 Response message discarded because a
new request was received

80 Hex Bits 0 to 5:
Client device MAC ID

Bit 6: OFF
Bit 7: ON

No

0601 System error Undefined Yes

0602 Memory error 01 Hex:
Read error

02 Hex:
Write error

06 Hex:
Error log

09 Hex:
Identity information

0A Hex:
Scan list
0B Hex:
Slave scan list

0C Hex:
Message monitoring timer
list

0D Hex:
Communications cycle
time set value

Yes
(see note)

Error
code
(Hex)

Error Detailed information EEPROM
storage

1st byte
(Offset = 0002h)

2nd byte
(Offset = 0003h)
128

Index
A
API functions

See also functions

applications

precautions, xvi

atmosphere, 8

C
cables

attaching connectors to DeviceNet cables, 34

connecting communications cables, 36

client functions

See also explicit messages

communications, 116, 117

communications time/slave, 117

connector, 10

cycle time, 116

distance, 7
Explicit messages

See also explicit messages

I/O communications, 4
message, 5

timing, 115

See also functions

speed, 7
timing, 115

communications time/slave, 117

components, 10

configuration, 7
connection methods

multi-drop

with multi-drop connector, 38

with standard connector, 37

connections

checking status, 98

configuration, 7
DeviceNet, 34

establishing, 58, 59

maximum number, 6
slave connection methods, 7

connectors

standard, 37

COS connections

sending input data, 85

sending output data, 79

current

consumption, 8

cycle time, 116

clearing, 99

communications, 116

communications cycle time management, 6
loading, 75

reading, 74, 98

setting, 74

storing, 75

D
DeviceNet Scanner SDK software

installing, 27

uninstalling, 32

DeviceNet slaves

See also slaves

dimensions, 10

distance

See also communications

E
EC Directives, xvii

errors

checking, 45

codes, 123, 126

detected by functions, 123

error log, 125

data, 126

processing, 121

events

checking, 4, 44

explicit messages, 5
explicit message client, 49, 60

checking for client response events, 88

clearing response messages, 87

reading length of client response event, 88

receiving, 90

registering response messages, 87

sending, 89

explicit message server, 51, 60

checking request events, 92

clearing registration of object class for client request
messages, 91

clearing registration of server notification messages, 92

reading server request event length, 92

receiving, 93

registering object class of client request message, 90

registering server notification messages, 91

sending, 94
129

Index
F
function descriptions, 62

Board service API functions

SCAN_Close, 64

SCAN_GetDriverVersion, 62

SCAN_lsExistCard, 63

SCAN_Offline, 65

SCAN_Online, 64

SCAN_Open, 63

SCAN_Reset, 65

Board service APII functions

SCAN_GetVersion, 62

client message service API functions

RegClientEvtNotifyMessage, 87

SCAN_GetClientEventLength, 88

SCAN_PeekClientEvent, 88

SCAN_ReceiveClientExplicit, 90

SCAN_SendClientExplicit, 89

SCAN_UnRegClientEvtNotifyMessage, 87

communications service API functions

SCAN_ConnectMasterDevice, 82

SCAN_ConnectSlaveDevice, 77

SCAN_DisconnectMasterDevice, 83

SCAN_DisconnectSlaveDevice, 77

SCAN_GetActualSlaveDevice, 76

SCAN_GetScanTimeValue, 74

SCAN_LoadScanTimeValue, 75

SCAN_SetScanTimeValue, 74

SCAN_StartScan, 73

SCAN_StopScan, 74

SCAN_StoreScanTimeValue, 75

error log access service API functions

SCAN_ClearErrorLog, 102

SCAN_EnablePCWDTTimer, 102

SCAN_GetErrorLog, 101

SCAN_RefreshPCWDTTimer, 102

I/O data access service API functions

SCAN_GetInDat, 78

SCAN_GetSlaveOutData, 84

SCAN_IoRefresh, 78

SCAN_SendMasterCosToSlave, 79

SCAN_SendSlaveCosToMaster, 85

SCAN_SetOutDat, 79

SCAN_SetSlaveInData, 84

SCAN_SlaveIoRefresh, 83

message timer service API functions

SCAN_GetMessageTimerValue, 86

SCAN_LoadMessageTimerValueList, 86

SCAN_SetMessageTimerValue, 85

SCAN_StoreMessageTimerValueList, 86

PC Board interrupt service API functions

ClearIrqEvent, 68

SCAN_GetIrqControl, 65

SCAN_PeekIrqEvent, 67

SCAN_RegIrqEvtNotifyMessage, 66

SCAN_SetIrqControl, 66

SCAN_UnRegIrqEvtNotifyMessage, 67

scan list operation (master service) API functions

SCAN_ClearScanlist, 69

SCAN_GetSlaveDevice, 69

SCAN_GetSlaveDeviceEx, 72

SCAN_LoadScanlist, 70

SCAN_RegisterSlaveDevice, 68

SCAN_RegisterSlaveDeviceEx, 72

SCAN_RemoveDevice, 69

SCAN_SetScanlist, 73

SCAN_StoreScanlist, 70

scan list operation (slave service) API functions

SCAN_GetSelfSlaveDevice, 81

SCAN_LoadSlaveScanlist, 82

SCAN_RegisterSelfSlaveDevice, 81

SCAN_RemoveSelfSlaveDevice, 81

SCAN_StoreSlaveScanlist, 82

See also functions

server message service API functions

SCAN_GetServerEventLength, 92

SCAN_PeekServerEvent, 92

SCAN_ReceiveServerExplicit, 93

SCAN_RegObjectClass, 90

SCAN_RegServerEvtNotifyMessage, 91

SCAN_SendServerExplicit, 94

SCAN_UnRegObjectClass, 91

SCAN_UnRegServerEvtNotifyMessage, 92

status service API functions

SCAN_ClearCycleTime, 99

SCAN_GetCycleTime, 98

SCAN_GetMasterModeStatus, 96

SCAN_GetMaxCycleTime, 99

SCAN_GetMinCycleTime, 99

SCAN_GetNetworkStatus, 95

SCAN_GetScannerStatus, 96

SCAN_GetSlaveDeviceStatus, 97

SCAN_GetSlaveModeStatus, 100

SCAN_IsDeviceConnection, 98

SCAN_IsScanlistSlaveDeviceRegist, 98

functions

Board service API functions, 62

checking errors, 45

checking events, 4, 44

checking the Board, 63

client message service API functions, 87

closed state, 61

closing the Board, 58, 64
130

Index
communications, 3
communications cycle time management, 6
communications service API functions, 73

error log, 6, 54, 61

clearing, 102

reading, 101

error log access service API functions, 101

explicit messages

See also explicit messages

I/O communications, 4, 48, 58, 59

I/O data, 59

I/O data access service API functions, 78

initialization, 58

interrupts, 58

maintenance

See also maintenance

master, 4
message communications, 5
message monitoring timer, 60

message timer service API functions, 85

open state, 61

offline, 61

online, 61

opening the Board, 58, 63

PC Board interrupt service API functions, 65

PC watchdog timer, 6, 54, 61

reading status, 6, 60

reading version, 58, 62

reset, 6, 54, 65

scan list operation (slave service) API functions, 80

scan list operations, 58, 59

See also function descriptions

server message service API functions, 90

slave, 5
status service API functions, 95

G
general specifications, 8

H
humidity, 8

I
I/O communications

using I/O communications functions, 48

I/O data

reading, 59

refreshing, 59, 78, 83

setting, 59

indicators, 11

errors, 122

installation

DeviceNet PCI Board, 14

DeviceNet Scanner SDK software, 27

drivers

Windows 95, 16

Windows 98, 16

procedure, 14

software, 11, 13

interrupts, 58

control register

reading, 65

writing, 66

notification messages, 58

clearing, 67

registering, 66

status

clearing, 68

reading, 67

M
maintenance

functions, 6
communications cycle time management, 6
error log, 6, 54

PC watchdog timer, 6, 54

reading status, 6
reading version, 58

reset, 6, 54

masters

functions, 4
maximum number, 5
multiple, 118

reading master function status, 96

reading output data, 84

refreshing I/O data, 78

scan list operations, 58

starting communications, 82

stopping communications, 83

writing input data, 84

message monitoring timer, 60

loading list, 86

reading, 86

See also functions

setting, 85

storing list, 86
131

Index
N
network

length, 7
multiple masters, 118

offline, 65

online, 64

reading status, 95

O
object class ID

clearing, 91

registering, 90

operating environment

precautions, xv

operation

setup, 11

P
PC watchdog timer, 6, 54, 61

refreshing, 102

setting, 102

PCI interface, 10

precautions, xiii

applications, xvi

general, xiv

operating environment, xv

safety, xiv

programs

sample, 105

writing, 11

R
remote I/O

active state, 62

calculating cycle time for multiple masters, 118

characteristics, 116

reading slave information, 76

starting, 58, 59, 73

starting master communications, 82

starting slave communications, 77

stopped state, 62

stopping, 58, 59, 74

stopping master communications, 83

stopping slave communications, 77

timing, 115

reset

See also functions

rotary switch

See also settings

S
safety precautions

See also precautions

scan lists, 58, 59

clearing, 69

deleting slave scan list information, 81

loading, 70, 82

reading slave information, 69, 72, 81

registering slaves, 68, 72, 73

removing slaves, 69

storing, 70, 82

scanner

reading status, 96

Scanner SDK software

See also DeviceNet Scanner SDK software

server functions

See also explicit messages

settings

Board ID, 11, 15

hardware, 11

rotary switch, 11, 15

setup, 11

shock resistance, 8
slaves

capacity, 4
checking registration, 98

connection methods, 7
exchanging I/O data, 3
function, 5
maximum number, 5
reading slave function status, 100

reading slave information, 76

reading status, 97

refreshing I/O data, 83

scan list operations, 59

starting communications, 77

stopping communications, 77

using other vendor slaves, 3, 4
writing output data, 79

specifications, 8
communications, 5, 8
general specifications, 8
message communications, 9

status
132

Index
reading

See also functions

system

hardware/software requirements, 9

T
temperature

operating, storage, 8
timers

message monitoring, 60

troubleshooting, 121

U
user applications

writing, 11

See also API functions

V
version

reading

See also functions

vibration resistance, 8
voltage

operating voltage range, 8

W
weight, 8
133

Index
134

Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

The following table outlines the changes made to the manual during each revision. Page numbers refer to the
previous version.

Revision code Date Revised content

1 October 2000 Original production

02 July 2005 Revisions were made throughout the manual to add information on the DeviceNet
Scanner SDK and make accompanying changes.

03 September 2013 • Information was added for Windows 7 support.
• Changes were made for consistency with information in other manuals.

Cat. No. W381-E1-03

Revision code
135

Revision History
136

Authorized Distributor:

In the interest of product improvement,
specifications are subject to change without notice.

Cat. No. W381-E1-03

0913

 © OMRON Corporation 2013 All Rights Reserved.

OMRON Corporation Industrial Automation Company

OMRON ELECTRONICS LLC
One Commerce Drive Schaumburg,
IL 60173-5302 U.S.A.
Tel: (1) 847-843-7900/Fax: (1) 847-843-7787

Regional Headquarters
OMRON EUROPE B.V.
Wegalaan 67-69-2132 JD Hoofddorp
The Netherlands
Tel: (31)2356-81-300/Fax: (31)2356-81-388

 Contact: www.ia.omron.com
Tokyo, JAPAN

OMRON ASIA PACIFIC PTE. LTD.
No. 438A Alexandra Road # 05-05/08 (Lobby 2),
Alexandra Technopark,
Singapore 119967
Tel: (65) 6835-3011/Fax: (65) 6835-2711

OMRON (CHINA) CO., LTD.
Room 2211, Bank of China Tower,
200 Yin Cheng Zhong Road,
PuDong New Area, Shanghai, 200120, China
Tel: (86) 21-5037-2222/Fax: (86) 21-5037-2200

	3G3F7-DRM21-E DeviceNet PCI Boad Operation Manual
	About this Manual:
	Terms and Conditions Agreement
	PRECAUTIONS
	1 Intended Audience
	2 General Precautions
	3 Safety Precautions
	4 Operating Environment Precautions
	5 Application Precautions
	6 Conformance to EC Directives
	6-1 Applicable Directives
	6-2 Concepts
	6-3 Conformance to EC Directives

	7 Components

	SECTION 1 Introduction
	1-1 Product Configuration
	1-2 DeviceNet PCI Board
	1-3 Scanner SDK Functions and Features
	1-4 Scanner SDK Functions
	1-4-1 I/O Communications
	1-4-2 Message Communications Function
	1-4-3 Maintenance Functions

	1-5 System Configuration
	1-6 Specifications
	1-6-1 DeviceNet PCI Board General Specifications
	1-6-2 DeviceNet Communications Specifications
	1-6-3 Scanner SDK Communications Specifications
	1-6-4 Development Environment
	1-6-5 Dimensions

	1-7 Board Components
	1-8 Preparation for Operation

	SECTION 2 Software Installation
	2-1 Installation Procedure
	2-2 Installing the Board in the Computer
	2-3 Installing the Drivers
	2-4 Installing the Scanner SDK
	2-5 DeviceNet Connections
	2-5-1 Attaching Connectors to the DeviceNet Cable
	2-5-2 Connecting Communications Cables

	SECTION 3 Using API Functions
	3-1 Application Development Environments
	3-2 API Functions
	3-3 Checking Events
	3-3-1 Board Events
	3-3-2 Checking for Events

	3-4 Checking for Errors
	3-5 Parameters
	3-6 Using I/O Communications Functions
	3-7 Using the Explicit Message Client Function
	3-8 Using the Explicit Message Server Function
	3-9 Reset Function
	3-10 Error Log Functions
	3-11 PC Watchdog Timer Management Function

	SECTION 4 API Function Reference
	4-1 Function Lists
	4-2 Board Status
	4-3 Board Management API Functions
	4-3-1 Board Service API Functions
	4-3-2 PC Board Interrupt Service API Functions

	4-4 Master Function API Functions
	4-4-1 Scan List Operation API Functions
	4-4-2 I/O Communications Service API Functions
	4-4-3 I/O Data Access Service API Functions

	4-5 Slave Function API Functions
	4-5-1 Slave Scan List Operation API Functions
	4-5-2 I/O Communications Service API Functions
	4-5-3 I/O Data Access Service API Functions

	4-6 Explicit Message API Functions
	4-6-1 Message Monitoring Timer Service API Functions
	4-6-2 Client Message Service API Functions
	4-6-3 Server Message Service API Functions

	4-7 Maintenance API Functions
	4-7-1 Status Service API Functions
	4-7-2 Error Log Access Service API Functions
	4-7-3 PC Watchdog Timer Service API Functions

	SECTION 5 Sample Programs
	5-1 Sample
	5-2 Using DeviceNet Scanner Demo
	5-2-1 DeviceNet Scanner Demo Functions
	5-2-2 Usage Example for I/O Communications
	5-2-3 Usage Example for Explicit Message Communications

	SECTION 6 Communications Timing
	6-1 Remote I/O Communications Characteristics
	6-1-1 Communications Cycle Time
	6-1-2 More than One Master in Network

	SECTION 7 Error Processing
	7-1 LED Indicators and Error Processing
	7-2 Identifying Errors Detected by Functions
	7-3 Error Log Function

	Index
	Revision History

