C200HW-PRM21 PROFIBUS-DP Master Unit

Operation Manual

Produced September 1998

Notice:

OMRON products are manufactured for use according to proper procedures by a qualified operator and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this manual. Always heed the information provided with them. Failure to heed precautions can result in injury to people or damage to the product.

- **DANGER!** Indicates information that, if not heeded, is likely to result in loss of life or serious injury.
- **WARNING** Indicates information that, if not heeded, could possibly result in loss of life or serious injury.

Caution Indicates information that, if not heeded, could result in relatively serious or minor injury, damage to the product, or faulty operation.

OMRON Product References

All OMRON products are capitalised in this manual. The word "Unit" is also capitalised when it refers to an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation "Ch," which appears in some displays and on some OMRON products, often means "word" and is abbreviated "Wd" in documentation in this sense.

The abbreviation "PLC" means Programmable Logic Controller and is not used as an abbreviation for anything else.

Visual Aids

The following headings appear in the left column of the manual to help you locate different types of information.

- **Note** Indicates information of particular interest for efficient and convenient operation of the product.
- 1, 2, 3...Indicates lists of one sort or another, such as procedures, checklists, etc.

© OMRON, 1998

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is constantly striving to improve its high-quality products, the information contained in this manual is subject to change without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in this publication.

TABLE OF CONTENTS

PRECAUTIONS	xi
1 Intended Audience	
2 General Precautions	
3 Safety Precautions	
4 Operating Environment Precautions	
5 Application Precautions	xiii
6 EC Directives	xiv

1 PROFIBUS-DP	1
 1-1 Introduction 1-2 Protocol architecture 1-3 Device types 	2
1-4 PROFIBUS-DP characteristics	4
1-5 Device Data Base files 1-6 Profiles	
2 INSTALLATION	
2-1 Physical layout of the unit	
2-1 Physical layout of the unit	
2-3 Setting up a network	
3 SPECIFICATIONS AND PERFORMANCE	17
3-1 Overall Specifications	
3-2 Performance	
4 CONFIGURATOR	29
4-1 General	
4-2 Setup	
4-3 Operation 4-4 Debug mode	
5 PLC INTERFACE	51
5-1 Unit Settings	
5-2 Input / Output Mailbox	
5-3 Control and status area	
5-4 LEDs	
6 MESSAGE COMMUNICATION, IOWR / IORD	73
6-1 Message communication	
6-2 IOWR	
6-4 Messages	
7 TROUBLESHOOTING AND MAINTENANCE	83
7-1 Error Indicators	
7-2 Troubleshooting	
7-3 Maintenance	90
Appendices	
Appendix A Tips and sample programs	
Appendix B GSD file for C200HW-PRM21	101

Index	
Revision History	

About this Manual:

This manual describes the installation and operation of the PROFIBUS-DP Master Unit and includes the sections described below.

Please read this manual carefully and be sure you understand the information provided before attempting to install and operate the PROFIBUS-DP Master Unit. **Be sure to read the precautions provided in the following section.**

Section 1 gives a brief description of PROFIBUS-DP.

Section 2 describes the installation of the C200HW-PRM21.

Section 3 describes the overall specifications and the communication performance of the Unit.

Section 4 describes the software for configuring the PROFIBUS-DP network.

Section 5 describes the interface with the user.

Section 6 describes the message communication.

Section 7 describes the troubleshooting procedures and maintenance operations.

Failure to read and understand the information provided in this manual may result in personal injury or death, damage to the product, or product failure. Please read each section in its entirety and be sure you understand the information provided in the section and related sections before attempting any of the procedures or operations given.

PRECAUTIONS

This section provides general precautions for using the PROFIBUS-DP Master Units, Programmable Controllers, and related devices.

The information contained in this section is important for the safe and reliable application of the PROFIBUS-DP Master Units. You must read this section and understand the information contained before attempting to set up or operate a PROFIBUS-DP Master Unit and PLC system.

1 Intended Audience	xii
2 General Precautions	xii
3 Safcty Precautions	xii
4 Operating Environment Precautions	
5 Application Precautions	
6 EC Directives.	

1 Intended Audience

This manual is intended for the following personnel, who must also have knowledge of electrical systems (an electrical engineer or the equivalent).

- Personnel in charge of installing FA systems.
- · Personnel in charge of designing FA systems.
- Personnel in charge of managing FA systems and facilities.

2 **General Precautions**

The user must operate the product according to the performance specifications described in the operation manuals.

Before using the product under conditions which are not described in the manual or applying the product to nuclear control systems, railroad systems, aviation systems, vehicles, combustion systems, medical equipment, amusement machines, safety equipment, and other systems, machines, and equipment that may have a serious influence on lives and property if used improperly, consult your OMRON representative.

Make sure that the ratings and performance characteristics of the product are sufficient for the systems, machines, and equipment, and be sure to provide the systems, machines, and equipment with double safety mechanisms.

This manual provides information for installing and operating OMRON PROFIBUS-DP Master Units. Be sure to read this manual before operation and keep this manual close at hand for reference during operation.

WARNING It is extremely important that a PLC and all PLC Units be used for the specified purpose and under the specified conditions, especially in applications that can directly or indirectly affect human life. You must consult with your OMRON representative before applying a PLC system to the above mentioned applications.

3 **Safety Precautions**

WARNING Never attempt to disassemble any Units while power is being supplied. Doing so may result in serious electrical shock or electrocution.

WARNING Never touch any of the terminals while power is being supplied. Doing so may result in serious electrical shock or electrocution.

Operating Environment Precautions 4

Do not operate the control system in the following places.

- Where the PLC is exposed to direct sunlight.
- Where the ambient temperature is below 0°C or over 55°C.
- Where the PLC may be affected by condensation due to radical temperature changes.
- Where the ambient humidity is below 10% or over 90%.
- Where there is any corrosive or inflammable gas.
- Where there is excessive dust, saline air, or metal powder.
- Where the PLC is affected by vibration or shock.
- Where any water, oil, or chemical may splash on the PLC.

/! Caution The operating environment of the PLC System can have a large effect on the

longevity and reliability of the system. Improper operating environments can lead to malfunction, failure, and other unforeseeable problems with the PLC System. Be sure that the operating environment is within the specified conditions at installation and remains within the specified conditions during the life of the system.

5 Application Precautions

Observe the following precautions when using the PROFIBUS-DP Master Units or the PLC.

WARNING Failure to abide by the following precautions could lead to serious or possibly fatal injury. Always heed these precautions.

- Always ground the system to 100 Ω or less when installing the system to protect against electrical shock.
- Always turn OFF the power supply to the PLC before attempting any of the following. Performing any of the following with the power supply turned ON may lead to electrical shock:
 - Mounting or removing any Units (e.g., I/O Units, CPU Unit, etc.) or memory cassettes.
 - Assembling any devices or racks.
 - Connecting or disconnecting any cables or wiring.

A Caution

Failure to abide by the following precautions could lead to faulty operation of the PLC or the system or could damage the PLC or PLC Units. Always heed these precautions.

- Use the Units only with the power supplies and voltages specified in the operation manuals. Other power supplies and voltages may damage the Units.
- Take measures to stabilise the power supply to conform to the rated supply if it is not stable.
- Provide circuit breakers and other safety measures to provide protection against shorts in external wiring.
- Do not apply voltages exceeding the rated input voltage to Input Units. The Input Units may be destroyed.
- Do not apply voltages exceeding the maximum switching capacity to Output Units. The Output Units may be destroyed.
- Always disconnect the LG terminal when performing withstand voltage tests.
- Install all Units according to instructions in the operation manuals. Improper installation may cause faulty operation.
- Provide proper shielding when installing in the following locations:
 - Locations subject to static electricity or other sources of noise.
 - Locations subject to strong electromagnetic fields.
 - Locations subject to possible exposure to radiation.
 - Locations near power supply lines.
- Be sure to tighten Backplane screws, terminal screws, and cable connector screws securely.
- Do not attempt to take any Units apart, to repair any Units, or to modify any Units in any way.

Caution

- The following precautions are necessary to ensure the general safety of the system. Always heed these precautions.
 - Provide double safety mechanisms to handle incorrect signals that can be generated by broken signal lines or momentary power interruptions.
 - Provide external interlock circuits, limit circuits, and other safety circuits in

addition to any provided within the PLC to ensure safety.

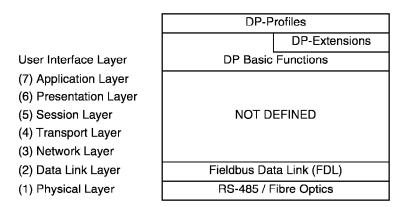
6 EC Directives

PROFIBUS-DP Master Units that meet EC directives also meet the common emission standard (EN50081-2). When PROFIBUS-DP Master Units are built into equipment, however, the measures necessary to ensure that the standard is met will vary with the overall configuration, the other devices connected, and other conditions. You must therefore confirm that EC directives are met for the overall machine or device.

1 PROFIBUS-DP

This section gives a brief description of PROFIBUS-DP.

1-1 Introduction	2
1-2 Protocol architecture	
1-3 Device types	4
1-4 PROFIBUS-DP characteristics	4
1-4-1 Bus Access Protocol	4
1-4-2 Data throughput	5
1-4-3 Diagnostics functions	6
1-4-4 Protection mechanisms	6
1-4-5 Network states	7
1-5 Device Data Base files	8
1-6 Profiles	8


1-1 Introduction

Multi-vendor Standard EN 50170	PROFIBUS is a vendor-independent, open fieldbus standard for a wide range of applications in manufacturing, process and building automation. Vendor independence and openness are guaranteed by the PROFIBUS standard EN 50170. With PROFIBUS, devices of different manufacturers can communicate without special interface adjustments. The PROFIBUS family consists of three compatible versions:
	PROFIBUS-DP
High speed	DP stands for D ecentralised P eriphery. It is optimised for high speed and low-cost interfacing, especially designed for communication between automation control systems and distributed I/O at the device level.
	PROFIBUS-PA
Process Automation	PA stands for P rocess A utomation. It permits sensors and actuators to be connected on one common bus line even in intrinsically-safe areas. It permits data communication and power supply over the bus using 2-wire technology according the international standard IEC 1158-2.
	PROFIBUS-FMS
Higher level	FMS stands for Fieldbus Message Specification. This version is the general- purpose solution for communication tasks at a higher level. Powerful services open up a wide range of applications and provide great flexibility. It can also be used for extensive and complex communications tasks.
Uniform bus access protocol	
	PROFIBUS-DP and PROFIBUS-FMS use the same transmission technology and a uniform bus access protocol. Thus, both versions can be operated simultaneously on the same cable. However, FMS field devices cannot be controlled by DP masters or vice versa.
A Caution	It is not possible to exchange one of these family members by another family member. This will cause faulty operation.
	The rest of this section only describes PROFIBUS-DP.

1-2 Protocol architecture

OSI

The PROFIBUS protocol architecture is oriented on the OSI (Open System Interconnection) reference model in accordance with the international standard ISO 7498. Layer 1 (physical layer) of this model defines the physical transmission characteristics. Layer 2 (data link layer) defines the bus access protocol. Layer 7 (application layer) defines the application functions. Easy installation

Layer 1, 2 and user interface
 PROFIBUS-DP uses layers 1 and 2, and the user interface. Layers 3 to 7 are not defined. This streamlined architecture ensures fast and efficient data transmission. The application functions which are available to the user, as well as the system and device behaviour of the various PROFIBUS-DP device types, are specified in the user interface. RS-485 transmission technology or fibre optics are available for transmission. RS-485 transmission is the most frequently used transmission technology. Its application area includes all areas in which high transmission speed and simple inexpensive installation are required. Twisted pair shielded copper cable with one conductor pair is used.

The RS-485 transmission technology is very easy to handle. Installation of the twisted pair cable does not require expert knowledge. The bus structure permits addition and removal of stations or step-by-step commissioning of the system without influencing the other stations. Later expansions have no effect on stations which are already in operation.

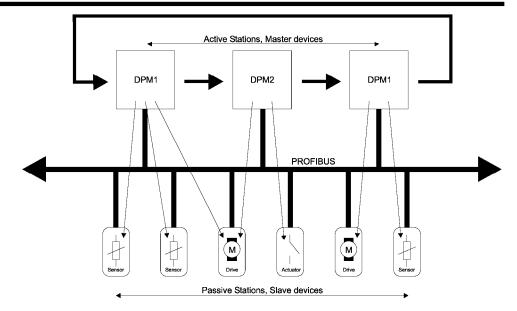
Transmission speeds between 9.6 kbit/s and 12 Mbit/s can be selected. One unique transmission speed is selected for all devices on the bus when the system is commissioned.

Cable lengthThe maximum cable length depends on the transmission speed (see table
below). The specified cable lengths are based on type-A cable (see
section 2-3-1). The length can be increased by the use of repeaters. The use
of more than 3 repeaters in series is not recommended.

Baud rate (kbit/s)	Distance/segment (m)
9.6	1200
19.2	1200
93.75	1200
187.5	1000
500	400
1500	200
3000	100
6000	100
12000	100

1-3 Device types

PROFIBUS distinguishes between master devices and slave devices. Master devices Master devices determine the data communication on the bus. A master can send messages without an external request when it holds the bus access rights (the token). Masters are also called active stations in the PROFIBUS Active stations protocol. DPM1. DPM2 There are two types of master devices: DP master class 1 (DPM1) and DP master class 2 (DPM2). A DPM1 is a central controller which exchanges information with the decentralised stations (i.e. DP slaves) within a specified message cycle. DPM2 devices are programmers, configuration devices or operator panels. They are used during commissioning for configuration of the DP system or for operation and monitoring purposes. Slave devices Slave devices are peripheral devices. Typical slave devices include input/output devices, valves, drives and measuring transmitters. They do not have bus access rights and they can only acknowledge received messages **Passive stations** or send messages to the master when requested to do so. Slaves are also called passive stations. The C200HW-PRM21 is a DPM1 device.


1-4 PROFIBUS-DP characteristics

1-4-1 Bus Access Protocol

Layer 2 The bus access protocol is implemented by layer 2. This protocol also includes data security and the handling of the transmission protocols and telegrams.

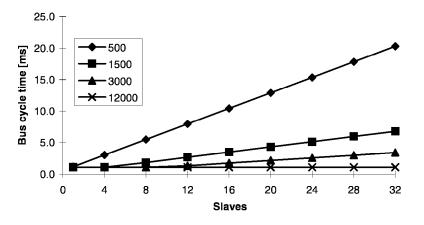
Medium Access Control The Medium Access Control (MAC) specifies the procedure when a station is permitted to transmit data. The token passing procedure is used to handle the bus access between master devices and the polling procedure is used to handle the communication between a master device and its assigned slave device(s).

- **Token passing** The token passing procedure guarantees that the bus access right (the token) is assigned to each master within a precisely defined time frame. The token message, a special telegram for passing access rights from one master to the next master must be passed around the logical token ring once to each master within a specified target rotation time.
- **Polling procedure** The polling or master-slave procedure permits the master, which currently owns the token, to access the assigned slaves. The picture below shows a possible configuration.

The configuration shows three active stations (masters) and six passive stations (slaves). The three masters form a logical token ring. When an active station receives the token telegram, it can perform its master role for a certain period of time. During this time it can communicate with all assigned slave stations in a master-slave communication relationship and a DPM2 master can communicate with DPM1 master stations in a master-master communication relationship.

Multi-peer communication In addition to logical peer-to-peer data transmission, PROFIBUS-DP provides multi-peer communication (broadcast and multicast).

Broadcast communication: an active station sends an unacknowledged message to all other stations (master and slaves). Multicast communication: an active station sends an unacknowledged


ast communication: an active station sends an unacknowledged message to a predetermined group of stations (master and slaves).

1-4-2 Data throughput

Transmission time

At 12 Mbit/s PROFIBUS-DP requires only about 1 ms for the transmission of 512 bits of input data and 512 bits of output data distributed over 32 stations. The figure below shows the typical PROFIBUS-DP transmission time depending on number of stations and transmission speed. The data throughput will decrease when more than one master is used.

Conditions: Each slave has 2 bytes of input data and 2 bytes of output data.

1-4-3 Diagnostics functions

Extensive diagnostics	The extensive diagnostic functions of PROFIBUS-DP enable fast location of faults. The diagnostic messages are transmitted over the bus and collected at the master. These messages are divided into three levels:
Device related diagnostics	 Device related diagnostics These messages concern the general operational status of the whole device (i.e. overtemperature or low voltage).
Module related diagnostics	 Module related diagnostics These messages indicate that a fault is present in a specific I/O range (e.g. an 8-bit output module) of a station.
Channel related diagnostics	 Channel related diagnostics These messages indicate an error at an individual input or output (e.g. short circuit on output 5).

1-4-4 Protection mechanisms

Time monitoring	PROFIBUS-DP provides effective protection functions against parameterisa- tion errors or failure of the transmission equipment. Time monitoring is provided at the DP master and at the DP slaves. The monitoring interval is specified during the configuration.
At the master	 Protection mechanism at the master. The DPM1 monitors data transmission of the slaves with the Data_Control_Timer. A separate control timer is used for each slave. This timer expires when correct data transmission does not occur within the monitoring interval. The user is informed when this happens. If the automatic error reaction (Auto_Clear = TRUE) has been enabled, the DPM1 exits its Operate state, switches the outputs of all assigned slaves to fail-safe status and changes to its Clear status (see also next section).
At the slave	 Protection mechanism at the slave. The slave uses the watchdog control to detect failures of the master or the transmission line. If no data communication with the master occurs within the watchdog control interval, the slave automatically switches its outputs to the fail-safe status. Also, access protection is required for the inputs and outputs of the DP slaves operating in multi-master systems. This ensures that direct access

can only be performed by the authorised master. For all other masters, the slaves offer an image of their inputs and outputs which can be read from any master, even without access rights.

1-4-5 Network states

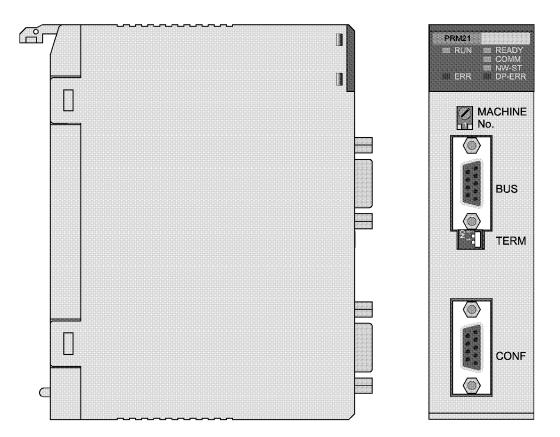
	PROFIBUS-DP distinguishes four different states.
Off-line	 Off-line Communication with all DP participants is stopped.
Stop	 Stop Communication between DPM1 and DP slaves is stopped. Only commu- nication between DPM1 and DPM2 is possible.
Clear	 Clear DPM1 master tries to set parameters, check the configuration, and perform data exchange with its associated DP-slaves. The data exchange comprises reading the inputs of the DP-slaves and writing zero's to the outputs of the DP-slaves.
Operate	 Operate DPM1 master exchanges data with its assigned slaves, inputs are read and outputs are written. Beside this, the DPM1 cyclically sends its local status to all assigned DP slaves (with a multicast) at a configurable time interval.
Auto-clear	When an error occurs during the data transfer phase of the DPM1, the 'auto- clear' configuration parameter determines the subsequent actions. If this parameter is set to false, the DPM1 remains in the Operate state. If set to
Fail-safe state	true, the DPM1 switches the outputs of all assigned DP slaves to the fail-safe state and the network state changes to the Clear state.

1-5 Device Data Base files

Plug-and-play	To achieve simple plug-and-play configuration of the PROFIBUS-DP network, the characteristic features of a device are specified in a file. This file
DDB-file, GSD-file	is called a DDB-file (Device Data Base file) or a GSD-file (Gerätestammdaten file). The GSD files are prepared individually by the vendor for each type of device according a fixed format. Some parameters are mandatory, some have a default value and some are optional.
	The device data base file is divided into three parts:
General section	• General specifications This section contains vendor and device names, hardware and software release states, station type and identification number, protocol specifica- tion and which baud rates are supported.
DP-master section	• DP master-related specifications This section contains all parameters which only apply to DP master devices (i.e. maximum memory size for master parameter set, maximum number of entries in the list of active stations or the maximum number of slaves the master can handle).
DP-slave section	 DP slave-related specifications This section contains all specification related to slaves (i.e. minimum time between two slave poll cycles, specification of the inputs and outputs and about consistency of the I/O data).
Configurator	The device data base file of each device is loaded in the configurator and downloaded to the master device. The device data base file for the C200HW-PRM21, named OC_1656.GSD, is provided with the configuration software. Section 4 will describe the configurator package SyCon-DP, which is used for configuration of the C200HW-PRM21, in more detail.

1-6 Profiles

Exchanging devices To enable the exchange of devices from different vendors, the user data has to have the same format. The PROFIBUS-DP protocol does not define user data, it is only responsible for the transmission of this data. The format of user data is defined in so called profiles. Profiles may reduce engineering costs since the meaning of application-related parameters is specified precisely. Profiles have for instance been defined for drive technology, encoders, and for sensors / actuators.


2 Installation

This section describes the installation of the C200HW-PRM21

2-1 Physical layout of the unit	10
2-1-1 LEDs	10
2-1-2 Rotary Switch	
2-1-3 BUS Connector	11
2-1-4 Configurator Connector	
2-1-5 Termination Switch	
2-2 Mounting the C200HW-PRM21	
2-3 Setting up a network	14
2-3-1 Fieldbus cabling	
2-3-2 Configuring the fieldbus	
2-5-2 Conjugar ing inc promous	

2-1 Physical layout of the unit

The figure below shows the side and front views of the C200HW-PRM21.

The front view shows the indicator LEDs, the 'Machine No.' rotary switch, two 9-pin female sub-D connectors, and the bus termination switch.

2-1-1 LEDs

The C200HW-PRM21 has 6 indicator LEDs. The two LEDs on the left side give a status indication of the unit in general. The four LEDs on the right side are related to the status of the PROFIBUS-DP network Refer to section 5-4 for a detailed (functional) description of the LEDs.

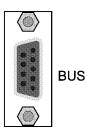
2-1-2 Rotary Switch

The rotary switch is used to set the unit number (or so called "Machine No.").

The unit number setting determines which words in the Internal Relay and Data Memory Areas are allocated to the Master Unit.

The allowed unit number setting range depends on the PLC CPU Unit being used, as shown in the following table.

CPU Unit models	Unit number setting range	Setting method
C200HS, C200HE, C200HG-CPU3 -E/CPU4 -E, C200HX-CPU3 -E/CPU4 -E	0 to 9	Single-digit hexadecimal
C200HG-CPU5 -E/CPU6 -E, C200HX-CPU5 -E/CPU6 -E	0 to F	


Any unit number in the setting range is allowed as long as it has not been set on another Special I/O Unit connected to the PLC. If the same unit number is used for the C200HW-PRM21 and another Special I/O Unit, an I/O Unit Over error will occur in the PLC and it will not be possible to start up the PROFIBUS-DP Network.

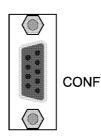
Note Always turn OFF the power to the PLC before changing the unit number setting. The Unit only reads the unit number setting during the initialisation after power-up, so not after a software reset.

Use a small flat-blade screwdriver to turn the rotary switch; be careful not to damage the switch.

2-1-3 BUS Connector

The fieldbus connector is a 9-pin female sub-D connector, as recommended by the PROFIBUS standard EN 50170.

Pin No.	Signal	Description
1	Shield	Shield / protective ground
2	-	-
3	B-line	Data signal
4	RTS	Control signal for repeaters (direction control) (TTL)
5	DGND	Data ground
6	VP	Supply voltage of the terminator resistance (5V)
7	-	-
8	A-line	Data signal
9	-	-


The signals DGND and VP are used internally to power the bus terminator (see section 2-1-5).

The signal RTS (TTL signal) is meant for the direction control of repeaters if repeaters without self control capability are used.

The PROFIBUS standard defines 24 V remote powering signals for pin 2 and pin 7. These signals are optional and have not been implemented in this unit.

2-1-4 Configurator Connector

The configurator connector is a 9-pin female sub-D connector.

Pin No.	Signal	Description
1	FG	Frame Ground (shield)
2	SD	Send Data
3	RD	Receive Data
4	RS	Request to Send
5	CS	Clear to Send
6	-	-
7	-	-
8	-	-
9	SG	Signal Ground

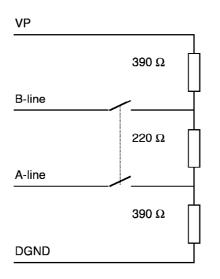
The pin assignment of this connector is the same as the that of the RS-232C port provided on most C200H-series CPUs. This enables the use of the same serial communication cable for both the CPU and the C200HW-PRM21.

The wiring of the RS-232C cable is shown in the picture below.

PRM21 Configurator port

Personal computer

j	-			
Signal	Pin No.		Pin No.	Signal
FG	1	shielded cable	1	-
SD	2		2	RD
RD	3		3	SD
RS	4		4	DTR
CS	5	C	5	SG
-	6		6	DSR
-	7		7	RS
-	8		8	CS
SG	9		9	-
Ca	ise		Ca	ase


2-1-5 Termination Switch

The termination switch has two positions. When the switch is set to the right (as shown below), the termination is disabled. By setting the switch to the left, the termination is enabled.

Enabling the termination connects the two data lines using a 220 Ω resistor which is connected to VP and DGND via two 390 Ω resistors (see figure below). The powering of the terminator resistor ensures a defined idle state potential on the data lines.

To ensure proper functioning up to the highest baud rate, the bus cable has to be terminated on both ends of the cable.

2-2 Mounting the C200HW-PRM21

The PROFIBUS-DP Master Unit (C200HW-PRM21) can be mounted to the CPU Rack or Expansion I/O Rack of any C200HX, -HG, -HE, or -HS PLC. Refer to the PLC's Installation Guide for details on mounting Units.

Limitations

There are some limitations on mounting the Master Unit.

- The Master Unit is a Special I/O Unit. It can be mounted in any slot in the Backplane of a CPU Rack or Expansion I/O Rack as long as its unit number is not the same as the unit number of another Special I/O Unit within the system.
- The current consumption all of units mounted on one backplane should not exceed the maximum output of the power supply. The C200HW-PRM21 consumes up to 450 mA from the 5V supply. Verify the characteristics of all other units on their respective Instruction Sheets.
- The maximum number of Master Units that can be mounted depends on the PLC CPU type.

CPU Unit models	Max. No. of Master Units

C200HS-CPU (all models) C200HE-CPU11/32/42 C200HG-CPU33/43 C200HX-CPU34/44	10
C200HG-CPU53/63 C200HX-CPU54/64	16

2-3 Setting up a network

2-3-1 Fieldbus cabling

Bus structure

All devices are connected in a bus structure (i.e. line). Up to 32 stations (master or slaves) can be connected in one segment. The bus must be terminated at the beginning and at the end of each segment. When more than 32 stations are used, repeaters must be used to link the individual bus segments. The maximum number of stations that can be connected to a C200HW-PRM21 is 124.

Cable type

The standard EN 50170 specifies to use line type A of shielded twisted pair cables with the following parameters:

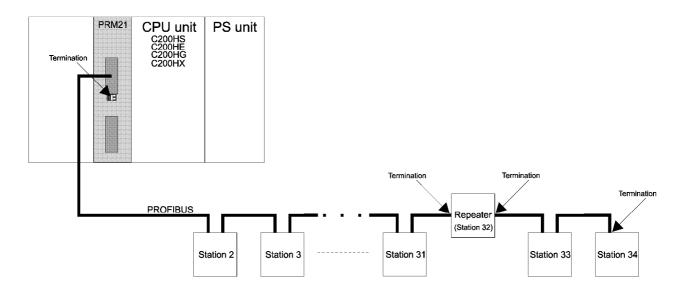
Parameter	Value
Impedance	135 to 165 Ω
Capacitance per unit length	< 30 pF/m
Loop resistance	110 Ω/km
Core diameter	0.64 mm
Core cross section	> 0.34 mm ²

Fieldbus connector The connector that must be used to connect to the fieldbus connector on the C200HW-PRM21 is a 9-pin male sub-D connector, preferably with a metal case, conducting screws and a solder lip for connecting the shield of the cable. The cable should at least be connected to pin 3 (B-line) and pin 8 (A-line) of the connector. When connecting, make sure that the data lines are not interchanged. For EMC-reasons, the shield of the cable should be connected to the metal case and pin 1 of the connector. The use of pin 4 depends on whether repeaters are used or not, and on the type of repeaters.

Maximum lengthThe maximum length of the cable depends on the transmission speed. The
cable lengths specified in the table below are based on line type A.

Baud rate (kbit/s)	Distance/segment (m)
9.6, 19.2, 93.75	1200
187.5	1000
500	400
1500	200
3000, 6000, 12000	100

Repeaters

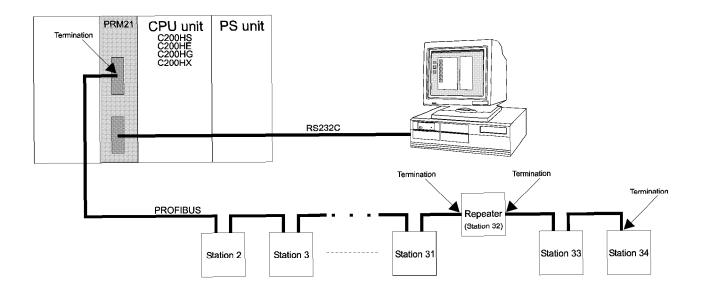

The communication distance can be increased by the use of repeaters. It is not recommended to use more than 3 repeaters in series.

Stub lines

Stub lines should be avoided for data transmission speeds of more than 500 kbit/s. Plug connectors available on the market permit the incoming data cable and the outgoing data cable to be connected directly in the plug connector. This means that stub lines do not have to be used, and the bus

plug connector can be connected and disconnected at all times without interrupting data communication with the other stations.

The figure below shows a possible configuration and indicates where the bus must be terminated. Note that the repeater also must be included in the count of the number of stations per segment (so only 31 'normal' devices are possible per segment if a repeater is used). It must also noted that the numbering of the stations does not indicate the station addresses; a repeater does not have a station address but it's impedance does apply a load on the bus.



2-3-2 Configuring the fieldbus

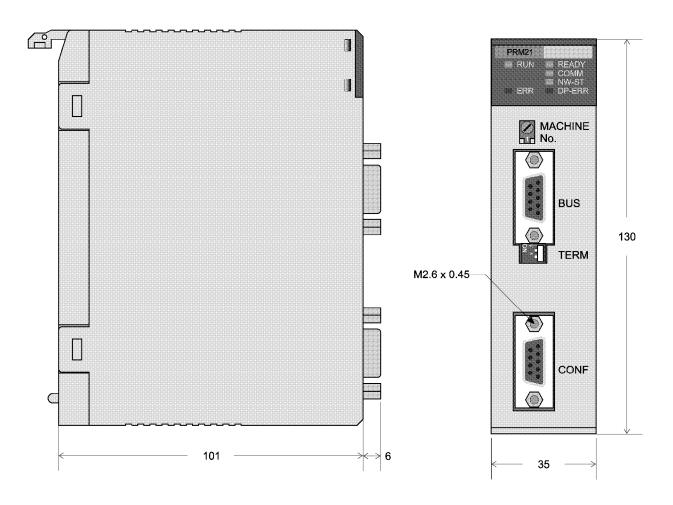
Configurator	After making the physical connections of the network, the network needs to be configured. For each master and its assigned slaves, a configuration has to be defined using SyCon-DP, a dedicated PC-based configuration program.
-	The configurator provides the master with information about:
	 The slaves that are connected to the master.
	 The assignment of slaves to groups for broadcast / multicast messages.
	 The mapping of the slaves into the memory of the master.
	 The bus parameters (e.g. baud rate, target rotation time etc.).
	For more details about the configurator refer to section 4.

Downloading configuration

After entering the configuration, it must be downloaded to the master unit. A serial COM-port of the PC is to be connected to the C200HW-PRM21 via the prescribed RS-232C cable.

3 Specifications and Performance

This section describes the overall specifications and the communication performance of the Unit


3-1 Overall Specifications	
3-2 Performance	
3-2-1 Fieldbus cycle time	
3-2-2 PLC cycle time	
3-2-3 I/O response time in asynchronous mode	
3-2-4 I/O response time in synchronous mode	

3-1 Overall Specifications

		C200HS	C200HE/HG/HX	
Model code		C200HW-PRM21		
Maximum. num Units (with user defin	ber of Master ed I/O mapping)	10	C200HE-CPU11/32/42 10 C200HG-CPU33/43 C200HX-CPU34/44	
			C200HG-CPU53/63 16 C200HX-CPU54/64	
Master Unit mo	unting position	CPU Rack or Expansion I/O Rack (classif Unit cannot be mounted to SYSMAC BUS	Slave Racks.	
		Unit cannot be used on a C200H PLC sys	item.	
Settings		Rotary switch : Unit number		
		Toggle switch : Bus termination		
Displays		Unit status : RUN (green LED), ERR		
		Network status : READY (green LED), Co	OMM (green LED),	
		NW-ST (green LED), DF	P-ERR (red LED)	
External conne	ctors	9-pin female sub-D connector (fieldbus co	nnector, RS-485)	
		9-pin female sub-D connector (configurate	or connector, RS-232C)	
No. of IR words 2		2 words of control data out + 3 words of u	nit status in	
No. of DM settings		18 words of unit setup information		
No. of slave status words		16 words of status + diagnostic bits (location is user definable)		
Remote I/O communi- cations	Max. No. of Slaves per Master Unit	124		
	Max. No. of I/O	With default DM settings:	With default DM settings:	
	words per	32 words in, 32 words out	50 words in, 50 words out	
	Master Unit	With user defined DM settings:	With user defined DM settings:	
		80 words, in up to 4 areas	300 words in up to 4 areas; maximum 100 words per area	
Message comm	unications	Not supported	via IOWR / IORD instructions	
PROFIBUS-DP	Baud rate	9.6 / 19.2 / 93.75 / 1.5 / 3 / 6 /		
	Supported functions	as client :Data_Exchange, Slave_Diag, as server :Get_Master_Diag	Set_Prm, Chk_Cfg, Global_Control	
Network configuration		Configurator program (SyCon-DP) WIN 3.x, WIN 95 and WIN NT		
Current consumption		450 mA at 5 V DC (from PLC power supply)		
Storage temperature		-20 to +75°C		
Operating temperature		0 to +55°C		
Operating humidity		10% to 90% (non-condensing)		
Conformance to EMC- and environmental standards		EN 50081-2 EN 61131-2		
Weight		250 g		

Dimensions

The following diagram shows the dimensions of the Master Unit. Refer to the PLC's Installation Guide for the dimensions of the Unit when it is mounted to the Backplane. (All dimensions are in mm.)

3-2 Performance

3-2-1 Fieldbus cycle time

This section gives a simplified method of fieldbus cycle time calculations. Refer to EN 50170 for a more detailed calculation of the fieldbus cycle time.

The fieldbus cycle time with only one master is approximately:

t _{BC}	= (ns + nr) x t_{MC} + $t_{GAP_{REQ}}$ + t_{TC}	
where:	ns	= number of slave stations
	nr	= number of message retry cycles
	t _{MC}	= message cycle time
	t _{gap_req}	= live list check time
	t _{TC}	= token cycle time

The calculation of the fieldbus cycle time for multiple master networks is more complex. For simplicity, extra time needed by each additional master can be said to equal the time it holds the token and passes the token to the next station, plus the time to check for live stations. In this case the fieldbus cycle is approximately:

where:	ns	= number of slave stations
	nr	= number of message retry cycles
	t _{MC}	= message cycle time
	nm	= number of master stations
	t _{gap_req}	= live list check time
	t _{TC}	= token cycle time

= (ns + nr) x t_{MC} + nm x ($t_{GAP REQ}$ + t_{TC})

For each master station it is possible to specify the target rotation time using the configurator software. If the actual fieldbus cycle time is less than the target rotation time, all messages will be transmitted. If not, the master stations will retain the low priority messages and transmit them at the next or the following token receptions.

Note The fieldbus cycle time depends on many variables, not only those mentioned in the formulas above. Therefore the formulas above only give an approximation of the fieldbus cycle time. The minimum possible fieldbus cycle time equals approximately 1 ms

(even if the formula gives a lower value).

The message cycle time, the live list check time, and the token cycle time are explained below.

Message cycle time

t_{BC}

A message consists of an action frame (request or send/request frame) and

a reply frame (acknowledge or response frame). The message cycle time is composed of the frame transmission times, the transmission delay times, the station delay time and the bus idle time.

 $T_{\text{MC}} = t_{\text{ACTION-FRAME}} + t_{\text{REPLY-FRAME}} + 2 \text{ x } t_{\text{TRANSMIT}_\text{DELAY}} + t_{\text{STATION-DELAY}} + t_{\text{IDLE}}$

The station delay time is the time the slave needs for decoding the request and generating an acknowledge or response frame.

The bus idle time is the time between an acknowledgement or response of the slave and a new request from the master. Part of this time is used for synchronisation ($t_{SYN} = 33 t_{BIT}$).

PROFIBUS has different formats for the action frame and the reply frame. The frames can have a fixed format (with no data field or with a data field of 8 octets) or a variable format (with a variable data field length).

A general formula for the message cycle time:

$$\begin{split} t_{MC} &= (9+n1) \ x \ 11 + (9+n2) \ x \ 11 + 2 \ x \ 0 + 30 + 37 \ t_{BIT} \\ &= (265 + 11n) \ t_{BIT} \end{split}$$
 where: n1 = number of action data bytes n2 = number of reply data bytes n = n1 + n2

The formula is based upon the following assumptions:

- The action frame and response frame have a variable format.
- The transmission delay times are negligible.
- t_{STATION-DELAY} = 30 t_{BIT} (typical value for the ASIC SPC3)
- t_{IDLE} = 37 t_{BIT}

Live list check time

Each bus cycle the master requests the FDL (Fieldbus Data Link) status of one of the stations connected to the network, except for the master stations that have been entered in the LAS (List of Active Stations). The stations are checked in sequence.

Each master is designated a certain range of slaves that it has to check. This range is determined by the station addresses of the masters connected to the network and the value for the parameter HSA (Highest Station Address). A master checks the station addresses one higher than his own address up to the next master address. If there is no master with a higher address, the master checks until the value of HSA and starts again with checking from station address 0.

If the station that is being checked is present and functions correctly, the check time is approximately:

 $t_{GAP_{REQ}} = t_{REQ_{FRAME}} + t_{RES_{FRAME}} + 2 \times t_{TRANSMIT_{DELAY}} + t_{STATION - DELAY} + t_{STAT$

t_{IDLE}

= 200 t_{BIT}

If the station is not present, the master stops waiting for an answer after the slot-time (one of the bus parameters). The check time in this case is:

$$\begin{split} t_{\text{GAP}_\text{REQ}} &= t_{\text{REQ}_\text{FRAME}} + t_{\text{SLOT}} + t_{\text{IDLE}} \\ &= 6 \text{ x } 11 + 100 + 37 \text{ } t_{\text{BIT}} \\ &= 203 \text{ } t_{\text{BIT}} \end{split}$$

The formulas are based upon the following assumptions:

- The transmission delay times are negligible.
- $t_{\text{STATION-DELAY}} = 30 t_{\text{BIT}}$ (typical value for the ASIC SPC3)
- t_{IDLE} = 37 t_{BIT}
- $t_{SLOT} = 100 t_{BIT}$ (configurable)

Token cycle time

The token cycle time is the time each master station requires to process and transfer the token. It is composed of the token frame time, the transmission delay time and the bus idle time.

```
t_{TC} = t_{TOKEN-FRAME} + t_{TRANSMIT_DELAY} + t_{IDLE}
```

The bus idle time contains the station delay time of the receiver and the synchronisation time.

A general formula for the token cycle time:

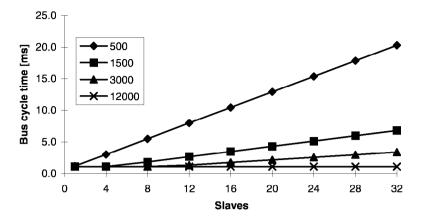
$$t_{TC}$$
 = 3 x 11 + 0 + 37 t_{BIT}
= 70 t_{BIT}

The formula is based upon the following assumptions:

- The transmission delay time is negligible.
- $t_{IDLE} = 37 t_{BIT}$

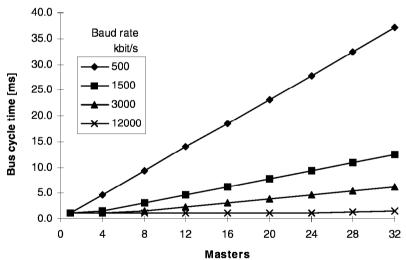
Examples

The two figures below give an indication of the fieldbus cycle time. In each figure the bus cycle time is calculated for four different baud rates (500 kbit/s, 1500 kbit/s, 3000 kbit/s, and 12000 kbit/s).


The first figure shows the effect of the number of slaves on the bus cycle time. The values of the parameters are:

n	= 4 (number of data bytes per slave)
ns	= variable on the x-axis
nr	= 0
Baud rate	= variable per curve

The fieldbus cycle time is calculated with the formula for a single master system.


The bus cycle time increases when the number of slaves increases due to the fact that the total number of data bytes that needs to be transferred increases.

The second figure shows the effect of the number of masters on the bus cycle time. The values of the parameters are:

n	= 4
ns	= nm (each master has one slave)
nm	= variable on the x-axis
nr	= 0
Baud rate	= variable per curve

This figure is resembles the first figure. An increase of the number of masters also increases the number of slaves and thus increases the number of data bytes that needs to be transferred. The only difference is the addition of the time to pass the token from one master to the other master and the total time on checking the stations is increased. This is an addition of about 270 $t_{\rm BIT}$ per additional master.

3-2-2 PLC cycle time

The PLC cycle time mainly depends on the size of the PLC program and the I/O refresh time of the units.

The size of the PLC program is application specific. Besides optimising the PLC program, the program execution time can only be decreased by using a faster CPU.

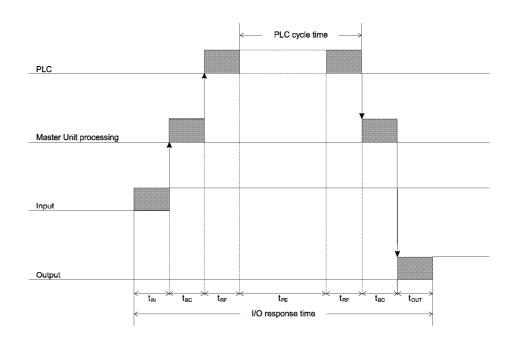
The total I/O refresh time depends on the types of units that are mounted on the Backplane(s). Not all units refresh the same amount of data.

The I/O refresh time of the C200HW-PRM21 depends on the number of data areas and the number of I/O data words that have been mapped.

The I/O refresh time of the C200HW-PRM21 Unit can be calculated with the following formulas.

C200HS:

 $t_{\text{IORF}} = 1.6 + 0.4 \text{ x na} + 0.067 \text{ x nw} \text{ [ms]}$ C200HE, C200HG, C200HX: $t_{\text{IORF}} = 1.0 + 0.4 \text{ x na} + 0.018 \text{ x nw} \text{ [ms]}$ where: na = number of mapped data areas nw = number of mapped l/O words (na ≥ 1) Using the default mapping mode, the I/O refresh time is: C200HS : 6.7 ms (2 areas: 32 words out, 32 words in) C200HE, C200HG, C200HX : 3.6 ms (2 areas: 50 words out, 50 words in)


Refer to the Operation Manual of the CPU for more detailed calculations of the PLC cycle time.

- **Note** The I/O refresh time is not constant over all PLC cycles. During an I/O refresh, the unit can transfer I/O data, slave status information, and IR words (control & status). IR data is always transferred. I/O data and slave status data are only transferred under certain conditions:
 - Input data: Only when there is new input data available. The situation that there is no new input data occurs when the fieldbus cycle time is greater than the PLC cycle time or when the communication is inhibited.
 - Output data: Always transferred after the Unit is initialised, except during a download and in the synchronous mode when the fieldbus cycle time is greater than the PLC cycle time.
 - Slave Status: Always transferred after the Unit is initialised.

3-2-3 I/O response time in asynchronous mode

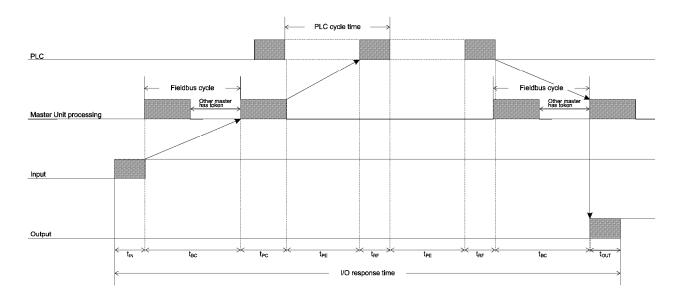
In asynchronous data transfer mode, the fieldbus cycle is not synchronised with the PLC cycle; fieldbus cycles are triggered continuously, independent of the PLC cycle.

Minimum I/O response time The figure below shows the minimum I/O response time in asynchronous mode. The figure shows the timing at the PLC, the timing at the Master Unit, the timing at the slave input and the timing at the slave output.

- t_{IN} : The Input Slave's ON (OFF) delay
- t_{OUT} : The Output Slave's ON (OFF) delay
- t_{BC} : The fieldbus cycle time
- $t_{\mbox{\scriptsize RF}}$: The I/O refresh time
- $t_{_{PE}}$: Program Execution time

Conditions

The minimum response time can be achieved under the following conditions:


- 1. No other master is connected to the network. More masters will increase the fieldbus cycle time due to the token rotation between masters.
- 2. User defined I/O data mapping. Only map the input and output data of the configured slaves. This will minimise the number of words that needs to be transferred per PLC cycle and therefore the I/O refresh time.
- 3. The fieldbus baud rate is set to the highest value allowed for the attached slaves and the used cable length.
- 4. The IORF instruction can be used to further decrease processing time in the PLC program.

The minimum I/O response time that can be achieved with C200HE, -HG or - HX is approximately

 $9\ ms + t_{\text{IN}} + t_{\text{OUT}}$

Maximum I/O response time The

The figure below shows the maximum I/O response time in asynchronous mode. The figure shows the timing at the PLC, the timing at the Master Unit, the timing at the slave input and the timing at the slave output.

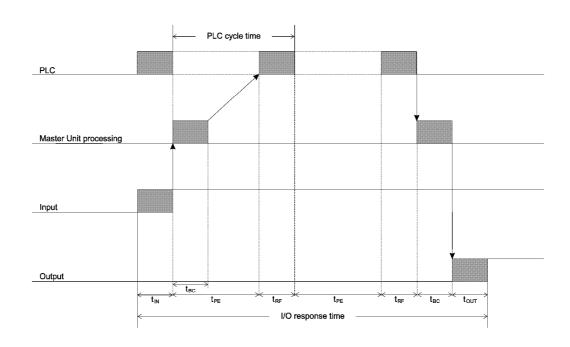
- t_{IN} : The Input Slave's ON (OFF) delay
- t_{out} : The Output Slave's ON (OFF) delay
- t_{BC} : The Fieldbus cycle time
- $t_{\mbox{\scriptsize PC}}$: The Poll cycle time of the respective master
- t_{RF} : The I/O refresh time
- t_{PE} : The Program Execution time

The maximum response time can occur under the following conditions.

- 1. The slave in question is polled by the respective master at the beginning of the poll cycle.
- 2. The Input data is available just after the master polled the respective slave.
- 3. The Master Unit finished processing just after the I/O refresh. The Input data is not transferred to the PLC until the next PLC cycle.
- 4. A fieldbus cycle just started before the end of the I/O refresh, the output data is not transferred until the next fieldbus cycle.

The I/O response time in the case above is:

 $t_{\text{RESPONSE}} = t_{\text{IN}} + 2 \text{ x } t_{\text{BC}} + t_{\text{PC}} + 2 \text{ x } t_{\text{RF}} + 2 \text{ x } t_{\text{PE}} + t_{\text{OUT}}$


Note: With t_{PC} is meant the time the master of the respective slave needs to poll all slaves that have been assigned to this master.

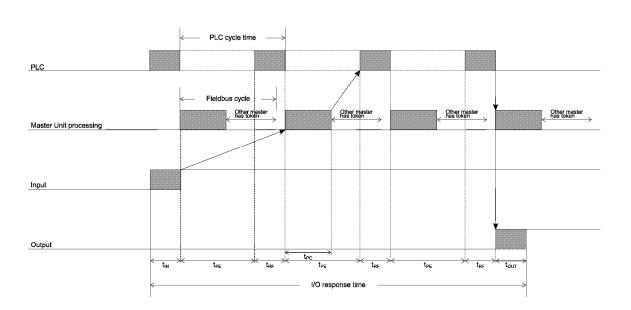
3-2-4 I/O response time in synchronous mode

In synchronous data transfer mode, the fieldbus cycle is triggered immediately following the I/O refresh of the PLC. If the fieldbus cycle has not finished before the start of the I/O refresh, the fieldbus cycle is not triggered until after the next I/O refresh.

Minimum I/O response time

The figure below shows the minimum I/O response time in synchronous mode. The figure shows the timing at the PLC, the timing at the Master Unit, the timing at the slave input and the timing at the slave output.

- t_{IN} : The Input Slave's ON (OFF) delay
- t_{OUT} : The Output Slave's ON (OFF) delay
- t_{BC} : The fieldbus cycle time
- t_{RF} : The I/O refresh time
- t_{PF} : Program Execution time


The minimum response time can be achieved under the following conditions:

- 1. No other master is connected to the network. More masters will increase the fieldbus cycle time due to the token rotation between masters.
- 2. User defined I/O data mapping. Only map the input and output data of the slave. This will minimise the number of words that needs to be transferred per I/O refresh and therefore minimise the I/O refresh time.
- 3. PLC cycle time is greater than the fieldbus cycle time. In this case it is guaranteed that one fieldbus can be triggered per PLC cycle.
- 4. The fieldbus baud rate is set to the highest value allowed for the attached slaves and used cable length.
- 5. The IORF instruction can be used to further decrease processing time in the PLC program.

The minimum I/O response time that can be achieved with C200HE, -HG or -HX is approximately

 $8 \text{ ms} + t_{\text{IN}} + t_{\text{OUT}}$

Maximum I/O response time The figure below shows the maximum I/O response time in synchronous mode. The figure shows the timing at the PLC, the timing at the Master Unit, the timing at the slave input and the timing at the slave output.

- t_{IN} : The Input Slave's ON (OFF) delay
- t_{OUT} : The Output Slave's ON (OFF) delay
- $t_{\mbox{\scriptsize PC}}$: The Poll cycle time of the respective master
- t_{BF} : The I/O refresh time
- t_{PE} : The Program Execution time

The maximum response time can occur under the following conditions.

- 1. The slave in question is polled by the respective master at the beginning of the poll cycle.
- 2. The poll cycle time of the respective master is less than the program execution time of the PLC program.
- 3. The Input data is available just after the master polled the respective slave.

The I/O response time in the case above is:

 $t_{\text{RESPONSE}} = t_{\text{IN}} + 3 \text{ x } t_{\text{PE}} + 3 \text{ x } t_{\text{RF}} + t_{\text{OUT}}$

Note: With t_{PC} is meant the time that the master of the respective slave needs to poll all slaves that have been assigned to this master.

4 Configurator

This section describes the configuration software package, required to set up a PROFIBUS-DP network

4-1 General	
4-1-1 Introduction	
4-1-2 System Requirements	
4-2 Setup	
4-2-1 Installation	
4-2-2 Uninstall	
4-3 Operation	
4-3-1 PROFIBUS-DP configuration	
4-3-2 Device database	
4-3-3 Bus configuration	
4-3-4 Device configuration	
4-3-5 Group membership	
4-3-6 Check configuration	
4-3-7 Bus parameters	41
4-3-8 Download	
4-4 Debug mode	
4-4-1 Master Diagnostics	
4-4-2 Slave Diagnostics	
4-4-3 Extended diagnostics	
4-4-4 Start / stop communication	49

4-1 General

To define the network topology and PROFIBUS-DP system characteristics, the C200HW-PRM21 needs to be provided with information about the slave units connected to the network, and basic communication parameters.

SyCon-DP

This information is entered in the Unit by means of the configuration software package SyCon-DP. It is not possible to use any other (general-purpose) PROFIBUS-DP configuration software packages available from 3rd parties.

4-1-1 Introduction

The configuration software package for the C200HW-PRM21 PROFIBUS-DP master is used to define:

- A database of available master and slave units; the Device Database.
- The configuration of the bus system connected to the C200HW-PRM21.
- Configuration- and parameter data of all connected slave stations.
- Overall bus communication settings.

All configuration data can be prepared off-line. A serial communication link with the C200HW-PRM21 is only necessary to download the configuration file to the unit, and for debugging purposes.

It is not possible to set up the C200HW-PRM21 without this configuration software. Once the configuration data has been downloaded into the Unit, the software package is no longer required during normal operation.

After the initial configuration has been downloaded, the software package can be used for:

- Addition / deletion of slave units or -modules.
- Monitoring the PROFIBUS system status.
- Troubleshooting communication problems.

4-1-2 System Requirements

The following are the minimum requirements for a PC to install the PROFIBUS-DP configurator.

Processor:	486DX50 or higher
RAM:	16 MB or more
Hard disk space:	8 MB
Operating System:	Windows 3.1 or higher,
	Windows 95 (4.00.950a) or higher
	Windows NT 3.51 (build 1057) or higher
Graphics:	640x480x256
	800x600x256 or more recommended
Serial port:	RS-232C; COM1, 2, 3 or 4
Communication cable	see 2-3-2 'Configuring the fieldbus'

4-2 Setup

4-2-1 Installation

1, 2, 3...

Setup

The PROFIBUS-DP configurator SyCon-DP is supplied on 3 floppy disks (3.5"), labelled 1/3 through 3/3.

To install, insert disk 1/3 into the disk drive and start the program INSTALL.EXE, located on the disk. You will be prompted to enter a destination directory for the program to be installed in.

After loading disk 1/3, you will be prompted to insert disks 2/3 and 3/3.

The installation program will create a new Program Group or Start Menu item as shown (Win95/NT4.0).

	🚓 System Configurator DP
	📑 ReadmeDP.wri
🛱 System configurator 🔹 🕨	🎽 Readme.wri

4-2-2 Uninstall

To uninstall the PROFIBUS-DP configurator, you need to manually delete:

- the entire directory (folder) in which the software has been installed,
- the file PROFIBUS.INI from your Windows directory (folder),
- the appropriate Program Group (Start Menu item) .

4-3 Operation

Menu

1, 2, 3...

The operation of the configurator is menu-driven. The functions located under the main menu items are:

- File Create, load and save PROFIBUS-DP configuration files.
 - Print configuration data.
 - Exit the configurator.
- Edit Cut, copy and paste items in the configuration.
- View List all configured devices, sorted by address or by memory allocation.
- Online Download the configuration to the Unit.
 Enter the online debug mode.

Device Database • Create, load and save a database of PROFIBUS-DP devices.

- Add or delete devices to/from a device database.
- **Setup** Set overall bus system and communication parameters.
 - Define group assignments for global control commands.
 - Select serial communication port.
 - Enter general project information.
 - (Un)Select auto addressing mode.
- **About** Display SyCon-DP version information.

1, 2, 3...

4-3-1 **PROFIBUS-DP** configuration

To build a PROFIBUS-DP configuration in a reliable and efficient way, adhere to the following sequence of actions:

- Make a Device Database, containing all devices that are to be used in the system, and save it to disk.
 - 2. Define the bus configuration by assigning addresses to the devices to be installed, configuring each device as required.
 - 3. Define the assignment of each slave's in- and output data to the internal buffers of the Unit (or use the auto-addressing function).
 - 4. Define the overall bus system and communication parameters.
 - 5. Select the serial communication port (set driver).
 - 6. Save the configuration file to disk, then download it into the Unit.

4-3-2 Device database

GSD files

Each PROFIBUS-DP device, master or slave, is characterised by its Device Database file, also known as GSD file (from German 'Geräte StammDaten'). The GSD file contains information about a device's functionality and characteristics, which need to be known during the configuration of a PROFIBUS-DP network.

The GSD file for the C200HW-PRM21 is named OC_1656.GSD, and is provided with the configurator software package (see also Appendix B). For each slave that needs to be configured, a specific GSD file must be provided by the manufacturer of the device. Without the GSD file, a slave cannot be configured.

Device Database A device database, as generated by the PROFIBUS-DP configurator, contains the data extracted from the GSD files which is required to set up the system.

It is possible to build multiple device databases, which can be reused in different projects. Device databases can be created from scratch, and are filled by adding selected GSD files. The selected GSD files will be copied to the GSD subdirectory of the configurator's main directory, and should not be removed. Device databases get a file extension .PDP and can be stored anywhere.

Always create or open the required device database *before* creating or opening a new configuration.

Operation

A default Device Database will be loaded initially. To view its contents, select 'Device data base_Display':

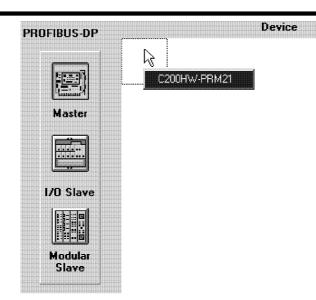
[<u>D</u> evice data base	<u>S</u> etup	Info
	<u>C</u> reate		
	<u>L</u> oad		ļ
•	<u>S</u> ave as		ĺ
	Dis <u>p</u> lay		
	Edit device		
	Add device (*.GS	D) Ctrl-	-Δ,

This will present you a list of devices which can be used in a new configuration. Unnecessary devices may be deleted in this view.

Device data base			
Model name	Manufacturer	Revision	GSD-name
C200HW-PRM21	OMRON Corporation	Version 0.9	OC_1656.GSD
3G3FV PROFIBUS-DP	OMRON Corporation	Version 1.1	OC_9006.GSD
PRT1-COM	OMRON Corporation	0.00	OC_FFFF.GSD
PROFIBUS DP-32	HMS Fieldbus Systems AB	Version 1.5	HMS_1000.GSD
PROFIBUS DP-64	HMS Fieldbus Systems AB	Version 1.5	HMS_1001.GSD
PROFIBUS DP-DT	HMS Fieldbus Systems AB	Version 1.5	HMS_1002.GSD
PROFIBUS DP-DT+	HMS Fieldbus Systems AB	Version 0.9	HMS_1003.GSD
ET 200B-16DI	SIEMENS AG	Ausgabestand 1	SIEM0001.GSD
ET 200B-16DO	SIEMENS AG	Ausgabestand 1	SIEM0002.GSD
S5-95U DP	SIEMENS AG	Ausgabestand 1	SIEM800C.GSD
IM308-C DP-SLAVE	SIEMENS AG	Ausgabestand 1	SIEM801C.GSD
	<u>R</u> eturn	Delete	

'Device data base_Add device (*.GSD)' allows adding new devices to the list. While importing a new GSD file, the configurator will check the validity of vital data in the file. If a file contains syntax errors, the import will be aborted.

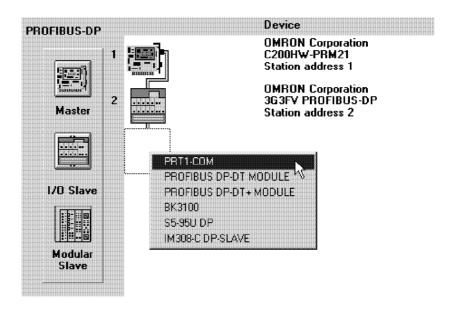
After completing the Device database, select 'Device data base_Save as...' to save your work in a location of your choice.


4-3-3 Bus configuration

Master selection

After creating a new device database, or opening an existing one, the bus system can be configured. The first step is to define the Master Unit, by clicking on the Master symbol at the left of the screen:

Move the cursor to the top left cell of the PROFIBUS-DP window and click to bring up a list of Master units currently in the Device database.



Select the C200HW-PRM21 to bring up the dialog box that allows you to enter the station's bus address.

Slave selection After setting the Master, the corresponding slaves can be added.

Slaves come in two varieties; simple I/O slaves, and Modular slaves. Simple I/O slaves have a fixed input / output configuration, whereas modular slaves can be configured to the user's requirements. The distinction between the two types is indicated in the GSD file.

To add a slave, click the appropriate symbol, and select a position in the leftmost column of the PROFIBUS-DP window. Click on an empty cell to bring up the list of corresponding devices in the Device database. Upon selection of a device, the station address dialog box will appear, and by default present the lowest available address number.

Station addresses may be assigned in any sequence, and do not need to be consecutive. The sequence displayed on the screen does not have to represent the physical bus layout.

4-3-4 Device configuration

1, 2, 3	Device configuration comprises the following steps: - Station address assignment. - Map the slaves' I/O data to the Unit's buffer areas. - Set the slave's User Parameter Data.
Auto-addressing	Station addresses will be assigned automatically according to sequence of entry. Any automatically assigned address can be changed manually. The configurator offers the option to also automatically assign the I/O data of each slave to a location in the Unit's buffer areas. This feature is turned ON by default, and can be turned OFF via the menu item 'Setup_Auto addressing'.
Station Address	To configure a slave, double-click on it's icon in the PROFIBUS-DP window

Manufacturer	OMRON Co	rporation	
Model name	3G3FV PRO		
Class	1/O Slave		
dent code	1	Station	address
Ident code	Dx9006	Sta	tion address 2
Set Slave Address	K K	> >1	Configuration data

to bring up the following dialog box (or use 'Device database_Edit device'):

From this dialog box, all other devices can also be selected by using the arrow buttons:

······································	
	222
	20 B
	88 B

The station address can be changed by typing over the existing one. Slaves supporting remote address setting can be changed on-line via the 'Set Slave Address' button.

Entries in the shaded (yellow) areas are read from the device's GSD file and cannot be changed.

For further configuration of the slave, two buttons provide access to configuration and parameter data entry panels.

In the Configuration data dialog box, the slave's data allocation in the Unit's I/O buffers (see 5-1-1, 'I/O Data Mapping') can be assigned: I/O slaves

> Depending on data format definitions in the GSD file, the required input and output areas of a slave will be shown in bytes or words. The location of the I/O data, relative to the start of the buffer (offset), should always be entered in bytes, and must be even.

Slave Configuration Data

	DP Slave configuration	data			×
	Module name	363FV			
	Man. spec. data				
	Station address	2			
	Input	16 Word	0x5F		
	Output	16 Word	Ox6F		
	In/Output			₩atchdog control	
	TINPUt Offset Byte	Cutput Offse	et Byte		
	0	0		<u>O</u> k	<u>C</u> ancel
Auto-addressing	allocation will be the Unit, or when When Auto-addre is allocated a suf is found to be o	made autor viewing the essing is dis fficiently larg overlapping	matically be address lis abled, the je area of th with anoth	user must make sure tha ne Unit's buffers. When a ner slave, an error mess	figuration to t each slave slave's data sage will be
	slave's allocation network in a late	ns to the t er stage. Thi	ouffers, to s will howe	d. It is allowed to create allow a foreseen exten ever result in a less than o	sion of the
	transfer between				, r
		•		checked, the slave wil	
	functionality in th			on is disrupted (depends d, output clear).	on available
Modular slaves	of the configura modular slave. required module bottom half of the	tion data w These data es, they car e window by /O data in th	indow will are description be adde clicking th	n their I/O configuration. list all possible I/O mod bed in the GSD file. Aft d to the actual configura he 'Add module' button. T an be adapted by the use	dules of the er selecting ation in the he locations
	The 'Type' indica	tor of each	module der	notes the slave module's o	lata format:
	IB for by	te inputs		QB for byte outputs	
	IW for wo	ord inputs		QW for word outputs	
Auto-addressing	When 'Auto-addr mapping will be before download	ressing' is O updated by ling to the L	the config Jnit. All mo	et can be left at 0 for all m urator during 'View_Addru dules will be mapped int figuration window.	ess list' and
	buffers must be	entered main ress in the b	nually. The	ffset of each module in t start address is entered addresses are <i>not</i> relative	in bytes, as
		ing single by	te in the b	n module requires an odd uffer will be reserved, so t	
				e automatically checked k See 4-3-8, <i>'Download</i> '.	pefore being

Operation

Section 4-3

	Maximum numbe	r of modules	8		Leng	th of t	he input and output data	10	Byte
	Max. length of input and	output data	128	B Byte			Length of input data	2	Byte
	Maximum length (of input data	128	B Byte			Length of output data	8	Byte
	Maximum length of	output data	128	8 Byte	F	7 Wate	chdog control		
	dule name	Inputs		Dutputs	ln/Ou	tput t	Aanufacturer specific da	a	
	P08			1 Byte					
	IS16			1 Word					
	16 (MX)	1 Wor	-						
_	16 (MX)			1 Word					
	32 (ML)	2 Wor							
	32 (ML)			2 Word	ļ				
	08	8 Wor	_						
JA	.04		_	4 Word		_			
dx	Module name	, II	one l	BYTE OF	SET	lTune	BYTE OFFSET	Add m	adula
1	ROS16					QW	2	<u>A</u> uu III	UUUIG
I	ID16 (MX)	IV	V	2				omoue	module
	OD32 (ML)					Q₩	4	CIRCIAC AC	mouun
I	ROP08					QB	8	Add line	
I	ROP08					QB	10	Auu	ging
									<u>O</u> k
			_						ancel

Slave Parameter Data

Depending on the type of slave, vendor-specific information may be transferred to the slave at initialisation. The 'DP Slave parameter data set' dialog box shows fixed information plus the default 'User (parameter) data' from the GSD file.

Manufacturer	OMRON Corporation		
Model name	3G3FV PROFIBUS-DP		
Class	1/O Slave	Ident code	0x9006
Number of modules	1	Station address	2
Output positi	on of the DP device Version	n 1.1	
	out position of the DP Version		
Software Outp	out position of the DP Version	n 1.0	
⊽ Freeze mod	e 🔛 Sync. mode	Automatic baud rate re	cognition
User data ler	igth 0 example	0x01 0x05	
User d	ata		<u>.</u>

Any User data entered will be truncated to the User data length specified. The function of this data is vendor-specific; check the documentation of the slave device to determine which data must be entered. When in doubt, leave these values at the defaults derived from the GSD file.

Note The maximum value of User data length in the C200HW-PRM21 is 161 bytes.

4-3-5 Group membership

Group Definitions

Via the menu item 'Setup_Group membership', up to 8 groups of slaves can be defined as targets for PROFIBUS-DP Global Control Commands.

The Group Membership dialog box allows definition of group names, and of supported functions (Freeze / Sync) per group, For more information on the execution of Sync / Freeze functions, see 5-3-1, *Control words'*.

Group names can be modified for easier identification. This has no effect on the operation of the unit.

The FREEZE and SYNC check-boxes can be used to prevent assignment of slaves which do not support these functions. Unchecking a function for a specific group will not prevent the processing of the global control command for that group.

Gr 1: Drives	FREEZE	T SYNC	Ok
Gr 2: External	T FREEZE	🖾 SANC	<u> </u>
Gr 3: Modular I/O	FREEZE	🔽 SYNC	Cancel
Gr 4: Group 4	⊽ FREEZE	🖾 SANC	Grouping
Gr 5: Group 5	FREEZE	🖾 SANC	Ananaanaanaanaanaanaa
Gr 6: Group 6	FREEZE	I⊽ SYNC	
Gr 7: Group 7	⊽ FREEZE	🖾 SANC	
Gr 8: Group 8	🔽 FREEZE	SYNC	

The 'Grouping' button provides access to the 'Group formation' dialog box, in which slaves can be assigned to the groups. Each slave may be assigned to any number of groups. If a slave does not support SYNC and/or FREEZE functions, assignment to a group with this function is not possible.

Group formation									
	Addr.	Gr1 F	Gr2 S	Gr3 F,S	Gr4 F,S	Gr5 F,S	Gr6 F,S	Gr7 F,S	Gi8 F,S
PRT1-COM	2	П		X	П	П	П		Γ
3G3FV PROFIBUS-DP	3	X	П	П	П	П	Π	Γ	П
3G3FV PROFIBUS-DP	4	X	Г	П	П	П	П	Г	П
PROFIBUS DP-32 MODULE	5	П	X	П	П	П	П	Г	Г
PRT1-COM	6	Г	П	x	П	Π	Π		Г
PROFIBUS DP-DT MODULE	7	Π	X	X	П	П	П		Γ
<u>Ok</u> Cancel									

Device list

4-3-6 Check configuration

After slaves have been configured, it is possible to obtain an overview of all configured devices, and their data allocation in the I/O buffers, by 'View_Device list' and 'View_Address list'.

The Device list shows all configured slaves, in the order in which they were defined. This order is particularly important for the auto-addressing function: offsets in the I/O buffer will be assigned to slaves in the order in which they are presented in this device list. Slave addresses can be assigned and redefined in any sequence, and do not influence the automatic addressing function.

Devi	ce list		
Addr.	Model name	ID code	Slave type
1	C200HW-PRM21	0x1656	Master
12	3G3FV PROFIBUS-DP	0x9006	I/O Slave
10	PROFIBUS DP-32 MODULE	0x1000	I/O Slave
8	ET 2008-24D1/8D0	0x000F	I/O Slave
2	PRT1-COM	0xFFFF	Modular Slave
4	BK3100	OxBECE	Modular Slave
6	1470/75 + 8640	0x0081	Modular Slave
3	Valve terminal type 03-05	0xFB09	Modular Slave
			1
			-
			-
			+
	1		<u> </u>
			4
		Close	

Address list

The address list shows the start address of each slave or module's data in the input and output buffers. The data location is always given as an offset in bytes, relative to the start of the buffer. The type indication of each slave (module) shows if it concerns input (I) or output (Q) data, and if the data is byte (B) or word (W) oriented

If auto-addressing is enabled, the address list is recalculated each time it is accessed. This may take some time with large configurations.

The address list has two sorting methods:

1. Sort according to station address. This sorting method is most convenient to find the location of a particular slave (module) in the I/O buffers.

2. Sort according to data address. This sorting method is most convenient to find which slave's data is available at a given buffer location

Operation

Section 4-3

Addr.	Slave	Module name	Type	BYTE OFFSET	Туре	BYTE OFFSET
2	PRT1-COM	ROS16	Γ		QW	36
		ROS16			Q₩	38
		ID16 (MX)	IW	38	1	
		AD08	IW	40		
		DA04			lq₩	40
		DA04			QW	48
3	Valve terminal type 03-05	8 Byte Input	IB	66	1	
		8 Byte Output			QB	72
		2 Byte AS-i Outputs up to			QB	80
		1 Word Analogue Input	liw	74	1	
4	BK3100	KL3xx2 2 x 24In/24Out	IB	56	QB	56
		KL3xx2 2 x 24In/24Out	IB	60	QB	60
		32 Bit Digitale Outputs			QB	64
6	1470/75 + 8640	2 Byte Eingaenge	IB	64		
		4 Byte Ausgaenge			QB	68
8	ET 200B-24D1/8D0	1 Byte Out, 3 Byte In	IB	34	QB	34
10	PROFIBUS DP-32	AB-PDP-321/0	IB	32	QB	32
12	3G3FV PROFIBUS-DP	3G3FV	liw	0	lq₩	0
	lose S	ort according to data addre:			 	ation addresses

Sorted by station address.

Addr.	Slave	Module name	Туре	BYTE OFFSET	Туре	BYTE OFFSET
12	3G3FV PROFIBUS-DP	3G3FV	l₩	0	1	
10	PROFIBUS DP-32	AB-PDP-321/0	IB	32	1	
8	ET 200B-24D1/8D0	1 Byte Out, 3 Byte In	IB	34		
2	PRT1-COM	ID16 (MX)	IW	38		
2	PRT1-COM	AD08	IW	40		
4	BK3100	KL3xx2 2 x 24In/24Out	IB	56		
4	BK3100	KL3xx2 2 x 24In/24Out	IB	60		
6	1470/75 + 8640	2 Byte Eingaenge	IB	64		
3	Valve terminal type 03-05	8 Byte Input	IB	66		
3	Valve terminal type 03-05	1 Word Analogue Input	IW	74	1	
12	3G3FV PROFIBUS-DP	3G3FV			QW	0
10	PROFIBUS DP-32	AB-PDP-321/0			QB	32
8	ET 200B-24D1/8D0	1 Byte Out, 3 Byte In			QB	34
2	PRT1-COM	ROS16			Q₩	36
2	PRT1-COM	ROS16			QW	38
2	PRT1-COM	DA04			Q₩	40
2	PRT1-COM	DA04			Q₩	48
4	BK3100	KL3xx2 2 x 24In/24Out			QB	56
4	BK3100	KL3xx2 2 x 24In/24Out			QB	60
4	BK3100	32 Bit Digitale Outputs			QB	64

Sorted by data address.

If necessary, both lists can be scrolled with the cursor keys or page-up and page-down keys.

4-3-7 Bus parameters

The menu item 'Setup_Bus parameter' leads to a dialog box where the overall PROFIBUS-DP communication parameters can be set. In most cases, only the baud rate will need to be set to the required value.

Make sure that the selected baud rate is supported by all devices connected to the master. There is no verification by the configurator program.

Baud rate	1500	kBits/s 💌	Setup Time	1	t_bi
Slot Time	300	L_bit	GAP Actualization Factor	10	
Min. Station Delay Responder	11	t_bit	Max Retry Limit	1	
Max. Station Delay Responder	150	t_bit	Highest Station Address	126	
Quiet Time	0	t_bit	Poll Timeout	10	ms
© Auto_Clear Mode OFF			Target Rotation Time Target Rotation Time	12.1 18150	ms t_b
C Auto_Clear Mode DN			Data Control Time	356.1	ms
			Min Slave Interval	2.000	ms
			Watchdog control / TTR	1	

Baud Rate	Sets the communication speed for the master and all slaves which support auto baudrate detection. All standardised PRO-FIBUS-DP values from 9.6 kbit/s to 12 Mbit/s are supported by the C200HW-PRM21. A change of baud rate will update all parameters marked with a * to a value optimised for the actual configuration at the new baud rate.
*Slot Time (T _{s∟})	The maximum time the Master must wait for a transaction response.
*Station Delay Responder (T_{SDR})	The minimum and maximum allowed times for a slave to generate a reply frame.
*Quiet Time (T _{qui})	The time a transmitting station must wait after the end of a frame before enabling its receiver.
*Setup Time (T _{SET})	The time between an event and the necessary reaction.
GAP Actualisation Factor	GAP is defined as the range between this master and its successor in the logical token ring (i.e. in case more than one active station operates on the same bus).
	The master will periodically check if new active stations have been added between address 0 and HSA (Highest Station Address). If stations are detected, GAP is updated.
	The factor defines the checking period in multiples of the Target Rotation Time (T_{TR}). Allowed values are 1 to 100.
*Max. Retry Limit	Maximum number of retries by this master,

		if a station does not properly respond to a request .
	Highest Station Address (HSA)	Defines the maximum range of addresses in which this master periodically searches for newly added active stations. If multiple masters are to operate on the same bus, set HSA at least equal to the highest master address.
	Poll Timeout	The maximum time interval that this master station may need for the execution of a master-master function (respond to a DPM2 request).
	*Target Rotation Time (T _{TR})	The anticipated time for one token cycle, including allowances for high and low prior- ity transactions, errors and GAP mainte- nance. (set in bit times, value in ms is calculated)
	*Data Control Time	 The cycle time in which this master: 1. Updates its Data Transfer List, in which it keeps an overview of all slave states. 2. Indicates its operation mode to the associated DP slaves.
		Set to a value of at least 6 times Watchdog Control Time T_{WD} .
	Min. Slave Interval	The smallest allowed period of time between two slave poll cycles. This lower limit of this value is determined by the larg- est value of all Minimum Slave Interval val- ues as read from the GSD files of the con- figured slaves. This ensures that all slaves can handle the sequences of requests they receive from this master.
	Watchdog Control / TTR	The ratio (T_{WD}/T_{TR}) defines the watchdog control interval at all configured slaves as a multiple of the target rotation time. If a slave's watchdog is enabled, and it does not detect master activity for a period T_{WD} , it will set its outputs to fail-safe state.
	Auto_Clear Mode OFF/ON	Determines if the master will change from Operate to Clear mode if it detects that one or more slaves are not in data exchange mode.
A Caution		If Auto_Clear mode is ON, a single slave failure will thus reset the outputs of all active slaves.

It is highly recommended to access the bus parameter panel *after* all slaves have been configured. By changing the baud rate, all timing parameters will be optimised for the number and types of defined slaves. If the configuration is subsequently modified, select the chosen baud rate *again* to start a new parameter optimisation. If any bus parameter is modified manually, no automatic optimisation will take place until the baud rate is changed.

4-3-8 Download

No Upload	The PROFIBUS-DP configuration, defined off-line, needs to be downloaded into the C200HW-PRM21. Please note that uploading the configuration data from the unit is not possible, since detailed information concerning slaves and modules will not be saved in the unit. Therefore it is advised to save your work on disk before starting a download.
When to download	There are two situations in which a configuration download is allowed. The first situation is when on startup, the Unit has detected that a corrupted database is present in its non-volatile memory. In this case the RUN LED is flashing and the DP-ERR LED is ON. As soon as the download is started, the DP-ERR LED goes OFF and the READY LED will flash. When the download is successful and a valid database is detected, the initialisation of the unit will
	continue. The second situation is after initialisation is completed. This is when the RUN LED is ON. During the download, the READY LED will flash and the other PROFIBUS-related LEDs will be OFF. After completion of the download, the received database is checked. If it passes the check, the Unit is re-initialised; and the READY LED turns ON. If the database is invalid, the DP-ERR LED will be ON and the user needs to re-execute the download.
N	ote Do not start a download in another situation than described above. The download will most likely fail.
COM port selection	Before a download, make sure a serial port of the PC is connected to the CONF port of the Unit using a cable as specified in 2-1-4, 'Configurator Connector'. Select the COM port to be used in the menu 'Setup_Driver'. The selection will be stored when saving the configuration file to disk:

Driver				
DITCH				P.663
	Which driver			
Serial interfa	C.B.			
	C COM 2	O COM 3	O COM	4
	nk l	Cancel	1	
	<u> </u>	<u>-</u> 1000	<u>ل</u>	

Upon selecting 'Online_Download', the configurator will first perform a number of checks on the entered configuration data.

If any slave data is found to overlap with another slave or module, the download is aborted. An error message is displayed to indicate the first allocation problem that was encountered, e.g.:

Instruction					
Address conflict: input byte 16 (word 8) of the devices with the bus	address 2 and	3 are overlapping.		

Slave overlap

Debug mode

III CANCE	ction			
The (Jownlo	iad wa	as abc	rited
		nk I	1	

Use the address list viewer to locate the problem, and resolve the conflict by modifying the offset of one or more slaves.

When auto-addressing mode is selected, all slave offsets are recalculated before a download, and no allocation conflicts should occur. The calculated offsets can be verified in the address list.

The next check is on the selection of a serial communications port. If no port has been selected, the download cannot be performed.

Downloa	d				X
No settir	ng of the drivi	ers has been	i done. The	download is	aborted.
		IO	6		
		<u></u>	لأسأه		

If all checks have been passed successfully, a message is displayed:

ownloa	d	
?)	If the download is done during the bus operation, the communication between the master and the slaves is s Do you really want to download?	stoppe
×	Do you really want to download?	
	Mes No	

After confirmation, downloading the configuration data will take several seconds, depending on the size of the configuration. After the download, the C200HW-PRM21 will restart. If the unit does not respond correctly, the download will be aborted.

4-4 Debug mode

Configuration file	The C200HW-PRM21 configurator software allows the user to inspect the status of the unit and the assigned slaves online via the CONF port of the unit.
	In order to establish data communication with the unit, the correct configuration file must be open in the configurator. Immediately after a download this is automatically the case; if the unit has to be accessed for debugging in a later stage, the user must make sure that the correct file is opened before activating the debug function. The configuration file cannot be uploaded from the unit.
Functions	The debug function can be started via the menu command 'Online_Start Debugger'. A verification of the checksum in the unit will assure the validity of the configuration file. If the current configuration file differs from the configuration in the unit, the debug function cannot be started.

The Debugger provides the following functions:

- Display of master unit status.
- Display of PROFIBUS-DP network state.
- Display of each slave's state.
- Indication of slave diagnostics (standard + extended).
- Start / stop PROFIBUS-DP communication

4-4-1 Master Diagnostics

Master Status

P fil		22		
FΜ		81	n.	UI)
		i0	Ý	
		÷		
		a, e		
			20	
			2	
		01	٩.,	
			20	
		16	•	
			<u> </u>	
	I	11	1	
	,	i Ti	(a	
		•••		
		١F)	۲	
	C	18	11.	
	ø	CI.	8	
			****	¥

The top left of the screen shows the unit's operating status.

'RDY' System has initialised without error. 'RUN' All tasks are initialised without error. 'COM' Bus communication is active. The lower indicators show the state of the PROFIBUS-DP. 'OPT' The master is in the state 'Operate' 'CLR' The master is in the state 'Clear'. 'STP' The master is in the state 'Stop'. 'OFF' The master is in the state 'Off-line'. 'CTRL' A parameter error has occurred. 'ACLR' The master is in the state 'Auto Clear'.

Master Diagnostic

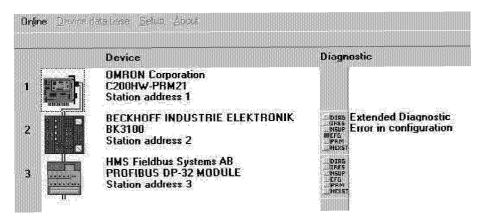
Diagnostic information concerning the PROFIBUS-DP master functions can be accessed by double-clicking the display row of the master unit in debug mode. Information is displayed as below:

☑ No process data ☑ Run time or init e		
Location of error	03	hex
Error event	11	hex
Bus short circuit	detected	hav
 Heavy bus error of Bus short circuit Counter of bus 		hex
Bus short circuit	detected 0079	hex
Eus short circuit Counter of bus	detected 0079 ted	hex

'Location of error' and 'Error event' display the same information as

Section 4-4

status word IR n+3 in the PLC.


'Master main state' indicates the same as the upper 2 bits of status word IR n+2, i.e.:

- C0 = Operate
- 80 = Clear
- 40 = Stop
- 00 = Off-line

4-4-2 Slave Diagnostics

Slave Status

In debug mode, the bus configuration display shows a status overview of all configured devices:

The slave status is indicated by the colour of the slave's image.

Green Normal data exchange with this slave.

zero.

Red Slave has diagnostic information or the master couldn't find this slave on the bus, i.e. there is no data exchange with this slave.

On the right of the slave description, information about each slave's state is indicated. Each slave has six indicators, plus a text display area:

'DIAG' Diagnostics; If the slave sets this bit, the master is requested to collect diagnostic information from the slave. 'IRES' Invalid response; This bit is set by the master upon receiving an invalid answer from the slave. The slave sets this bit to zero. 'NSUP' Not supported; This bit is set by the slave, when a function is called which is not supported by the slave. 'CFG' Configuration fault; This bit is set by the slave, when its configuration data does not match the master's data. 'PRM' Parameter fault: This bit is set by the slave, when the last parameter telegram has an error, for example wrong Ident_Number, invalid parameter. 'NEXST' Station non-existent; This bit is set by the master, when this slave does not respond. If this bit is set, the diagnostic bits holds the state of the last diagnostic information, or the initial values. The slave sets this bit to

Debug mode

Section 4-4

Slave Diagnostic

If one of the slave's indicators is set, a double click with the mouse in the last column calls up more detailed diagnostic information. Slave diagnostics are displayed as defined in EN 50170, paragraph 9.3.1.

gnostic station address: 2	
Stationstatus_1	Stationstatus_2
Diag. Master_Lock	🗖 Diag. Deactivated
🗖 Diag. Param_Fault	🗖 Diag. Sync_Mode
🗖 Diag. Invalid_Slave_Response	Diag. Freeze_Mode
Diag. Not_Supported	🗖 Diag. WD_ON
🗵 Diag. Ext_Diag	🗂 Diag. Stat_Diag
🕱 Diag Cfg_Fault	🕅 Diag Prm_Req
🗵 Diag. Station_Not_Ready	Stationstatus_3
Diag. Station_Non_Existent	Diag. Ext_Diag_Overflow
Diag. Master_Add 255	Ident code BECE
<u>O</u> k	Extended Diagnostic

'Diag.Master_Lock'	The slave has been parameterised by an other master.
'Diag.Param_Fault'	This bit is set by the slave, when the last parameter telegram has an error, for ex- ample wrong length, wrong Ident_Number, invalid parameter.
'Diag.Invalid_Slave_Response'	This bit is set by the master, when the master received an invalid answer from the slave. The slave sets this bit to zero.
'Diag.Not_Supported'	This bit is set by the slave, when a function should be performed which is not supported by the slave.
'Diag.Ext_Diag'	This bit is set by the DP-slave. If the bit is set, then there is diagnostic information in the slave-specific diagnostic area (Ex- tended Diagnostic).
'Diag_Cfg_Fault'	This bit is set by the slave, when the configuration data does not match those in the master.
'Diag.Station_Not_Ready'	This bit is set by the DP-slave, when the DP-slave is not ready for data exchange.
'Diag.Station_Non_Existent'	This bit is set by the master, when this slave is not reachable on the bus. If this bit is set, the diagnostic bits hold the state of the last diagnostic information or the initial values. The slave sets this bit to zero.

'Diag.Deactivated'	This bit is set by the master, when the DP- slave in the DP-slave parameter set is not marked as active and is taken out of the cyclic processing. The DP-slave always sets this bit to zero.
'Diag.Sync_Mode'	This bit is set by the slave, when it has received the sync-control command.
'Diag.Freeeze_Mode'	This bit is set by the DP-slave, when it has received the freeze-control command.
'Diag.WD_ON'	This bit is set by the DP-slave, when its watchdog control is active.
'Diag.Stat_Diag'	If the slave sets this bit, the master has to collect diagnostic information as long as this bit active. The slave sets this bit for ex- ample when there is no valid user data. If the bit DIAG.PRM_REQ and the bit DIAG.STAT_DIAG are set, the bit DIAG.PRM_REQ has the higher priority.
'Diag_Prm_Req'	If the DP-slave sets this bit, a new parameterisation and a new configuration has to be performed. This bit is set as long as no new parameterisation has been per- formed.
'Diag.Ext_Diag_Overflow'	If this bit is set, there are more diagnostic informations than given in EXT_DIAG_DATA. The DP-slave set this bit for example if there is more channel in- formation than the slave can hold in its send buffer; or the DP-master sets this bit, when the DP-slave sends more diagnostic information than the DP-master can hold in its diagnostic buffer.
'Diag.Master_Add'	In this octet the address of the DP-master is entered, which has done the parameter- isation of the this slave. If the DP-salve is not parameterised by any DP-master, the DP-slave puts the address 255 (FF) into this octet.
'Ident code'	The identifier of the manufacturer is reserved for every DP participant. This identifier can be used an exact identification of the slave.

If the bit 'Diag.Ext_Diag' is set, the slave has more diagnostics and the button 'extended diagnostic' is available. Extended diagnostics will be displayed in an separate window.

4-4-3 Extended diagnostics

Section 4-4

Debug	mode
-------	------

Number of errors	2						-	C	une	nt e	:1101		1						
Kind of Diagnostic	De	vic	e re	elat	ed														
Error output	Feh	nler	auf	Bus	skoj	ople	I.												
Errortype																			
Number of Ident									In/() utr	out								
								C	har	nell	уре								
Channelnumber							10	0.0	0.0	0.0	0.0	30	04	83	0.0	0.0	00	क्राय	
Channelnumber Hexdump	0E	05	00	FF	BE	CE	12							ci (2);			vv	EE	

The 'Extended Slave diagnostic' panel can display three types of diagnostic information, specific to the slave:

- Device related diagnostics.
- Identifier related (module) diagnostics.
- Channel related diagnostics.

If multiple messages are available, they can be selected for display using the scroll bar on the right.

The displayed Error Output message and further information are encoded in the slave's GSD file. The meaning of the displayed messages is slave dependent, and will be described in the slave's documentation.

The Hexdump area displays the unprocessed diagnostic data in hexadecimal form, as received from the slave.

4-4-4 Start / stop communication

In debug mode, the menu item 'Online' will show the option 'Stop communication' or 'Start communication'. In normal operation, the function of this menu item is overruled by PLC control bit IR n.01 and should not be used (see also 5-3-1, *Control words, DP communication inhibit*).

Caution Start / Stop communication should *only* be used if the Unit is *not* set to Run mode by the PLC, i.e. when IR n.00 is OFF.

'Stop communication' will change the network state from 'Operate' to 'Clear' to 'Stop'. Therefore all remote outputs will be reset to 0.

'Start communication' will change the network state from 'Stop' to 'Operate'.

PLC Interface

This section describes the interface with the user via the PLC system. This includes Unit settings to configure the Unit and the control / status area.

5-1 Unit Settings	
5-1-1 I/O Data Mapping	
5-1-2 Slave Status Area Mapping	
5-1-3 Data Exchange Method	
5-1-4 Fatal PLC error handling	
5-2 Input / Output Mailbox	
5-3 Control and status area	
5-3-1 Control words	61
5-3-2 Status words	
5-4 LEDs	

5-1 Unit Settings

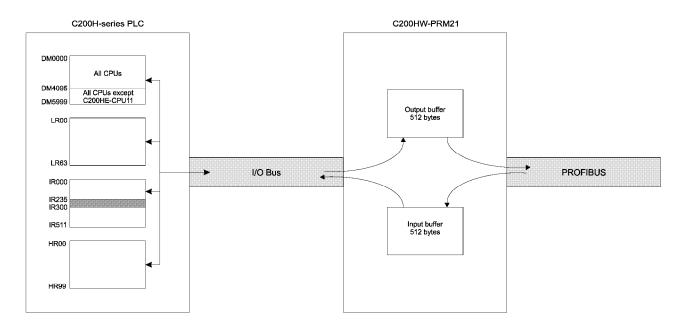
This Special I/O Unit is configurable with settings made in a dedicated DM area. The assigned DM area depends on the Unit number setting.

Unit number	DM area*	
0	DM1000 ~ DM1099	
1	DM1100 ~ DM1199	
2	DM1200 ~ DM1299	
3	DM1300 ~ DM1399	
4	DM1400 ~ DM1499	All PLC models
5	DM1500 ~ DM1599	
6	DM1600 ~ DM1699	
7	DM1700 ~ DM1799	
8	DM1800 ~ DM1899	
9	DM1900 ~ DM1999	
Α	DM2000 ~ DM2099	
В	DM2100 ~ DM2199	All PLC models except:
С	DM2200 ~ DM2299	C200HS, C200HE,
D	DM2300 ~ DM2399	C200HG-CPU3⊂-E/CPU4⊂-E,
E	DM2400 ~ DM2499	C200HX-CPU3⊂-E/CPU4⊂-E
F	DM2500 ~ DM2599	

* Alternatively DM7000 ~ DM8599, selected by PLC setup of C200H..: DM6602 ≠ 0000 (see Operation Manual of CPU unit)

The first word in the DM area allocated to the unit will be indicated by **DM m**, the last word by **DM m+99**. Not all 100 DM words are used by the C200HW-PRM21

The Unit settings determine the areas and methods for data exchange between the PLC CPU and the C200HW-PRM21.

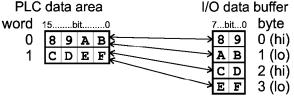

Data entered in the Unit settings area is only transferred to the unit during initialisation, i.e. at power ON and at Special I/O Unit restart.

Note The Unit operates in default mode when all Unit settings are set to zero.

5-1-1 I/O Data Mapping

Data flow	The figure below shows the flow of remote I/O data in the PLC system. It is possible to map the I/O data to the DM, LR, IR and HR areas of the PLC memory. Up to two input areas and two output areas may be assigned.
I/O refresh	Output data is transferred via the bus on the Backplane (I/O Bus) to the output buffer of the Unit. At certain time intervals this data is transmitted to the slaves over PROFIBUS. Slave input data coming from PROFIBUS is first stored in the input buffer of the Unit. At certain times, this data is transferred to the memory of the PLC. The exchange of data via the I/O Bus occurs during an I/O refresh.
	By default, I/O refreshes are executed at the end of each PLC program cycle, but can also be triggered by the IORF instruction.

Unit Settings


User configurable The mapping of the PROFIBUS-DP slaves onto the buffers of the Unit is defined with the configurator described in section 4. The mapping between the I/O data buffers of the Unit and the PLC memory is user configurable via the settings in data memory.

Maximum I/O data For C200HS, the maximum number of mapped I/O data is 80 words and for C200HE, C200HG, and C200HX, the maximum is set to 300 words. If the user-defined mapping exceeds these values, the mapping is ignored (no data will be exchanged) and a fatal error is indicated in IR n+2 (see section 5-3) and the ERR LED is turned ON.

The maximum amount of data mapped per single transfer block is 100 words.

Data representation

In the I/O data buffers, the high bytes of PLC data always occupy even addresses, the low bytes occupy odd addresses (Motorola format).

The representation of PROFIBUS-DP slave data in the I/O data buffer depends on the specifications of the slave. Please consult the slave manufacturers' documentation. In rare cases it may be necessary to modify the data representation either at the slave side, or in the PLC program.

Setting values in BCD
 Except for the definition of the start address in the PLC CPU, all values are in BCD. To be able to distinguish between start addresses in different PLC memory areas, the first digit of the 'start address' indicates the PLC memory area, the following three digits indicate the address in the PLC memory area in BCD format.
 Words vs. Bytes
 Note that data allocation in the PLC memory is in WORD units, whereas the allocation in the Unit's buffers is in BYTE units (1 word = 2 bytes). The start address in an I/O data buffer area must always be even. Odd-valued entries will generate a setting error.

DM word	Value	Meaning	
m	Number of out	Number of output data areas	
	0000	Default mapping	
		C200HS:	
		PLC addresses IR050 ~ IR081 are mapped to Unit output buffer bytes 000 ~ 063	
		C200HE,C200HG,C200HX:	
		PLC addresses IR050 ~ IR099 are mapped to Unit output buffer bytes 000 ~ 099	
	0001	One user-defined data output area	
	0002	Two user-defined data output areas	
	other	Default mapping (see value 0000)	
m+1	Output area 1 : start address in the output buffer		
	0000 ~ 0510	Byte 000 ~ 510 (even) in output buffer of the Unit	
	other	Setting error *1, output area is ignored	
m+2	Output area 1 : start address in the CPU		
	0000 ~ 4095	DM0000 ~ DM4095 (C200HE-CPU11)	
	0000 ~ 5999	DM0000 ~ DM5999 (all other CPUs)	
	A000 ~ A235	IR000 ~ IR235	
	A300 ~ A511	IR300 ~ IR511	
	B000 ~ B099	HR00 ~ HR99	
	C000 ~ C063	LR00 ~ LR63	
	other	Setting error *1, output area is ignored	
m+3	Output area 1 : size		
	0000 ~ 0100	0000 ~ 0100 words to be transferred from PLC to Unit output buffer *2	
	other	Setting error *1, output area is ignored	
m+4	see m+1	Output area 2 : start address in the output buffer	
m+5	see m+2	Output area 2 : start address in the CPU	
m+6	see m+3	Output area 2 : size	

continued \rightarrow

DM word	Value	Meaning
m+7	Number of input data areas	
	0000	Default mapping
		C200HS:
		Unit input buffer bytes 000 ~ 063 are mapped to PLC addresses IR350 ~ IR381
		C200HE,C200HG,C200HX:
		Unit input buffer bytes 000 ~ 099 are mapped to PLC addresses IR350 ~ IR399
	0001	One user-defined data input area
	0002	Two user-defined data input areas
	other	Default mapping (see value 0000)
m+8	Input area 1 : start address in the input buffer	
	0000 ~ 0510	Byte 000 ~ 510 (even) in input buffer of the Unit
	other	Setting error *1, input area is ignored
m+9	Input area 1 : start address in the CPU	
	0000 ~ 4095	DM0000 ~ DM4095 (C200HE-CPU11)
	0000 ~ 5999	DM0000 ~ DM5999 (all other CPUs)
	A000 ~ A235	IR000 ~ IR235
	A300 ~ A511	IR300 ~ IR511
	B000 ~ B099	HR00 ~ HR99
	C000 ~ C063	LR00 ~ LR63
	other	Setting error *1, input area is ignored
m+10	Input area 1 : size	
	0000 ~ 0100	000 ~ 100 words to be transferred from Unit input buffer to PLC $^{\ast 2}$
	other	Setting error *1, input area is ignored
m+11	see m+8	Input area 2 : start address in the input buffer
m+12	see m+9	Input area 2 : start address in the CPU
m+13	see m+10	Input area 2 : size

*1 Setting errors are indicated in IR n+2 (see section 5-3) and the ERR LED will be flashing to indicate a non-fatal error.

- *2 If the specified number of words would make the area exceed the boundaries of the available buffer, DM, LR, IR or HR areas, the actual number of transferred words will be limited as to remain within all of these boundaries. This setting error is indicated in IR n+2 (see section 5-3) and the ERR LED will be flashing to indicate a non-fatal error.
- **Notes** The Unit does not check the validity of the contents of any PLC data area, from which output data is to be transferred. Any data present in the area will be transferred to the output buffer of the Unit.
 - If multiple fieldbus masters (e.g. PROFIBUS-DP, CompoBus/D, SYSMAC BUS) are mounted on the same PLC system, only one of them can be used in default mapping mode. The Unit does not check if the mapped PLC input area is in use by other Units. If so, this Unit's data may overwrite another Unit's data, or vice versa.
 - If the settings cause two destination areas to overlap, the data of the higher number area will overwrite the lower. This practice is to be avoided by the user.
- **Example I/O data mapping** Below is an example of user-defined I/O data mapping. The unit number is set to 0, so the settings start at DM word 1000. The example defines two

output areas and one input area.

DM word	Value	Meaning
1000	0002	Two output areas
1001	0000	Write to output buffer of Unit starting at address 000
1002	B050	Read data from PLC starting at HR50
1003	0020	Transfer 20 words of output data
1004	0520	Write to output buffer of Unit starting at address 520
1005	C000	Read data from PLC starting at LR00
1006	0050	Transfer 50 words of output data
1007	0001	One input area
1008	0400	Read data from input buffer of Unit starting at address 400
1009	A500	Write data to PLC starting at address IR500
1010	0100	Transfer 100 words of input data

The first output area is correctly defined, all values are in range.

The second output area has an incorrect value for the start address in the output buffer of the Unit. This output area will not be mapped; the output data will not be transferred to the buffer. This setting error is indicated in IR n+2 (see section 5-3) and the ERR LED will be flashing.

Also the input area definition causes a setting error. The specified number of words to be transferred crosses the boundaries of both the available IR area and the input buffer area. The available input buffer area is 112 bytes ($400 \sim 511$) and the available IR area is 12 words (IR500~IR511). The number of input words that will be transferred is therefore limited to 12 words = 24 bytes (the lesser of the two values). This is also a setting error which will be indicated in the same IR word.

5-1-2 Slave Status Area Mapping

DM m+14 and DM m+15 define the PLC data area where the 16 words of slave status information are to be mapped. By default (i.e. both settings are 0) the Unit uses IR200 ~ IR215, an IR area originally reserved for SYSMAC BUS slaves. Therefore, if the Unit is used in combination with a SYSMAC BUS remote master unit, the default mode should not be used.

DM word	Value	Meaning
m+14	Slave status data mapping mode	
	0001	User defined mapping defined by DM m+15
	other	Default mapping to IR200 ~ IR215
m+15	Start address in user-defined mapping mode (Area size = 16 words)	
	0000 ~ 4080	DM0000 ~ DM4080 (C200HE-CPU11)
	0000 ~ 5984	DM0000 ~ DM5984 (all other CPUs)
	A000 ~ A220	IR000 ~ IR220
	A300 ~ A496	IR300 ~ IR496
	B000 ~ A084	HR00 ~ HR84
	C000 ~ C048	LR00 ~ LR48
	other	Default mapping to IR200 ~ IR215

The user is to verify that the assigned area is not yet allocated to other Units.

5-1-3 Data Exchange Method

DM m+16 defines the data exchange procedure between the Unit and the PLC. The two possible exchange methods are:

- 1. Asynchronous: the fieldbus cycles are triggered independently of the PLC cycle and therefore the fieldbus cycles run asynchronous with the PLC cycle. This method provides optimal I/O response time when the PLC cycle time is at least twice the fieldbus cycle time.
- 2. Synchronous: The fieldbus cycles are triggered at the end of an I/O refresh and therefore the fieldbus cycle is synchronised with the PLC cycle. If the fieldbus cycle time is greater than the PLC program execution time, the next fieldbus cycle will not be triggered until the completion of the next I/O refresh. This method ensures synchronisation between PLC cycle and fieldbus cycle.

These exchange methods are described in more detail in section 3-2.

DM word	Value	Meaning
m+16	Data exchange procedure	
	0000	Default, fieldbus cycle asynchronous with PLC cycle
	other	Fieldbus cycle synchronous with PLC cycle

Note In synchronous mode, with the slave watchdog enabled (configurable), the PLC cycle time should be less than the set watchdog time (configurable) otherwise the watchdog of the slave will expire. If the PLC cycle time can not be reduced, the watchdog time of the slave must be set to a larger value, or the asynchronous mode must be used.

5-1-4 Fatal PLC error handling

DM m+17 defines the handling of fatal PLC errors. The Unit will react on a falling edge of Run bit IR n.00. The Run bit will turn OFF in case of:

- a fatal error in the PLC system, e.g. Memory error, I/O bus errors.
- a system FALS error.
- a user-generated FALS error.
- a PLC CPU mode change to/from Program mode.

If any of these situations occur, the remote outputs will be switched to a userdefined state. If the data exchange mode (selected with DM m+16) is asynchronous, DM m+17 allows the user to choose between:

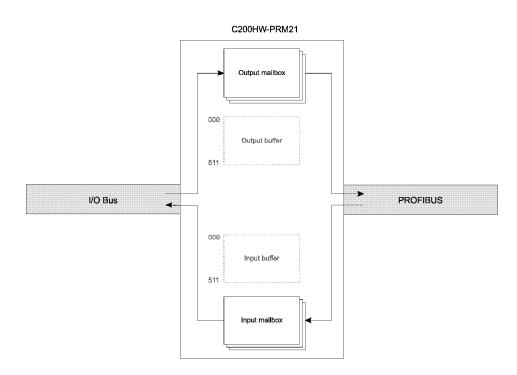
1. CLEAR outputs:

The output data in the Output buffer is cleared and transmitted to the slaves (if communication is not inhibited).

- 2. HOLD outputs
- The output data in the Output buffer is not transmitted to the slaves anymore; the outputs of the slaves remain the previous state.

DM word	Value	Meaning
m+17	Fatal PLC error handling (asynchronous data exchange mode)	
	0000	CLEAR outputs
	other	HOLD outputs

This selection is ONLY valid when the Unit operates in the asynchronous data exchange mode (i.e. DM m+16 = 0000). Even if program execution stops, fieldbus communication is maintained by the Unit, independent of the PLC cycle.


In synchronous data exchange mode, when program execution stops, no fieldbus cycles are triggered. Therefore the remote output status cannot be maintained. The status of PROFIBUS-DP will automatically change to CLEAR, followed by STOP. All outputs will be cleared automatically, even if DM m+17 specifies to hold the outputs!

Note The Unit is not able to distinguish between a user-controlled reset of the IR n.00 bit and a reset due to a fatal PLC error. Both are handled in the same way. Be aware that changing the to/from Program mode will also reset IR n.00. In Program mode, it is possible to force IR n.00 to the ON state, so that remote I/O can be operated for debugging and commissioning.

5-2 Input / Output Mailbox

PROFIBUS-DP specific commands

Beside the input and output buffer, the Unit also contains an input mailbox and an output mailbox. PROFIBUS-DP specific commands can be transferred from the CPU to the output mailbox. The response to the command placed in the output mailbox will be placed in the input mailbox. This response can then be read by to the CPU.

There are two ways to transfer a command to the output mailbox.

- 1. Issuing a command by IOWR instruction in the PLC program. The contents of the data area specified by the IOWR instruction are transferred to the output mailbox.
- 2. Via the control words. The most common PROFIBUS-DP control commands can be selected by activating the corresponding bit in the control word IR n. The Unit will interpret this control word and place the corresponding command in the output mailbox.

Responses to these common control commands are automatically removed from the input mailbox. These responses contain no valuable information for the user.

Responses to other commands - issued via IOWR instructions - should be read from the input mailbox with the IORD instruction. If this is omitted, the input mailbox buffer will fill up. When this is the case, the output mailbox will be disabled; it will not be possible to transfer commands to the output mailbox anymore. Once the input mailbox is emptied again, the outstanding commands in the output mailbox will be processed by the unit.

Details about the IOWR and IORD instructions are given in section 6.

Note The input mailbox can also be cleared using control word IR n. The status of the mailboxes is indicated in the status word IR n+2.

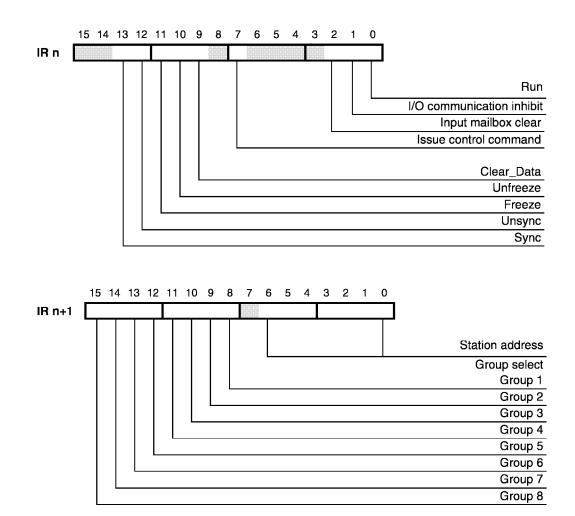
5-3 Control and status area

After initialisation of the unit (RUN LED is ON), the control and status words are exchanged between the PLC and the Unit during each I/O refresh. The mapping of the control words and unit status words depends on the Machine number set by the rotary switch at the front of the Unit.

Unit number	IR area	
0	IR100 ~ IR104	
1	IR110 ~ IR114	
2	IR120 ~ IR124	
3	IR130 ~ IR134	
4	IR140 ~ IR144	All PLC models
5	IR150 ~ IR154	
6	IR160 ~ IR164	
7	IR170 ~ IR174	
8	IR180 ~ IR184	
9	IR190 ~ IR194	
A	IR400 ~ IR404	
В	IR410 ~ IR414	All PLC models except:
С	IR420 ~ IR424	C200HS, C200HE,
D	IR430 ~ IR434	C200HG-CPU3⊂-E/CPU4⊂-E,
E	IR440 ~ IR444	C200HX-CPU3⊂-E/CPU4⊂-E
F	IR450 ~ IR454	

The first word in the IR area allocated to the Unit will be indicated by **IR n**, the last word by **IR n+4**.

The first two words are control words and are sent *to* the Unit. The next three words are status words and are read *from* the Unit.


The mapping of the slave status words that are read from the Unit is defined by the Unit settings (see section 5-1-2).

Note During a configuration download or when a fatal error occurs in the unit, the control words IR n and IR n+1 will not be processed.

5-3-1 Control words

The two control words, IR n and IR n+1, are shown below.

Any bits of the control words which are not assigned to a specific function, can freely be used as work bits. These bits will be ignored by the C200HW-PRM21.

IR n.00 Run

- 0: No exchange of I/O data between PLC and remote I/O, and no processing of mailbox commands will take place. A transition from 1 to 0 will clear or hold the outputs depending on the value set in DM m+17. Holding remote outputs is only available in asynchronous data exchange mode.
- 1: Unit in normal operation; exchange of I/O data with PLC, and processing of mailbox commands are enabled.

The purpose of this bit is to allow detection of a fatal PLC error. A fatal PLC error will always reset this bit. The Unit will detect this $1 \rightarrow 0$ transition, and will perform the action specified in the Unit settings (see section 5-1-4).

Note: It is recommended to always set this bit ON during PLC program execution. In asynchronous mode, bit IR n.01 can be used to control PROFIBUS-DP communication.

IR n.01 DP communication inhibit

- 0: DP communication is enabled.
- 1: DP communication is disabled. A transition from 0 to 1 changes the network state from 'Operate' via 'Clear' to 'Stop'. All remote outputs will therefore be reset.

Data in the input buffer of the Unit will no longer be updated and transferred to the PLC anymore (I/O refresh time will decrease). The PLC's output data however, is still transferred to the output buffer of the Unit. This ensures that the output buffer contains valid output data at the moment the communication is enabled again.

When DP communication is disabled, the output mailbox is disabled as well. It is possible to send mailbox commands to the Unit, but they are not transferred to the output mailbox. Because no commands are put in the output mailbox, no responses will be received in the input mailbox.

IR n.02 Input mailbox clear

- 0: No specific action.
- 1: Each I/O refresh, one unprocessed response (if available) is removed from the input mailbox.

IR n.03~06 Not used by C200HW-PRM21.

IR n.07 Issue control command

- 0: No control commands are issued.
- 1: Each I/O refresh, one control command is issued.

The control command is specified by IR n.09~13, and the destination is specified by IR n+1. No control command is transferred to the output mailbox if either the RUN-bit (IR n.00) is not set or if the communication is inhibited (IR n.01) or the output mailbox is not ready to receive a command due to a full input mailbox. In the next PLC cycle, IR n+2.11 will indicate whether the control command was accepted or not.

IR n.08 Not used by C200HW-PRM21.

Bit	Command	Meaning
09	Clear_Data	Clear output data
10	Unfreeze	Unfreeze input data
11	Freeze	Freeze input data
12	Unsync	Unsynchronise output data
13	Sync	Synchronise output data

IR n.09~13 Specification of the PROFIBUS-DP control command.

When activated simultaneously, Unsync has priority over Sync, and Unfreeze has priority over Freeze.

The Clear_Data command will always clear the output data, whether the Freeze command is activated or not.

Note The control commands 'Freeze' / 'Sync' are overruled by a reset

of the slave. The control command has to be issued again after the reset to have the slave working in the desired mode.

IR n.14~15 Not used by C200HW-PRM21.

IR n+1 Group select and Station address

> PROFIBUS-DP provides multi-peer communication (broadcast and multicast).

> To enable multicast communication, each slave can be assigned to one or more groups (See 4-3-5, 'Group membership'). Up to eight groups can be defined (1~8). A target group for a multicast command is selected by setting the corresponding bit in IR n+1.

> A specific slave within a group is selected by specifying its address in the Station address area (hexadecimal). When the Station address value is set to 7Fh, all slaves assigned to the group(s) are selected.

> Entering the value 00h in the Group select area of IR n+1 selects all groups. Therefore any single slave can be addressed by entering 00h for Group select and the station address of the slave for Station address. This also enables to address a slave that has not been assigned to a certain group.

Broadcast A broadcast command to all slaves is generated by entering the values 00h for Group Select and 7Fh for Station Address.

> Example: The first table shows an example of the assignment of the slaves to groups as made with the configurator.

Stations	Group assignment
02h ~ 20h	no group
21h ~ 40h	group 1
41h ~ 60h	group 2
61h ~ 80h	group 1 and group 2

The second table shows some examples of settings for Group select and Station address, and the resulting selection of slaves that will be targeted by a control command.

Group select	Station address	Selection
00h	15h	slave 15h
01h	75h	slave 75h
01h	15h	-
03h	7Fh	slave 21h ~ 80h
00h	7Fh	slave 02h ~ 80h

Sync / Freeze control

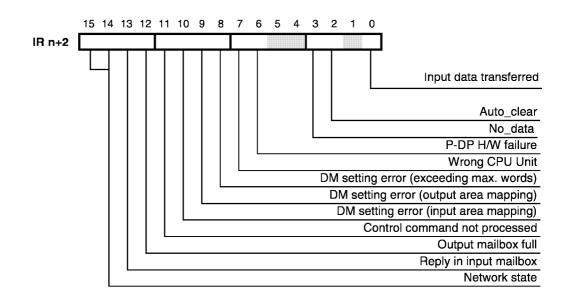
The purpose of the control commands Sync and Freeze is to be able to synchronise the outputs and inputs of the slaves.

Multicast

The data exchange between the master and slaves is based upon the polling technique. This means that the exchange of data between the slave and the master does not occur at the same time for all slaves.

The outputs of the slaves can be synchronised by issuing Sync commands. This function is activated after the first Sync command is sent to the slaves. After activation of this function, the output data sent by the Master does not get through to the output. It is stored in a buffer. The data in the buffer is not transferred to the output until another Sync command is issued. Multicasting a Sync command results in a update of the outputs of all corresponding slaves at the same time. This function can be disabled again by sending an Unsync command.

The Freeze and Unfreeze command work in a similar way. They are meant for synchronising the input data. After activating the function, by sending a Freeze command, the input data is not updated until another Freeze command is sent.


5-3-2 Status words

The Unit provides 19 words of status information.

Three words (IR n+2 ~ IR n+4) show the status of the Unit (system status) and 16 additional words show the status of all slaves. System status information is transferred in each I/O refresh, irrespective of the state of the fieldbus system. The slave status information is also always transferred, but is not valid when the PROFIBUS-DP bus communication does not function properly or during the download of a configuration. In that case the slave status information bits will be reset to 0.

System status

The three words that indicate the system status are shown below.

Control and status area

Section 5-3 15 14 13 12 11 10 9 8 7 6 5 4 3 Ω 2 1 IR n+3 Error number Station address 15 14 13 12 11 10 9 8 7 6 54 3 2 1 0 IR n+4 Message length (001~128)

IR n+2.00 Input data transferred

0: No input data has been transferred to the mapped PLC data area(s) during the last I/O refresh.

Unit number (0 ~ F)

1: Input data has been transferred to the mapped PLC data area(s) during the last I/O refresh.

The Unit does not always transfer input data to the mapped PLC data area(s). If the Unit cannot provide updated input data during an I/O refresh, no data will be transferred. This will typically occur if the fieldbus cycle time is larger than the PLC cycle time, or if the DP communication has been inhibited.

IR n+2.01 Not used by C200HW-PRM21.

IR n+2.02 Auto_clear (PROFIBUS-DP status bit).

- 0: Not in Auto_clear mode. This bit is also cleared during a database download or a P-DP H/W failure is detected (IR n+2.06 is set).
- 1: The master branched into Auto_clear mode, because of a remote node error.

The master will only branch into Auto_clear mode when this has been enabled in the configuration (see 4-3-7, Bus parameters). In Auto_clear mode, the network state bits indicate Stop, and the DP-ERR LED is flashing. IR n+3 will indicate more details about the cause of the error.

To recover from Auto_clear mode, the C200HW-PRM21 must be restarted (Power OFF / ON or restart bit in AR01 / SR281).

- IR n+2.03 No_data (PROFIBUS-DP status bit).
 - 0: All remote nodes are in data exchange mode. This bit is also cleared during a database download or when a P-DP H/W failure is detected (IR n+2.06 is set).
 - 1: At least one remote node is not in the data exchange mode or reports a fatal error.

The DP-ERR LED is FLASHING to indicate this error. IR n+3 contains more details about the cause.

IR n+2.04 Not used by C200HW-PRM21. IR n+2.05

IR n+2.06 P-DP H/W failure

- 0: No error
 - Malfunctioning of the PROFIBUS-DP hardware. The ERR LED is ON to indicate a fatal error, no communication over PROFIBUS.

IR n+2.07 Wrong CPU Unit.

- 0: No error
- 1: The Unit is mounted to a PLC type which does not support the C200HW-PRM21.

The ERR LED is ON to indicate a fatal error, no communication over PROFIBUS.

IR n+2.08 DM setting error (exceeding maximum number of words).

- 0: No error
- The input/output area mapping, defined by the Unit's DM settings, exceeds the maximum allowed number of words (300 words for C200Hα series, 80 words for C200HS).
 The ERR LED is ON to indicate a fatal error, no communication over PROFIBUS.

IR n+2.09 DM setting error (output area mapping)

- 0: No error
- 1: There is an error in the output area mapping. The mapping contains an incorrect value for either:
 - the start address in the output buffer in the Master,
 - the start address of the output area(s) in the PLC.
 - or the size of the output area(s).

or the specified size makes the area(s) exceed the boundaries of available buffer, DM, LR, IR or HR areas.

The ERR LED is FLASHING to indicate a non-fatal error; no data is transferred from the output area(s) afflicted by the setting error(s).

IR n+2.10 DM setting error (input area mapping)

- 0: No error
- 1: There is an error in the input area mapping.

The DM settings contain an incorrect value for either:

- the start address in the input buffer in the Master,
- the start address of the input area(s) in the PLC,
- or the size of the input area(s),

or the specified size makes the area(s) exceed the boundaries of available buffer, DM, LR, IR or HR areas.

The ERR LED is FLASHING to indicate a non-fatal error; no data is transferred from the output area(s) afflicted by the setting error(s).

IR n+2.11 Control command not processed.

This bit is related to control commands sent via the control words IR n and IR n+1, not the one sent via IOWR instruction.

- 0: The output mailbox was able to receive and process the previously issued control command message.
- 1: The issued control command could not be processed because the output mailbox was full (see section 5-2) *or* the RUN-bit was not set *or* the bus communication was inhibited.

This bit should be checked in the PLC cycle following the activation of a control command.

IR n+2.12 Output mailbox full

- 0: The output mailbox is able to receive (and process) a message. This message can be a control command issued via IR n or any PROFIBUS command by using the IOWR instruction.
- 1: The output mailbox is full and cannot receive new messages (see section 5-2).

IR n+2.13 Reply in input mailbox

- 0: The input mailbox does not contain a response message to a command message issued with IOWR.
- 1: The input mailbox contains a response message to a command message issued with IOWR.

The PLC program should read this message from the input mailbox with IORD, or clear the message by setting IR n.02. If multiple command messages are issued without reading the responses, the input mailbox will fill up, making it impossible to send out further command messages (see section 5-2).

IR n+4 contains the source information for the IORD instruction.

IR n+2.14	Network state (PROFIBUS-DP status bits).
IR n+2.15	

IR n+2.15	IR n+2.14	Network state
0	0	Off-line Communication with all DP participants is stopped.
0	1	Stop Only communication with DP-Master (class 2) is possible.
1	0	Clear The master tries to set parameters, check configuration and perform data exchange with its associated DP-slaves; the slaves' inputs are transferred to the input buffer, their outputs are cleared.
1	1	Operate The master exchanges data with the assigned DP-slaves.

Note

The network state will be Offline when a P-DP H/W failure is detected (IR n+2.06 is ON) or when a database download is in progress.

IR n+3 This IR word contains information about the PROFIBUS-DP error status.

IR n+3 will indicate the error type and the station address of the station that is in error. If more than one station is in error, it will report on the first station that is detected to be in error. After removing the cause of the error it will report on the next station that was found in error. If the error is in the master itself, the Station address will show the value FFh.

The following table lists the error types.

Station address	Error number	Cause	Action
any	00h	No errors	
≠FFh	03h	Function in slave is not activated	Check if the slave is conform PROFIBUS-DP norm and that the correct GSD files are used
	11h	No response of the slave	Check the bus cable and the station address of the remote node
FFh	36h	Error in	Download the
	38h	configuration data	configuration again
	D4h		
	other	Unit fault	Try downloading the configuration again; if the same error occurs, replace the Unit

Note When the PROFIBUS hardware does not function properly (P-DP H/W failure, IR n+2.06 bit is OFF), the contents of this word is set to 0.

IR n+4 Unit Number and Message Length

When IR n+2.13 is set (Reply in output mailbox), this IR word contains the length of the message that can be retrieved with an IORD instruction. Combined with the Unit number, this constitutes the correct source information for the IORD instruction. Refer to section 6-3 for more details about the IORD instruction.

Note When the PROFIBUS hardware does not function properly (P-DP H/W failure, IR n+2.06 bit is OFF), the contents of this word is set to 0.

W

Slave status

The 16 words that contain the slave status bits are shown below. The location of these words in the PLC's memory depends on the settings in DM m+14 and m+15 (see 5-1-2). Default location is IR 200 ~ 215.

These words only indicate the status of the slaves that have been assigned to the respective master Unit and thus possibly not of all slaves in the network.

	bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
word 0		15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	
1		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
2		47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
3		63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48
4		79	78	77	76	75	74	73	72	71	70	69	68	67	66	65	64
5		95	94	93	92	91	90	89	88	87	86	85	84	83	82	81	80
6		111	110	109	108	107	106	105	104	103	102	101	100	99	98	97	96
7				125	124	123	122	121	120	119	118	117	116	115	114	113	112
8		15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	
9		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
10		47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
11		63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48
12		79	78	77	76	75	74	73	72	71	70	69	68	67	66	65	64
13		95	94	93	92	91	90	89	88	87	86	85	84	83	82	81	80
14		111	110	109	108	107	106	105	104	103	102	101	100	99	98	97	96
15				125	124	123	122	121	120	119	118	117	116	115	114	113	112

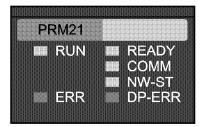
Active flags stations 01 ~ 15 Active flags stations 16 ~ 31 Active flags stations 32 ~ 47 Active flags stations 48 ~ 63 Active flags stations 64 ~ 79 Active flags stations 80 ~ 95 Active flags stations 96 ~ 111 Active flags stations 112 ~ 125 Diagnostic flags stations 01 ~ 15 Diagnostic flags stations 16 ~ 31 Diagnostic flags stations 32 ~ 47 Diagnostic flags stations 48 ~ 63 Diagnostic flags stations 64 ~ 79 Diagnostic flags stations 80 ~ 95 Diagnostic flags stations 96 ~ 111 Diagnostic flags stations 112 ~ 125

Slave active bits

The first 8 words comprise the 'slave active' flags. These indicate which of the slaves are active and are exchanging data with the master Unit. If a slave active flag is OFF (0), the corresponding slave is either not configured, or not exchanging data.

It is recommended to use the 'slave active' bit as a condition in the PLC program for processing the slave's input data. If the 'slave active' bit is OFF, the presented input data may not be valid.

Slave diagnostic bitsThe next 8 words comprise the 'slave diagnostic' flags. These indicate if
slave diagnostic information is available from the corresponding slave station.The master sets a flag when the diagnostic data sent by the slave does not
contain all zeros. Diagnostic data that only contains zeros is considered as
no diagnostics.


The diagnostic bit is also set when a configured slave fails to respond.

When the diagnostic bit is set, the corresponding diagnostic data can be retrieved by sending a 'request for diagnostics' command to the output mailbox with an IOWR instruction. The corresponding reply can be from the input mailbox with an IORD instruction (see section 6 for command transfer by IOWR / IORD). The diagnostic bit is reset after the request, but if the cause for diagnostics is persistent, the diagnostic bit will remain ON.

Note The contents of these status words are cleared during the initialisation after start-up, during a download of a new configuration and when the PROFIBUS hardware does not function properly (P-DP H/W failure, IR n+2.06 bit is set).

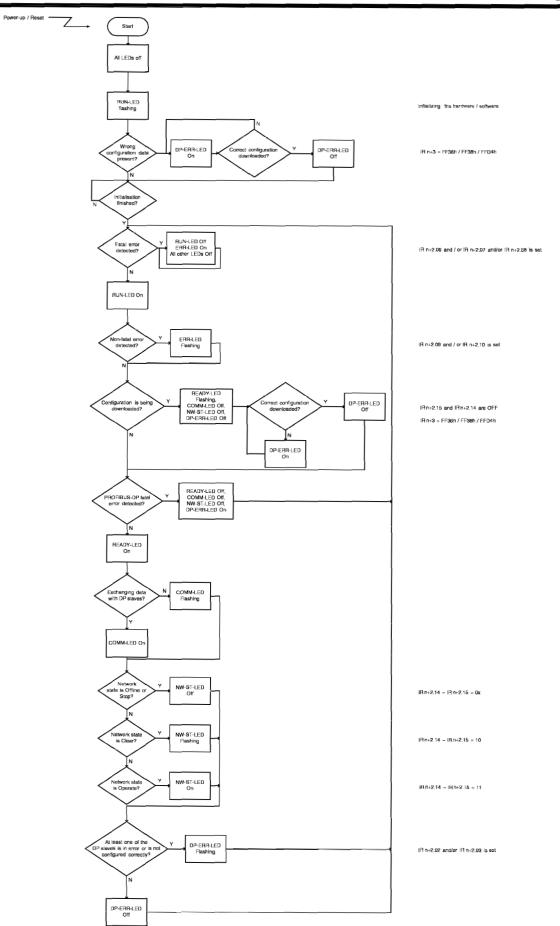
5-4 LEDs

The Unit has six LEDs to visualise its status. The layout of the LEDs is shown below.

The two LEDs on the left side (RUN, ERR) show the status of the Unit in general. The four LEDs on the right side indicate the status of the PROFIBUS-DP network.

The different states of the LED are listed in the table below. The following flowchart describes the sequence in which the LEDs are turned ON or OFF.

In some states additional information is indicated by the status word IR n+2 and IR n+3. The flowchart and the table refer to this status word where applicable.


Unit status LEDs

LED	Colour	State	Description
RUN	Green	OFF	Fatal error detected
		Flashing	Initialising the hardware / software
		ON	The Unit is initialised and no fatal error is detected
ERR	Red	OFF	No errors
		Flashing	Non-fatal error due to incorrect Unit settings
			Details in IR n+2.09, n+2.10
		ON	Fatal error.
			Details in IR n+2, bits 06 through 08

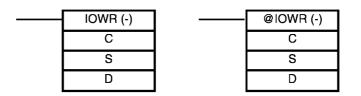
LED	Colour	State	Description
READY	Green	OFF	PROFIBUS-DP fatal error
		Flashing	Configuration download in progress
			IR n+2.14 and IR n+2.15 are OFF (Off-line)
		ON	The Unit is ready to communicate.
СОММ	Green	OFF	The master does not get any positive reply back from the slaves during the polling procedure. No I/O data is being exchanged with DP-slaves.
		ON	The master does get at least one positive reply back from one of the slaves in the network. This does not automatically mean that I/O data is being exchanged!
NW-ST	Green	OFF	Network state is Off-line or Stop
			IR n+2.14 = 0
		Flashing	Network state is Clear
			IR n+2.14 = 1, IR n+2.15 = 0
		ON	Network state is Operate
			IR n+2.14 = 1, IR n+2.15 = 1
DP-ERR	Red	OFF	No PROFIBUS-DP specific errors and no fatal PLC error detected.
		Flashing	At least one of the DP slaves is in error or is not configured correctly (See also IR n+2.02, n+2.03).
		ON	Configuration error is detected, RUN LED or READY LED is flashing (see also IR n+3). Download the configuration again.

LEDs

Section 5-4

6 Message Communication, IOWR / IORD

This section describes the message communication. The PLC program instructions IOWR and IORD are used to transfer the messages to and from the Unit.

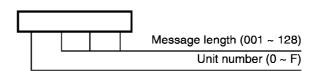

6-1 Message communication	74
6-2 IOWR	
6-3 IORD	
6-4 Messages	
6-4-1 Control command	
6-4-2 Slave diagnostics	

6-1 Message communication

Mailboxes		The Unit handles the message communication via the Input and Output mailbox. These mailboxes are described in section 5-2.
Control words		The control words (see 5-3-1) can be used to send standard messages, i.e. PROFIBUS control commands. The IOWR instruction can be used to send any fieldbus-specific message. The advantage of this method is that the Unit will be able to handle future upgrades of fieldbus message types.
IOWR		The Input mailbox will contain responses to commands sent out via the Output mailbox. The Unit will automatically remove responses to control commands as they do not contain any valuable information. Responses to other commands sent with the IOWR instruction, have to be read with an IORD instruction to prevent filling up of the Input mailbox.
		The transfer of messages via the control words is described in section 5-3-1. This section will describe the transfer of messages via IOWR / IORD.
	Note	The transfer of messages with IOWR and IORD is only supported by the

6-2 IOWR

The ladder symbols for IOWR are shown below.



C200HE, C200HG, and C200HX series of PLC, not by the C200HS series.

- C Control code
 - value: #0000
- S First source word

value: The address of the first word of the PLC data area that contains the message to be transferred to the Output mailbox.

- D Destination information
 - value: Combination of the Unit number of the Master Unit and the message length (number of words in BCD).

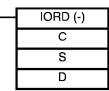
It valid anymore after executing an IOWR instruction in the PLC program. Therefore it is recommended not to execute the IOWR instruction more than the per PLC cycle.
the EQ-flag in the PLC will indicate the result of execution of the IOWR struction. If this flag is set, the message was transferred successfully to the utput mailbox. If this flag is not set, either the Output mailbox was full, or e RUN-bit (IR n.00) was not set, or the DP communication was disabled (IR D1). In all cases the message was not transferred to the Output mailbox. It advised to always check the EQ-flag.
the ER-flag in the PLC will report on syntax errors made in the IOWR struction itself. It is not necessary to check this flag; if a syntax error is ade, the EQ-flag will also indicate that the transfer was not successful.
n example of the use of the IOWR instruction is shown below. IR 112.12 IOWR (-) #0000 DM0000 #1008

255.06

EQ_FLAG

In the example above, the Unit number setting is assumed to be '1'.

The IOWR instruction is only executed when the 'Output mailbox full' bit is not set. It transfers 8 words starting from DM0000 to the Output mailbox of the Master Unit with Unit setting 1.


Э

ERROR

The ERROR output bit is set when the IOWR transfer was not successful.

6-3 IORD

The ladder symbols for IORD are shown below.

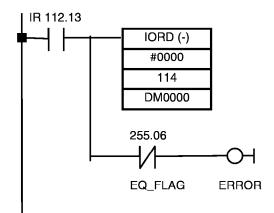
 @IORD (-)
С
S
D

C Control code

value: #0000

S Source information

value: Combination of the unit number of the Master Unit and the message length (number of words in BCD).


IR n+4 can be used as source information. If a message is posted in the input mailbox, this IR word will contain the correct information for retrieval of the full message.

D First destination word

value: The address of the first word of the PLC data area to where the message from the Input mailbox is to be transferred.

Reply in input mailbox	The IORD instruction should not be executed unconditionally. IORD should only be executed when there is a reply message in the Input mailbox. The status of the Input mailbox is indicated by status bit IR $n+2.13$ (Reply in input mailbox). If this bit is set, an IORD instruction should be executed to remove the response from the Input mailbox. This will prevent the Input mailbox from filling up.
Input mailbox clear	An IORD instruction should not be executed in the PLC cycle after an 'Input mailbox clear' command is issued. As the 'Input mailbox clear' command (IR n.02) will not be executed until after the I/O refresh, the status of IR n+2.13 will be updated in the next I/O refresh.
	It is not recommended to execute two IORD instructions per PLC cycle because the status of IR $n+2.13$ is not valid anymore after executing the first IORD instruction.
EQ-flag	The EQ-flag in the PLC will indicate the result of execution of the IORD instruction. If this flag is set, the message was transferred successfully from the Input mailbox to the specified PLC data area. It is advised to always check this flag, especially in the cases described above when an 'Input mailbox clear' command has been issued, or when more than one IORD instruction is programmed to be executed in one PLC cycle.
ER-flag	The ER-flag in the PLC will report on syntax errors made in the IORD instruction itself. It is not necessary to check this flag; if a syntax error is made, the EQ-flag will also indicate that the transfer was not successful.
Example	An example of the use of the IORD instruction is shown below.

In the example above the Unit number setting is assumed to be '1'.

The IORD instruction is only executed when the 'Reply in input mailbox' flag is set. IR 114 contains the correct source information. The IORD instruction transfers the oldest reply from the Input mailbox to the PLC, starting at DM0000.

The ERROR output bit is set when the IORD transfer was not successful. This could be because of a syntax error in the IORD instruction or because there was no reply in the Input mailbox anymore.

6-4 Messages

Fixed format

Messages to be sent to the Output mailbox and received from the Input mailbox have a fixed format. The command and the response are according the following format.

Туре	Size	Description
	(words)	
Message header	4	Defines the sender, receiver, command type and the total length of the telegram. It is also possible to give a unique number to each message.
Telegram header	0 ~ 4	Detailed definition of the command message
Telegram data	0 ~ 124	Message data

Max. length The overall length of the message is limited to 128 words (limitation of the IOWR / IORD instruction). Every message has a message header, but not all messages have a telegram header or telegram data. In messages without a telegram header, the length of the telegram data can be up to 124 words. With a telegram header, the length can only be up to 120 words. Command types

The two types of command message presently supported are:

- 1. Control command
- 2. Slave diagnostics

These commands are described in more detail in the next two sub-sections.

6-4-1 Control command

This command can also be issued via the control words (see section 5-3-1). The message for a control command is shown below.

	MSB	LSB
word n	03h	10h
word n+1	03h	00h
word n+2	00h	00h
word n+3	46h	00h
word n+4	Station address	Control command
	(00h ~ 7Fh)	
word n+5	Group select	00h
	(00h ~ FFh)	

The message consists of 6 words which have to be prepared in a PLC data area.

Station address and Group select are described in the paragraph on control word IR n+1 (see section 5-3-1).

The settings in the Control command byte define which control command is to be sent; see table below.

Bit	Command	Meaning
0	-	-
1	Clear_Data	Clear output data
2	Unfreeze	Unfreeze input data
3	Freeze	Freeze input data
4	Unsync	Unfreeze output data
5	Sync	Freeze output data
6	-	-
7	-	-

Command priority When issued simultaneously, Unsync has priority over Sync, and Unfreeze has priority over Freeze.

The Clear_Data command will always clear the output data, independent whether the Freeze command is activated or not.

No response message The response message does not contain any valuable information and is therefore removed from the Input mailbox automatically. It is not necessary to issue an IORD command.

6-4-2 Slave diagnostics

The message for a slave diagnostics command is shown below.

	MSB	LSB
word n	03h	10h
word n+1	08h	Message number
word n+2	00h	00h
word n+3	42h	00h
word n+4	Station address (01h ~ 7Dh)	00h
word n+5	00h	00h
word n+6	00h	20h
word n+7	05h	01h

The message consists of 8 words which have to be set in a PLC data area.

Message number The message number can be any number that can be formed by one byte. It enables to give the message a unique number. The response message will also have this number. In this way it is possible to keep track of which response message belongs to which command message.

- Station addressThe diagnostics can only be retrieved from one slave at a time. The station
address (hex) of that slave must be entered in high byte of the fifth word.
 - **Note** Only request diagnostics of a station of which the diagnostics bit is set. Only then the data in the response message is valid. The data is most up to date just after the bit has been set.

Response message The structure of the response message to a 'get diagnostics' command message is shown below. The response message is located in the Input mailbox and can be read with the IORD instruction.

	MSB	LSB
word n	10h	03h
word n+1	Length of the message starting from word n+2 [bytes]	Message number
word n+2	42h	Command error if ≠00h
word n+3	00h	00h
word n+4	Station address	00h
word n+5	00h	00h
word n+6	00h	Length of the message starting from word n+8 [bytes]
word n+7	05h	01h
word n+8	Station_status_1	Station_status_2
word n+9	Station_status_3	Master address
word n+10	Ident_Number (high byte)	Ident_Number (low byte)
word n+11	Extended diagnostic data 0	Extended diagnostic data 1
word n+12	Extended diagnostic data 2	Extended diagnostic data 3
word n+127	Extended diagnostic data 232	Extended diagnostic data 233

Error message

There are two types of responses. The response can either be an answer

		message to the issued command or an error message. The error message occurs due to a syntax error in the command message. In this case the low byte of word n+2 will be unequal to zero to indicate the error; the values of the other words should not be considered valid.
	Note	If bit IR n+2.13, 'Reply in input mailbox', does not get set after issuing the request for slave diagnostics with the IOWR instruction, the command message in the PLC data area is not correct.
		The slave diagnostic bit will only get set when the extended diagnostic data does not contain all zeros <i>or</i> when the slave is noted as not being existent. The lower byte of word $n+6$ contains the exact length in bytes of the message starting from word $n+8$. This represents the actual diagnostic data received from the slave The maximum data length is 244 (F4h).
Extended diagnostics		The data starting from word $n+11$ is slave specific, some slaves do not have extended diagnostic information. The first extended data byte has a fixed format and describes the type of diagnostics, the rest of the data bytes are slave specific. The slave manual should give information about the definition of the extended diagnostics.
Master address		The 'Master address' byte contains the address of the master which has parameterised the DP slave. If no master has parameterised the DP slave, the value of this byte is FFh.
ldentifier		Word n+10 contains the manufacturer identifier of the DP slave, as registered at the Profibus Nutzerorganisation (PNO).

Station Status

The definitions of word n+8, n+9 and n+10 are the same for all slaves. The following tables describe the definition of these words. For more details refer to EN 50170 Vol.2.

JIALIUII JIALUJ I	Station	status	1
-------------------	---------	--------	---

Bit	Meaning
0	1: DP Slave station non existent
1	1: DP Slave station not yet ready for data exchange
2	1: Configuration data sent by DP master to DP slave does not match the structure of the DP slave
3	1: DP slave has extended diagnostic information
4	1: Requested function is not supported by DP slave
5	1: Implausible answer received from DP slave
6	1: Parameterisation telegram contains an error
7	1: DP slave was parameterised by a DP master other than the DP master which currently has access to the DP slave

Station_status_2

Bit	Meaning
0	1: DP Slave must be reparameterised
1	1: A diagnostic message is waiting. The DP slave cannot resume operation until the error has been rectified (static diagnostic message)
2	1: Bit is always '1' if DP slave having this station number exists
3	1: Response monitoring (watchdog) is activated for this slave
4	1: DP slave has received a 'Freeze' control command
5	1: DP slave has received a 'Sync' control command
6	1: Bit is always '0'
7	1: DP slave is deactivated, i.e. slave has been removed from current processing

Station_status_3

Bit	Meaning
0	reserved
1	reserved
2	reserved
3	reserved
4	reserved
5	reserved
6	reserved
7	1: More diagnostic information exists than specified in the extended diagnostic data.

7 Troubleshooting and Maintenance

This section describes the troubleshooting procedures and maintenance operations needed to keep the PROFIBUS-DP network operating properly

7-1 Error Indicators	84
7-2 Troubleshooting	
7-3 Maintenance	
7-3-1 Cleaning	
7-3-2 Inspection	
7-3-3 Replacing Nodes	
7-3-4 Adding Nodes	

7-1 Error Indicators

The Unit provides the following error indicators:

- The two red LEDs at the front of the Unit, ERR LED and DP-ERR LED
- The status words IR n+2 and IR n+3 which are transferred from the Unit to the PLC IR area every I/O refresh from the moment the Unit is initialised.

These indicators are described in section 5-3-2 and section 5-4.

7-2 Troubleshooting

Possible problems have been divided in the following categories:

- PLC Error
- Start-up problems
- Configuration problems
- I/O data communication problems
- Message communication problems

PLC Error

Description	Possible cause	Possible remedy	
An I/O verification error occurred.	The current PLC configuration is not the same as it was when the I/O table was registered.	Check the I/O table with the I/O table verification operation and correct it if necessary. After correcting it, perform the I/O Table Create operation.	
An I/O Unit Over error occurred.	The Master's Unit number setting is incorrect.	Make sure that the unit number setting does not exceed the maximum possible unit number.	
		CPU Unit models Max Unit number	
		C200HS-CPU 9 C200HE- CPU11/32/42 C200HG-CPU33/43 C200HG-CPU34/44	
		C200HG-CPU53/63 F C200HX-CPU54/64	
		If it does exceed the limit, adjust the Unit number and restart the Unit.	
	Two units claim the same unit number.	Adjust the Unit number and restart the Unit.	
A Special I/O Unit error occurred.	The Unit is not connected properly or was removed while the power was ON.	Turn the power OFF an check that the Unit is connected properly and turn the power ON again.	
An I/O Bus error occurred.	The Unit is not connected properly.	Turn the power OFF an check that the Unit is connected properly and turn the power ON again.	
	The Master Unit is faulty	Replace the Master Unit.	

Start-up problems

Description	Possible cause	Possible remedy
No LEDs are ON or Flashing	The PLC's power is OFF	Turn the PLC's power supply ON.
	The Master Unit is faulty.	Replace the Master Unit.
		Make sure that the same unit number is not used by more than one Special I/O Unit and restart the PLC.
	I/O table verification error. A Unit has been removed or the Unit number setting has been changed that caused an I/O SET ERR error in the PLC.	Verify the I/O table and/or register the I/O table again.
	A Special I/O Unit or Interrupt Input Unit has not been initialised, causing an CPU WAIT'G error in the PLC.	Check and/or remove the faulty Unit.
	The Master Unit is faulty	Replace the Master Unit.
The DP-ERR LED is ON and the RUN LED is Flashing	Wrong configuration data is present in the Unit. The Unit waits for a configuration to be downloaded.	Download a configuration.
	The Master Unit is faulty.	Replace the Master Unit.
ERR LED is ON	A fatal error is detected. The cause is reported in IR n+2.06 ~ IR n+2.08	Try to solve the cause and / or restart the Unit. If this does not help, replace the Master Unit

Configuration problems

Description	Possible cause	Possible remedy
Downloaded a configuration, but	Configuration is incorrect. IR n+2.03 is ON.	Check IR n+3 to find out where / what the possible problem is.
the DP-ERR LED is flashing.		Check if the configuration corresponds to the actual network configuration. Do the DP- slaves have the same station addresses as in the configuration? Are the correct GSD-files being used?
		If all is correct, try to download it again. If the error remains, try to find out what is going on with the configurator debugger.
DP-ERR LED is ON and the READY LED is flashing	Erroneous configuration data is present in the Unit. The Unit waits for a configuration to be downloaded	Download a configuration.
Configurator does not download the	Faulty RS-232C connection.	Check if the connection between the computer and the Master Unit is correct.
configuration.		Check if the cable is connected to the configured COM-port.
	COM-port driver not set up or wrong COM-port configured.	Check if the driver is configured to the correct COM-port.

Configuration problems (continued)

Description	Possible cause	Possible remedy
READY LED is flashing	The Master Unit is faulty.	Try to restart the Unit and do another download. If this does not work, replace the Unit.
ERR LED is ON	A fatal error is detected. The cause is reported in IR n+2.06 ~ IR n+2.08	Try to solve the cause and / or restart the Unit. If this does not help, replace the Unit

I/O data communication problems

Description	Possible cause	Possible remedy
COMM LED is OFF	The wiring is not correct.	Check IR n+3 to find out where / what the possible problem is.
		Check if the correct pins of the BUS connector are connected, if there are no short circuits, if the stub-lines are not too long.
	The network has not been terminated correctly.	Terminate the network at the appropriate places (see section 2-3-1).
	Configuration is not correct.	Check IR n+3 to find out where / what the possible problem is.
		Check if the DP-slaves have the same station address as in the configuration.
		Check if no station address is used twice.
		Check that all masters in the same network have been configured to the same baud rate.
		Check if the correct GSD-files are being used.
		Check that the bus parameters have the correct value. It is recommended to use the default bus parameters (e.g. HSA must be greater or equal to the highest master node address in the network).
		After changing the configuration, download the configuration to the respective Master Unit.
	The DP-communication is inhibited. The control bit IR n.01 of the control words is set.	Reset the control bit IR n.01
	The Master Unit is faulty	Replace the Master Unit.

I/O data communication problems (continued)

Description	Possible cause	Possible remedy
COMM LED is ON but DP-ERR LED is flashing	The wiring is not correct.	Check IR n+3 to find out where / what the possible problem is. Check if the correct pins are connected, if there are no short circuits, if the stub-lines are
		not too long.
	Configuration is not correct.	Check IR n+3 to find out where / what the possible problem is.
		Check if the DP-slaves have the same station address as in the configuration.
		Check if no station address is used twice.
		Check that all masters in the same network have been configured to the same baud rate.
		Check if the correct GSD-files are being used.
		Check that the bus parameters have the correct value. It is recommended to use the default bus parameters (e.g. HSA must be greater or equal to the highest master node address in the network).
		After changing the configuration, download the configuration to the respective Master Unit.
	The Master Unit is faulty	Replace the Master Unit.
No I/O data is exchanged with the PLC though the	The I/O data mapping has been defined at the wrong PLC data area.	Make sure that the Unit settings are made in the correct DM memory area; the area depends on the unit number setting.
COMM LED is ON	The I/O data mapping contains errors that caused that certain or no data areas to be mapped at all. The ERR LED is Flashing.	Check the Unit settings. IR n+2.09 and IR n+2.10 of the status words indicates what caused the error.
	The Run bit (IR n.00) is OFF	Set the Run bit IR n.00 ON.
	Another Special I/O Unit makes use of the same data area(s).	Check the mapping of the Master Unit and the other Special I/O Unit. If they overlap, then one Unit overwrites the data area of the other Unit and makes it look like that no data is being exchanged with the PLC. If an overlap exists, the Unit settings should be changed.
	The Master Unit is faulty	Replace the Master Unit.
I/O data does not seem to get	Slave is not connected properly.	Check IR n+3 to find out where / what the possible problem is.
exchanged with a specific slave		Check if the slave is connected properly. Are the correct pins connected, Is the shield also connected, is the bus length not exceeded?
	The slave operates in 'Sync' / 'Freeze'-mode.	In these modes, the data is only updated after another transmission of the 'Sync' / 'Freeze' command. If this is not desired, these modes should be turned OFF. See section 5-3-1 for more details.
	The master or the transmission line has failed, the watchdog of the slave has switched the outputs of the slave to the fail-safe state.	Check the transmission line and master Unit or disable the slave's watchdog (not recommended).

I/O data communication problems (continued)

Description	Possible cause	Possible remedy
Outputs are being reset.	Run bit (IR n.00) is OFF. This can be due to a fatal PLC error or due to switching from RUN / MONITOR to PROGRAM mode.	Check if the PLC is in PROGRAM mode, or if a fatal PLC has occurred. Find the cause of the fatal error, set IR n.00 ON and operate the outputs.
	IR n+2.02 set? If so, the 'Data_Control_Timer' of one of the slaves has expired and the 'Auto_Clear' is enabled. The master has entered the network state 'Clear'. (see for more details section 1-4-4)	Check IR n+3 to find out where / what the possible problem is. Fix or remove the slave that caused the master to enter the 'Clear' state or disable the 'Auto_Clear' mode (see section 4-3-7)
	The master or the transmission line has failed, the watchdog of the slave (if enabled) has switched the outputs of the slave to the fail-safe state.	Check the transmission line and master Unit or disable the slave's watchdog (not recommended).
	The PLC cycle time is greater than the configured watchdog time of the slave which results in expiration of the watchdog in the synchronous mode. This switches the outputs to the fail-safe state.	Increase watchdog time or decrease PLC cycle time or choose asynchronous mode.
	The Master Unit is faulty.	Replace the Master Unit.
Outputs do not change anymore	Run bit (IR n.00) is OFF. This can be due to a fatal PLC error or due to switching from RUN / MONITOR to PROGRAM mode, with DM m+17 = 1 (hold mode).	Check if the PLC is in PROGRAM mode, or if a fatal PLC has occurred. Find the cause of the fatal error, set IR n.00 ON and operate the outputs.
	Program execution has stopped due to a fatal PLC error or PLC is in PROGRAM mode and DM m+17 = 1	Check if the PLC is in PROGRAM mode or if a FALS error was generated.
	The slave operates in 'Sync'-mode.	In this mode the data is only updated after another transmission of the 'Sync'-command. If this is not desired, this mode should be turned OFF. See section 5-3-1 for more details.
	The Master Unit is faulty	Replace the Master Unit.
Inputs do not change anymore	Run bit (IR n.00) is OFF. This can be due to a fatal PLC error or due to switching from RUN / MONITOR to PROGRAM mode.	Check if the PLC is in PROGRAM mode, or if a fatal PLC has occurred. Find the cause of the fatal error, set IR n.00 ON and check the outputs.
	The slave operates in 'Freeze'-mode.	In this mode the data is only updated after another transmission of the 'Freeze'- command. If this is not desired, this mode should be turned OFF. See section 5-3-1 for more details.
	The Master Unit is faulty	Replace the Master Unit.
ERR LED is switched ON	A fatal error is detected. The cause is reported in IR n+2.06 ~ IR n+2.08	Try to solve the cause and / or restart the Unit. If this does not help, replace the Master Unit

Message Communication problems

Description	Possible cause	Possible remedy
IOWR instruction not successfully executed	Output mailbox is full. The Output mailbox is not able to process new command messages when the Input mailbox is not able to receive reply messages.	Clear the messages in the Input mailbox to enable the Input mailbox to receive new messages and the Output mailbox to process new messages. The messages can be cleared by using IORD instructions or by setting IR n.01 of the control words.
	The RUN-bit (IR n.00) is not switched ON or the communication is inhibited (IR n.01)	Set the RUN-bit and enable communication again.
	The IOWR instruction contains syntax errors	Check the IOWR instruction. Is the correct Unit number and message length specified?
	The transferred command message is not correct. Note: This error can not be detected by the result of the EQ-flag!	Check the command message that is created in the PLC data area. Does it comply with the command messages definition specified in section 6-4?
	The Master Unit is faulty	Replace the Master Unit.
IORD instruction not successfully executed	There is no reply message in the Input mailbox	Only read a message when IR n+2.13 (Reply in input mailbox) is set.
	The IORD instruction contains syntax errors	Check the IORD instruction. Are the correct Unit number and message length specified?
	The Master Unit is faulty	Replace the Master Unit.
Command was not successfully executed though IR n+2.12 (Output mailbox full) is not set.	Issued more than one IOWR per PLC scan or issued an IOWR after issuing a control command via the control words in the previous PLC scan. In both cases, IR n+2.12 has not been updated and the mailbox could just have been filled up and be unable to process more.	Do not issue more than one IOWR per PLC scan or do not issue an IOWR after issuing an control command via the control words in the previous PLC scan.
	For other reasons see situation 'IOWR instruction not successfully executed'	-
IORD command was not executed successfully though IR n+2.13 (Reply in input mailbox) was set.	Issued more than one IORD per PLC scan or issued an IORD after issuing an 'Input mailbox clear' command via the control words in the previous PLC scan. In both cases IR n+2.13 has not been updated and the Input mailbox could just have been cleared.	Do not issue more than one IORD per PLC scan or do not issue an IORD after issuing an 'Input mailbox clear' command via the control words in the previous PLC scan.
	For other reasons see situation 'IORD instruction not successfully executed'	-
ERR LED is switched ON	A fatal error is detected. The cause is reported in IR n+2.06 ~ IR n+2.08	Try to solve the cause and / or restart the Unit. If this does not help, replace the Master Unit

7-3 Maintenance

This section describes the routine cleaning and inspection recommended as regular maintenance.

7-3-1 Cleaning

Clean the PROFIBUS-DP Master Units regularly as described below in order to keep it in its optimal operating condition.

- Wipe the Unit with a dry, soft cloth for regular cleaning.
- When a spot cannot be removed with a dry cloth, dampen the cloth with a neutral cleanser, wring out the cloth, and wipe the Unit.
- A smudge may retain on the Unit from gum, vinyl, or tape that was left on for a long time. Remove the smudge when cleaning.

Caution Never use volatile solvents such as paint thinner or benzene or chemical wipes. These substances could damage the surface of the Unit.

7-3-2 Inspection

Be sure to inspect the system periodically to keep it in its optimal operating condition. In general, inspect the system once every 6 to 12 months, but inspect more frequently if the system is used with high temperature or humidity or under dirty / dusty conditions.

Inspection Equipment Prepare the following equipment before inspecting the system.

Required Equipment

Have a standard and Philips-head screwdriver, multimeter, alcohol, and a clean cloth.

Equipment that could be needed

Depending on the system conditions, a synchroscope, oscilloscope, thermometer, or hygrometer (to measure humidity) might be needed.

Inspection Procedure Check the items in the following table and correct any items that are below standard.

	Item		Equipment
Environmental conditions	Ambient temperature	0°C to 55°C	Thermometer
	Ambient humidity	10% to 90%	Hygrometer
	Dust/dirt accumulation	None	
Installation	Are the Units installed securely?	No looseness	
	Are the communications connectors fully inserted?	No looseness	
	Are the external wiring screws tight?	No looseness	
	Are the connecting cables undamaged?	No damage	

7-3-3 Replacing Nodes

Replacing on the fly	Except for the Master Unit, all PROFIBUS-DP nodes can be replaced on the fly; the only condition is that the node is of the same type. Also, the network can be expanded with another Master Unit and its assigned slaves in full operation.
Precautions	The Master Unit can only be replaced when the PLC power is turned OFF. After replacing the Unit, turn ON the power again and download the same configuration as was downloaded in the replaced Master Unit. Make sure that the Unit number setting is the same as the previous Master Unit. During replacement of the Master Unit the network is not operational.
Frecautions	Observe the following precautions when replacing a Unit.
	After replacement make sure that there are no errors with the new Unit.
	 When a Unit is being returned for repair, attach a sheet of paper detailing the problem and return the Unit to your OMRON dealer.
	• If there is a faulty contact, try wiping the contact with a clean, lint-free cloth dampened with alcohol.

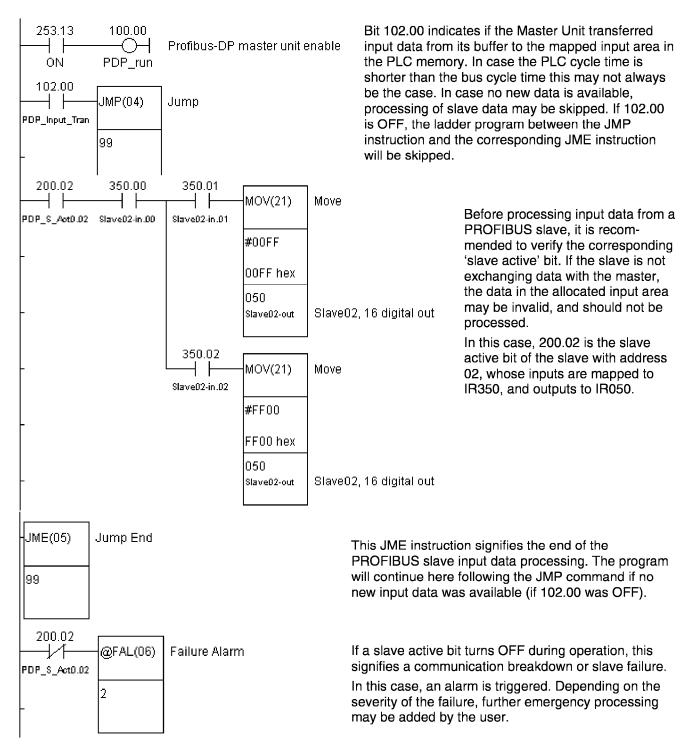
7-3-4 Adding Nodes

Download new configuration

The PROFIBUS-DP network allows to add new nodes on the fly. After connecting the new node to the network, a new configuration which contains this new node must be downloaded to the Master. During the download, all bus activities are stopped.

Appendix A Tips and sample programs

Unless indicated otherwise, all shown examples assume that:


- Machine No. switch of the C200HW-PRM21 is set to 0.
- All unit settings are at the default value (0000).
- Slaves are mapped into the unit's I/O buffers by auto-addressing (start at offset=0)

Therefore:

- Unit settings area is DM1000-1017.
- Command/status data are IR100-104.
- Remote inputs are IR350-399.
- Remote outputs are IR050-099.
- Slave status area is IR200-215.

A.1. General guidelines on input data processing

The C200HW-PRM21 must be activated by setting the RUN bit (100.00) ON. It is recommended to always set this bit ON whenever the PLC program runs. If the PLC is set to PROGRAM mode, or the program stops due to a severe failure (FALS), this bit will turn OFF. If the unit detects this, it will Hold or Clear all slave output data, depending on the setting of DM 1017 (default = Clear, i.e. remote outputs are turned OFF like local outputs).

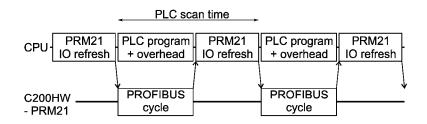
A.2. Data exchange method: synchronous or asynchronous?

By setting DM 1016, the user may select to synchronise the PROFIBUS-DP bus cycle with the PLC cycle. If selected, each PLC I/O refresh the PROFIBUS-DP master will attempt to trigger a new fieldbus cycle. If the previous fieldbus cycle had not yet been completed, a new attempt will be made at the next I/O refresh.

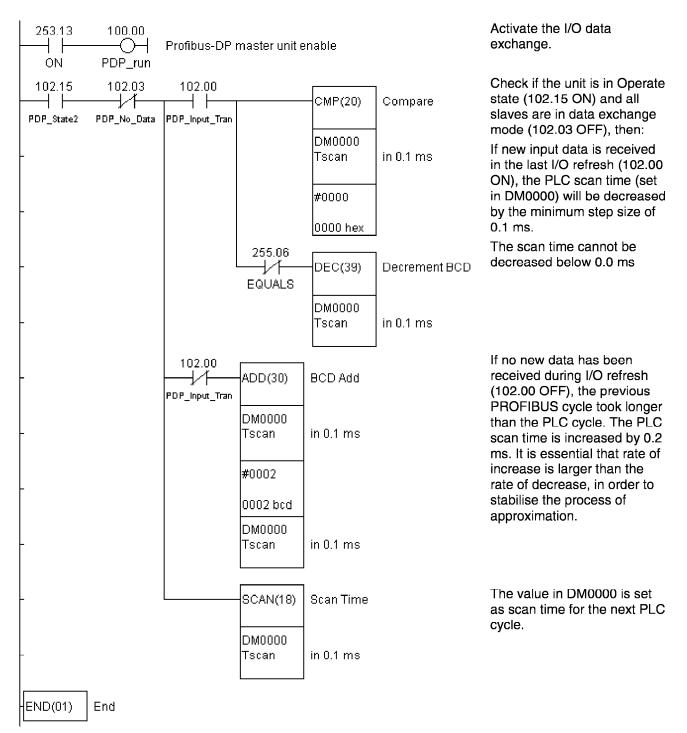
The default setting is no synchronisation between PLC cycle and fieldbus cycle. In that case, fieldbus cycles are triggered autonomously, independent of the PLC cycle. All input data from the latest bus cycle is kept in a buffer for the PLC to access at I/O refresh time.

In general, it will be advantageous to select the asynchronous method if the PLC cycle time is considerably larger than the PROFIBUS cycle time. Due to the additional buffering required in asynchronous mode, if both cycles are in the same order of magnitude, it will be better to choose synchronous mode.

Without additional tools it is difficult to determine the actual PROFIBUS-DP cycle time. The calculations in Chapter 2 will give a rough indication, but if the actual network is available, a measurement is more reliable. With the help of the sample program on the next page, it is possible to measure the cycle time in all but the most extreme cases, i.e. at very high baudrates with very few slaves. The method is based on automatic variation of the PLC cycle time to determine when input data is still refreshed each PLC scan.


Determine PROFIBUS cycle time

- 1. Using the configurator software, build the desired bus configuration and download the corresponding configuration file into the C200HW-PRM21. The complete configuration needs to be connected and powered up.
- 2. Enter the sample program as shown on the next page in the PLC CPU.
- 3. Make the following settings in DM to achieve the minimum I/O refresh time, then restart the unit to activate these settings. (Note that the slave outputs will remain reset since no data is transferred from the PLC)

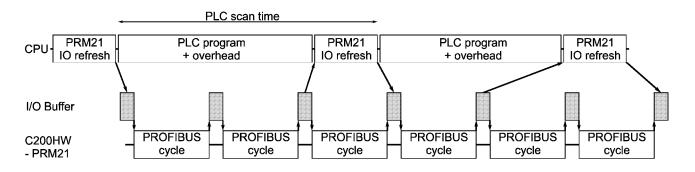

DM 1000	0001	One output area
DM 1003	0000	Output area size = 0
DM 1007	0001	One input area
DM 1008	0000	Input buffer offset = 0
DM 1009	A050	Start at IR 050
DM 1010	0001	Input area size is 1 word
DM 1016	0001	Synchronous data exchange

The PLC scan time will eventually settle on a fixed value.

If the value of DM 0000 falls to 0, the cycle time of PROFIBUS-DP is less than the minimum PLC cycle time that can be achieved. For any other value than 0, the PROFIBUS cycle time equals the PLC scan time MINUS the I/O refresh time. With the DM settings as above (1 I/O word transferred), the C200HW-PRM21's I/O refresh on C200H alpha series PLCs takes 1.4 ms, on C200HS 2.1 ms.

Synchronous data transfer mode with PLC scan time fully adapted to PROFIBUS cycle time.

Sample program to determine PROFIBUS-DP cycle time.


After determining the cycle time of the PROFIBUS-DP system, it is possible to establish the optimal data exchange method using the actual PLC application program.

Actual application

Once the actual application program in the PLC has been completed, and the DM settings have been optimised to transfer only the data required for the application,

- Read the actual value of the PLC scan time from AR27 with the PLC in Run/Monitor mode.
- Calculate the C200HW-PRM21's I/O refresh time as shown in paragraph 3-2-2, 'PLC cycle time'.
- By subtracting these two figures, calculate the time required for the PLC program plus the overhead for servicing additional units and peripherals.

Only if the PROFIBUS-DP cycle is several times smaller than the time taken by the PLC program + overhead, choosing the asynchronous data exchange method will result in a consistent reduction of remote I/O response time.

Asynchronous data transfer mode with PLC program + overhead $\approx 2 *$ PROFIBUS cycle. This will result in irregular data transfer, but data is updated at least once per PLC cycle.

Appendix B GSD file for C200HW-PRM21

```
;***
                                                                        * * *
;***
          Omron Europe B.V.
                                                                        ***
;***
                                                                        * * *
;***
         European Headquarters
                                                                         ***
;***
                                                                         * * *
         Wegalaan 67-69
;***
                                                                         ***
         NL-2132 JD Hoofddorp
;***
      European Technical Centre
Zilverenberg 2
NL-5234 CM :
                                                                         * * *
;***
                                                                         ***
;***
                                                                         * * *
;***
                                                                         ***
;***
                                                                         * * *
          NL-5234 GM 's-Hertogenbosch
;***
                                                                         ***
          The Netherlands
;***
                                                                        ***
;***
                                                                        * * *
;***
        Device DataBase File for C200HW-PRM21 PROFIBUS-DP master
Filename OC_1656.GSD (c) 1998
Version 1.00 01.07.1998
                                                                        ***
;***
                                                                        * * *
· * * *
                                                                        ***
;***
                                                                        * * *
Important notice:
;
       _____
;
       Any modification of parameters in this file may lead to undefined
;
       behaviour of the PROFIBUS DP system.
;
;
#PROFIBUS DP
GSD_Revision = 1
Vendor_Name = "OMRON Corporation"
Model_Name = "C200HW-PRM21"
= "C200HW-PRM21
= "C200HW-PRM21
= "Version 1.0"
Ident_Number = 0x1656
Protocol_Ident = 0
Station_Type = 1
FMS_supp = 0
Hardware D
                                            ; PROFIBUS-DP
                                            ; DP master class 1
FMS_supp = 0
Hardware_Release = "Version 1.0"
Software_Release = "Version 1.0"
                                            ; FMS not supported
;
; Supported baudrates
                   = 1
9.6_supp
19.2_supp
                   = 1
93.75_supp
                   = 1
187.5_supp
                   = 1
                   = 1
500_supp
1.5M_supp
                   = 1
3M_supp
                   = 1
6M_supp
                   = 1
                   = 1
12M_supp
; Maximum station delay of responder
; (unit = bit times)
MaxTsdr_9.6 = 60
MaxTsdr_19.2 = 60
MaxTsdr_93.75 = 60
MaxTsdr_187.5 = 60
MaxTsdr_500 = 100
MaxTsdr_1 5M
MaxTsdr_1.5M
                   = 150
```

MaxTsdr_3M = 250 MaxTsdr_6M = 450 MaxTsdr_12M = 800 MaxTsdr_12M = 800 = 0 Redundancy ; no redundancy ; supported, TTL level ; not supported Implementation_Type = "ASPC2" Download_supp = 0 Upload_supp = 0 ; not supported ; not supported Act_Para_Brct_supp = 0 ; not supported Act_Param_supp = 0 Max_MPS_Length = 100 Max_Lsdu_MS = 32 Max_Lsdu_MM = 32 ; not supported ; max.size of master parameter set ; max SDU length master-slave ; max SDU length master-master Min_Poll_Timeout = 1 ; * 10 ms ; ; Time of master to get ready for reply after a sending a request ; (unit = bit times) Trdy_9.6 = 11 Trdy_19.2 = 11 Trdy_93.75 = 11 = 11 Trdy_187.5 Trdy_500 = 11 = 11 Trdy 1.5M Trdy_3M = 11 = 11 Trdy_6M Trdy_12M = 11 ; ; Quiet time (transmitter fall time) ; (unit = bit times) Tqui_9.6 = 0 Tqui_19.2 = 0 = . = 0 0 Tqui_93.75 Tqui_187.5 Tqui_500 Tqui_1.5M = 0 = 3 Tqui_3M Tqui_6M = 6 Tqui_12M = 9 ; ; Setup time ; (unit = bit times) Tset_9.6 = 1 Tset_19.2 = 1 = 1 = 1 Tset_93.75 Tset_187.5 Tset_500 = 1 Tset_1.5M = 1 Tset_3M = 4 Tset_6M = 8 Tset_12M = 16 ; ; Station delay time of initiator ; (unit = bit times) $Tsdi_9.6 = 60$ = 60 = 60 Tsdi_19.2 Tsdi_93.75 Tsdi_187.5 = 60 Tsdi_500 = 100 Tsdi_1.5M Tsdi_3M = 150 = 250 Tsdi_6M = 450 Tsdi_12M Las_Len = 125 Max_Slaves_supp = 124

Index

Index

Index

Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

Cat. No. W349-E1-1N

- Revision code

The following table outlines the changes made to the manual during each revision. Page numbers refer to the previous version.

Revision code	Date	Revised content
W349-E1-1	1998	Original production
W349-E1-1N	September 1998	Produced in the Netherlands