
Cat. No. W239-E1-2

SK20-C�D�-D

SYSMAC mini
Programmable Controllers

OPERATION MANUAL

SYSMAC mini Programmable Controllers
SK20-C�D�-D
Operation Manual
Revised July 1994

iv

v

Notice:
OMRON products are manufactured for use according to proper procedures by a qualified operator
and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this manual. Always heed
the information provided with them. Failure to head precautions can result in injury to people or dam-
age to the product.

DANGER! Indicates information that, if not heeded, is likely to result in loss of life or serious
injury.

WARNING Indicates information that, if not heeded, could possibly result in loss of life or
serious injury.

Caution Indicates information that, if not heeded, could result in relative serious or minor
injury, damage to the product, or faulty operation.

OMRON Product References
All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers
to an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation “Ch,” which appears in some displays and on some OMRON products, often means
“word” and is abbreviated “Wd” in documentation in this sense.

The abbreviation “PC” means Programmable Controller and is not used as an abbreviation for any-
thing else.

Visual Aids
The following headings appear in the left column of the manual to help you locate different types of
information.

Note Indicates information of particular interest for efficient and convenient operation
of the product.

1, 2, 3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

 OMRON, 1993
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permis-
sion of OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is
constantly striving to improve its high-quality products, the information contained in this manual is subject to change
without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no
responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the informa-
tion contained in this publication.

vi

vii

TABLE OF CONTENTS
SECTION 1
Introduction 1.

1-1 Features 2.
1-2 PC Basics 2.
1-3 Units 5.
1-4 PC Configuration 8.

SECTION 2
Installation 11.

2-1 Dimensions 12.
2-2 Installation 14.
2-3 Wiring 16.
2-4 Programming Console 19.

SECTION 3
Programming 23.

3-1 Introduction 25.
3-2 Memory Areas 25.
3-3 The Programming Console 32.
3-4 Basic Programming 34.
3-5 Inputting the Program 45.
3-6 Advanced Programming 58.
3-7 Instruction Set 65.
3-8 Debugging 106.
3-9 Program Execution 108.
3-10 I/O Response Time 109.
3-11 Using SK20 SYSMAC BUS Functions 113.

SECTION 4
Operation 117.

4-1 Monitoring Operation and Modifying Data 118.
4-2 Memory Card Initialization 125.

SECTION 5
Troubleshooting 129.

5-1 Alarm Indicators 130.
5-2 Reading and Clearing Errors and Messages 130.
5-3 Error Messages 130.
5-4 Troubleshooting Communications Errors 132.
5-5 Error Flags 134.

Appendices 135.
A. Standard Models 135.
B. Specifications 137.
C. Programming Instructions and Execution Times 139.
D. Programming Console Operations 145.
E. Error and Arithmetic Flag Operation 149.
F. I/O Assignment Sheets 151.
G. Program Coding Sheets 157.

Glossary 163.
Index 173.
Revision History 177.

ix

About this Manual:

This manual describes the installation and operation of the SYSMAC mini SK20 Programmable Con-
trollers and includes the sections described below. Please read this manual completely and be sure
you understand the information provide before attempting to install and operate the SK20.

Section 1 Introduction explains the background and some of the terms used in ladder-diagram pro-
gramming. It also provides an overview of the process of programming and operating a PC and ex-
plains basic terminology used with OMRON PCs. Descriptions of the features of the SK20 PCs and
Units that comprise SK20 systems are also provided.

Section 2 Installation provides details on the installation environment and the wiring of the PC. The
dimensions of all components are also presented.

Section 3 Programming describes information necessary for programming SK20 PCs. The first five
subsections provide enough information to enable you to write, input, and execute a basic ladder-dia-
gram program. The remainder of this section provides more advanced programming information, with
3–7 describing individually each instruction in the SK20 instruction set.

Section 4 Operation provides further information on operating SK20 PCs via the Programming Con-
sole, such as monitoring, data modification, and Memory Card operations.

Section 5 Troubleshooting provides information on error indications. Information in this section is
also necessary when debugging a program.

The appendices provide tables of standard OMRON products available for the SK20 PCs, specifica-
tions, reference tables of instructions and Programming Console operations, and error and arithmetic
flag operation. Also provided are several programming and data area assignment sheets that can be
copied out of the manual and used in developing programs.

WARNING Failure to read and understand the information provided in this manual may result in
personal injury or death, damage to the product, or product failure. Please read each
section in its entirety and be sure you understand the information provided in the section
and related sections before attempting any of the procedures or operations given.

1

SECTION 1
Introduction

This section will introduce you to Programmable Controllers in general and specifically to the SK20 Units and the vari-
ous Units available for use with them. It also describes the configurations possible with the SK20s and how to connect
these configurations. Detailed wiring and installation procedures are provided in Section 2 Installation.

1-1 Features 2.
1-2 PC Basics 2.

1-2-1 PC Terminology 3.
1-2-2 Overview of PC Operation 4.

1-3 Units 5.
1-3-1 CPU 5.
1-3-2 Programming Console 7.
1-3-3 Memory Cards 7.

1-4 PC Configuration 8.
1-4-1 Basic Configuration (SK20-C1DR-D) 8.
1-4-2 DIP Switch Settings 10.

2

1-1 Features

Miniature High-performance The SK20 Units are extremely compact yet have a programming capacity of
about 240 instructions. The SK20 is equipped with 38 instructions. With real
programming capability in such a small package, these compact PCs are
ideal for mounting in a control box or in the device being controlled.

High-speed Processing The minimum instruction execution time is as short as 0.2 microseconds. The
input delay is only 400 microseconds.

Low Maintenance The user program is automatically transferred from RAM to EEPROM, elimi-
nating the need to back up memory, which can be rewritten up to 5,000
times.

Input Signal Filter To prevent errors due to chattering or external noises on input signals, the
input circuits are provided with filter timers that can be set to 0, 1, 5, or 10
ms.

The SK20 incorporates a SYSMAC BUS communications feature to allow
C1000H, C200H, and CV500 connection and communications with the mas-
ter PC. Up to 16 units can be connected to the SK20.

The SK20 performs PC control functions to reduce the load on the master
program.

Easy-to-use Analog Timers Two analog timers are provided with the SK20. The set time of these analog
timers can be changed even while the PC is operating, with adjustment
screws located inside the front cover.

Reversible Drum Counter A reversible drum counter can be programmed for various counter present
value ranges.

Step Instructions Up to five steps (four processes) of instructions can be created, making it
easy to program start-stop control.

Shift Register A 16-bit shift register can be used to control various operations easily.

Addition, subtraction, ANDs, and ORs can be performed on16-bit data.

Differentiated Instructions Up to 16 rising edge/falling edge differentiated instructions can be pro-
grammed.

1-2 PC Basics
A PC (Programmable Controller) is basically a CPU (Central Processing
Unit) containing a program and connected to input and output (I/O) devices.
The program controls the PC so that when an input signal from an input de-
vice turns ON, the appropriate response is made. The response normally
involves turning ON an output signal to some sort of output device. The input
devices could be photoelectric sensors, pushbuttons on control panels, limit
switches, or any other device that can produce a signal that can be input into
the PC. The output devices could be solenoids, switches activating indicator
lamps, relays turning on motors, or any other devices that can be activated
by signals output from the PC.

For example, a sensor detecting a passing product turns ON an input to the
PC. The PC responds by turning ON an output that activates a pusher that

Efficient Distributed Control
with SYSMAC BUS

Arithmetic/Logical
Instructions

PC Basics Section 1-2

3

pushes the product onto another conveyor for further processing. Another
sensor, positioned higher than the first, turns ON a different input to indicate
that the product is too tall. The PC responds by turning on another pusher
positioned before the pusher mentioned above to push the too-tall product
into a rejection box.

Although this example involves only two inputs and two outputs, it is typical
of the type of control operation that PCs can achieve. Actually even this ex-
ample is much more complex than it may at first appear because of the tim-
ing that would be required, i.e., “How does the PC know when to activate
each pusher?” Much more complicated operations, however, are also possi-
ble. The problem is how to get the desired control signals from available in-
puts at appropriate times.

To achieve proper control, the SK20 uses a form of PC logic called lad-
der-diagram programming. The next few sections will explain ladder-diagram
programming and to prepare you to program and operate the SK20.

PCs historically originate in relay-based control systems. And although the
integrated circuits and internal logic of the PC have taken the place of the
discrete relays, timers, counters, and other such devices, actual PC opera-
tion proceeds as if those discrete devices were still in place. PC control, how-
ever, also provides computer capabilities and accuracy to achieve a great
deal more flexibility and reliability than is possible with relays.

The symbols and other control concepts used to describe PC operation also
come from relay-based control and form the basis of the ladder-diagram pro-
gramming method. Most of the terms used to describe these symbols and
concepts, however, have come in from computer terminology.

The terminology used throughout this manual is somewhat different from
relay terminology, but the concepts are the same. The following table shows
the relationship between relay terms and the terms used for OMRON PCs.

Relay term PC equivalent

contact input or condition

coil output or work bit

NO relay normally open condition

NC relay normally closed condition

The terms used for PC will be described in detail later.

1-2-1 PC Terminology
Although also provided in the Glossary at the back of this manual, the follow-
ing terms are crucial to understanding PC operation and are thus explained
here.

A device connected to the PC that sends a signal to the PC is called an in-
put device; the signal it sends is called an input signal. A signal enters the
PC through terminals or through pins on a connector on a Unit. The place
where a signal enters the PC is called an input point. This input point is allo-
cated a location in memory that reflects its status, i.e., either ON or OFF. This
memory location is called an input bit. The CPU, in its normal processing
cycle, monitors the status of all input points and turns ON or OFF corre-
sponding input bits accordingly.

There are also output bits in memory that are allocated to output points on
Units through which output signals are sent to output devices, i.e., an out-

Relay Circuits: The Roots
of PC Logic

Relay vs. PC Terminology

Inputs and Outputs

PC Basics Section 1-2

4

put bit is turned ON to send a signal to an output device through an output
point. The CPU periodically turns output points ON or OFF according to the
status of the output bits.

These terms are used when describing different aspects of PC operation.
When programming, one is concerned with what information is held in
memory, and so I/O bits are referred to. When talking about the Units that
connect the PC to the controlled system and the places on these Units where
signals enter and leave the PC, I/O points are referred to. When wiring these
I/O points, the physical counterparts of the I/O points, either terminals or con-
nector pins, are referred to. When talking about the signals that enter or
leave the PC, one refers to input signals and output signals, or sometimes
just inputs and outputs. It all depends on what aspect of PC operation is be-
ing talked about.

The Control System includes the PC and all I/O devices it uses to control an
external system. A sensor that provides information to achieve control is an
input device that is clearly part of the Control System. The controlled system
is the external system that is being controlled by the PC program through
these I/O devices. I/O devices can sometimes be considered part of the con-
trolled system, e.g., a motor used to drive a conveyor belt.

1-2-2 Overview of PC Operation
The following are the basic steps involved in programming and operating the
SK20. Assuming you have already purchased one or more of these PCs, you
must have a reasonable idea of the required information for steps one and
two, which are discussed briefly below. The rest of the steps are described
later in this manual.

1, 2, 3.. 1. Determine what the controlled system must do, in what order, and at
what times.

2. Determine what size of system is required, i.e.,will a single CPU suffice
or will additional Units be required.

3. On paper, assign all input and output devices to I/O points on the CPUs
and determine which I/O bits will be allocated to each. (3-2 Memory
Areas)

4. Using relay ladder symbols, write a program that represents the se-
quence of required operations and their inter-relationships. Be sure to
also program appropriate responses for all possible emergency situa-
tions. (3-4 Basic Programming, 3-6 Advanced Programming, and 3-7
Instruction Set)

5. Input the program and all required data into the PC. (3-5 Inputting the
Program)

6. Debug the program, first to eliminate any syntax errors, and then to find
execution errors.(3-8 Debugging)

7. Wire the PC to the controlled system. (Section 2 Installation)
8. Test the program in an actual control situation and carry out fine tuning

as required. (Section 4 Operation)
9. Record two copies of the finished program on masters and store them

safely in different locations.(3-5-7 Program Transfer)

Designing the Control System is the first step in automating any process. A
PC can be programmed and operated only after the overall Control System is
understood. Designing the Control System requires, first of all, a thorough
understanding of the devices that are to be controlled. The first step in de-
signing a Control System is thus determining the requirements of the con-
trolled system.

Controlled System and
Control System

Control System Design

PC Basics Section 1-2

5

Once the entire Control System has been designed, the task of program-
ming, debugging, and operation as described in the remaining sections of
this manual can begin.

The first thing that must be assessed is the number of input and output points
that the controlled system will require. This is done by identifying each device
that is to send an input signal to the PC or which is to receive an output sig-
nal from the PC.

Next, determine the sequence in which control operations are to occur and
the relative timing of the operations. Identify the physical relationships be-
tween the I/O devices as well as the kinds of responses that should occur
between them.

For instance, a photoelectric switch might be functionally tied to a motor by
way of a counter within the PC. When the PC receives an input from a start
switch, it could start the motor. The PC could then stop the motor when the
counter has received a specified number of input signals from the photoelec-
tric switch.

Each of the related tasks must be similarly determined, from the beginning of
the control operation to the end.

Note Programs and Peripheral Devices are not compatible between the SYSMAC
mini SK20 and C-series PCs.

1-3 Units

This section presents the names and functions of the various components of
the CPU, and Programming Console.

1-3-1 CPU

The SK20 is shown below. Two models are available. Both are powered by a
24-VDC power supply. Refer to Appendix A Standard Models for details.

Description and Function of SK20 Parts

Switches

Indicators

Terminal BlocK

Input/Output Requirements

Sequence, Timing, and
Relationships

Units Section 1-3

6

+ – C0 C1 02 04 06 08 10 C0 02 03 C2 06 07 +

NC NC 00 01 03 05 07 09 11 00 101 C1 04 05 C3 –

Switches

End Station Sliding Switch
Set end station when using
SYSMAC BUS. Refer to
1-4-1 Basic Configuration
for details.

DIP Switches
When using SYSMAC
BUS, set switches SW1 to
SW5 to allocate the re-
mote I/O addresses. Refer
to 1-4-1 Basic Configura-
tion for details.

Analog Timer
Trimmer #2 Analog Timer

Trimmer #1

Programming Console Connector
For connection to the SP10-PRO01-V1
Programming Console.

Terminal Block

Power
terminals
24 VDC

Input terminal
(Wd 00)

Output terminal
(Wd 01)

SYSMAC BUS connector terminal (RS-485)

C0 to C3: COM (common)

The input side COM terminal (C0) can be
used as the COM for normal inputs when the
High-speed Counter is not used.

High-speed Counter COM

NC terminals High-speed Counter
input termianls

00: counter input
01: hardware reset

Refer to pages 82 to 84
for details.

Input terminal
(Wd 00)

Output terminal
(Wd 01)

Indicators The PC has four indicators on the front panel, PWR, RUN, T/R, and ERR.
The functions of the indicators are presented as follows.

PWR (green): Lit while power is supplied.

RUN (green): Lit when the PC is in RUN mode and operating normally.

T/R (orange): Flashes during SYSMAC BUS communications. Lit when
an error occurs.

ERR (red): Lit when self-diagnosis detects an error.

Operation Mode on Start-up The SK20 operation mode on start-up is determined by mode setting and
whether the Programming Console is connected.

• If Programming Console is not connected:
RUN mode is automatically selected

• If Programming Console is connected:
Mode selector switch set to RUN: Run mode
Mode selector switch set to PRGM: Program mode

RUN Mode

• RUN mode: The program is executed.

• Program mode: Program execution is halted for to create or edit program.

Units Section 1-3

7

1-3-2 Programming Console
The Programming Console is shown below.

Connecting
cable connector

Display

Memory card access indicator

Mode switch

Memory card slot

Key pad

The Programming Console is used to write and transfer programs to the PC.
It is also used to monitor operation and modify data. The Programming Con-
sole can be connected directly to the PC for single PCs. It can also be con-
nected to other Units via a SYSMAC BUS Remote I/O Unit to access each
PC individually without re-connection.

1-3-3 Memory Cards
The Programming Console provides the ability to backup programs. The
Memory Card slot located at the base of the keyboard allows programs to be
transferred directly to and from the Programming Console. Each Card has a
built-in battery to preserve data.

Only one model of Memory Card, HMC-ES141, may be used. Each Memory
Card has 16 Kbytes of S-RAM. One Memory Card can hold up to 18 SK20
programs.

A battery is built-in to the Memory Card to allow the data to be retained. The
battery must be replaced within five years to ensure data is not lost. To re-
move the battery, insert a sharp object, like a pen tip, into the hole at the bot-
tom right of the card. The new battery must be inserted within one minute of
removing the old one.

Memory Cards have a write-protect switch. When the switch is ON, writing
operations to the memory card will not be possible.

Caution While the Memory Card is being accessed, the M/C ON LED on the Pro-
gramming Console will be lit. If the Memory Card is removed out from the
Programming Console while the LED is ON, the data contained in memory
on the Card may be damaged.

Units Section 1-3

8

1-4 PC Configuration
All SK20 models provide 20 I/O points (12 input and 8 output points).

1-4-1 Basic Configuration (SK20-C1DR-D/SK20-C1DT-D)
The diagram below shows an example of a system with four SK20 units con-
nected to one SYSMAC C200H Remote I/O Master Unit. This system func-
tions with SK20-C1DR-D/SK20-C1DT-D units (with SYSMAC BUS function)
only.

Note When starting up the system, turn on the SK20 slave unit power supplies be-
fore turning on the C200H master unit power supply.

C200H

ON

1 3 4 5 6 7 82

OFF

OFF ON

ON

1 3 4 5 6 7 82

OFF

OFF ON

14 15

14 15

+

–

SYSMAC BUS
(RS-485)

14 15

14 15

+

–

SYSMAC BUS
(RS-485)

+

–
RS-485

Wd 224
Wd 226
Wd 228

Wd 230

System Configuration

Master Unit (RM)
Remote I/O address allocation

Relay station 1
Relay station 2
Relay station 3
End station

Address setting: Wd 24 Address setting: Wd 26

End station
setting slide
switch

SK20 (relay
station 1)

SK20 (relay
station 2)

SYSMAC BUS wiring

Master unit

The connecting cables should be made of the recommended
cable (VCTF0.75 x 2C).

Wd 200

PC Configuration Section 1-4

9

ON

1 3 4 5 6 7 82

OFF

OFF ON

ON

1 3 4 5 6 7 82

OFF

OFF ON

14 15

14 15

+

–

SYSMAC BUS
(RS-485)

14 15

14 15

+

–

SYSMAC BUS
(RS-485)

SYSMAC BUS

Set address: 28
Set address: 30
Set as end station

End station
sliding switch

Turn this switch ON on
the final SYSMAC
BUS unit. It this switch
is not ON, normal op-
eration is not possible.

SK20 (relay
station 3)

SK20 (end
station)

Total cable length not to exceed 200 m.

PC Configuration Section 1-4

10

1-4-2 DIP Switch Settings

Leave OFF

On a transfer error clear all
data received from the SYS-
MAC BUS Master Unit.
ON: Clear all data
OFF: Hold status before error

When using SYSMAC BUS, set switches
SW1 to SW5 to allocate the remote I/O ad-
dresses.
Set from 0 to 30. (Set hexadecimal values
between 0 and 1E with SW5 as the most-
significant bit.)

Address Allocation Settings
Word SW1 SW2 SW3 SW4 SW5 Word SW1 SW2 SW3 SW4 SW5

0 0 0 0 0 0 16 0 0 0 0 1

1 1 0 0 0 0 17 1 0 0 0 1

2 0 1 0 0 0 18 0 1 0 0 1

3 1 1 0 0 0 19 1 1 0 0 1

4 0 0 1 0 0 20 0 0 1 0 1

5 1 0 1 0 0 21 1 0 1 0 1

6 0 1 1 0 0 22 0 1 1 0 1

7 1 1 1 0 0 23 1 1 1 0 1

8 0 0 0 1 0 24 0 0 0 1 1

9 1 0 0 1 0 25 1 0 0 1 1

10 0 1 0 1 0 26 0 1 0 1 1

11 1 1 0 1 0 27 1 1 0 1 1

12 0 0 1 1 0 28 0 0 1 1 1

13 1 0 1 1 0 29 1 0 1 1 1

14 0 1 1 1 0 30 0 1 1 1 1

15 1 1 1 1 0 --- --- --- --- --- ---

0: OFF, 1: ON

Note SK20 uses two words for SYSMAC BUS communications: one for inputs and
one for outputs. Therefore, if address 30 is set, words 30 and 31 are allo-
cated to SYSMAC BUS I/O. When allocating data to consecutive words, use
only even-numbered or odd-numbered words.

PC Configuration Section 1-4

11

SECTION 2
Installation

This section provides information on mounting and wiring the CPUs and on I/O specifications. Basic unit connections
are described in 1-4 PC Configuration. Detailed specifications are provided in Appendix B Specifications.

2-1 Dimensions 12.
2-2 Installation 14.

2-2-1 Installation Environment 14.
2-2-2 Cooling 14.
2-2-3 Preventing Noise 15.
2-2-4 Mounting Requirements 15.

2-3 Wiring 16.
2-3-1 Power Supply 17.
2-3-2 I/O Connections 17.
2-3-3 Precautions 18.

2-4 Programming Console 19.
2-4-1 Input Filters 19.

12

2-1 Dimensions
This section gives mounting dimensions. All dimensions are in millimeters.

SK20

160

40

150

50

65

Two M4 screws,
4.5 dia.

SP10-PRO01-V1

91

155

81

25

CPUs

Programming Console

Dimensions Section 2-1

13

Surface Mounting Dimensions

Panel mounting M4 screw hole

DIN Track fixing lug

Panel mounting M4 screw hole

Note Install the SK20 such that the heat radiation from top of the unit is not re-
stricted.
Leave the plastic seal on the top surface of the unit in place during installa-
tion and wiring to prevent dust and foreign matter from entering the unit. The
plastic seal must be removed after installation and wiring are complete. If it is
not removed after the Unit is installed, the plastic seal will cause the Unit to
overheat during operation.

Mounting Track
The SK20 can be mounted onto DIN Tracks.

Model No. Length (L)

PFP-50N 50 cm

PFP-100N 1 m

PFP-100N2 1 m

25 25

4.5

15
10

1000 (500) * 1

PFP-50N/PFP-100N 7.3±0.15

35±0.3 27±0.5

25 25

4.5

15
10

1000

27 24 29.2

16PFP-100N2

35±0.3

10

50

11.5

M4x8

35.335.5

1.8

1.8

1

6.2

10

4.8
1.3

End Plate (PFP-M)

Dimensions Section 2-1

14

2-2 Installation

2-2-1 Installation Environment

Although the SK20 Programmable Controllers are highly reliable and dura-
ble, a number of factors should be considered when installing them. Do not
expose an SK20 to the following conditions.

• An ambient temperature that falls below 0 or exceeds 55 °C for the CPU, or
that falls below 0 or exceeds 45 °C for the Programming Console.

• Abrupt changes in temperature that cause condensation.

• A relative humidity less than 10% or greater than 90%.

• Corrosive or flammable gas.

• Dust, salt, or iron particles.

• Direct vibration or shock.

• Direct sunlight.

• Water, oil, or chemicals.

2-2-2 Cooling

There are two points to consider in order to ensure that the PC does not
overheat. The first is the clearance between the CPUs and control panel sur-
round them, and the second is the installation of a cooling fan.

Clearance The CPUs need to have sufficient room between them to allow for I/O wiring,
and additional room to ensure that the wiring does not hamper cooling. The
CPU’s must be mounted close enough so that the length of the Connecting
Cable does not exceed 4 meters.

Cooling Fan Ensure adequate ventilation is provided for the PCs. A cooling fan is not al-
ways necessary, but may be needed if the PC is mounted in a warm or en-
closed area or over a source of heat. Although it is best to avoid installing the
PC in a warm area, use a cooling fan or an air conditioner, as shown in the
following illustration, to maintain the ambient temperature within specifica-
tions.

PC

FanControl Panel

Louver

Installation Section 2-2

15

2-2-3 Preventing Noise
In order to prevent noise from interfering with the operation of the PC, use
AWG 14 twisted-pair cables (cross-sectional area of at least 2 mm2). Do not
mount the PC in a control panel in which high-power equipment is installed
and make sure the point of installation is at least 200 mm away from power
cables, as shown in the following diagram. Ground the panel to which the PC
is mounted.

PC

200 mm min.

200 mm min.

Power lines

Whenever possible, use wiring conduit to hold the I/O wiring. Standard wiring
conduit should be used, and it should be long enough to completely contain
the I/O wiring and keep it separated from other cables.

2-2-4 Mounting Requirements
The system consists of from one to four CPUs. The Units may be mounted
horizontally or vertically, as desired. Do not mount a Unit on its side. The Unit
should be mounted with the printing on the front panel oriented as it would
normally be read. The PC can be mounted using DIN Track or mounted di-
rectly to any sturdy support meeting the environmental specifications listed in
Appendix B Specifications.

Track Mounting The PC may be mounted on a DIN Track if desired. Use 35 mm-wide DIN
track to mount the Unit. Two end plates are required to fix the SK20 in place.

PFP-M End Plates

PFP-50N
PFP-100N
PFP-100N2
DIN Track

Installation Section 2-2

16

2-3 Wiring
Power and I/O wiring connections are required. Supply 24 VDC power with
sufficient capacity and low ripple.

Relay Contact Output Model

0 1

C0

2

C1

3

02

4

04

5

06

6

08

7

10

8

C0

9

02

10

03

11

C2

12

06

13

07

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

15

15
NC 00 01 03 05 07 09 11 00 01 C1 04 05 C3

0
NC

SYSMAC
BUS

(RS-485)

Input circuit (Word 00)
Output circuit (Word 01)

C1 C3

C2C0

Input circuit (Word 00)

24-VDC
power supply

High-speed
counter input

Hard reset input

: Input contact
: Load

250 VAC or
24 VDC max.

250 VAC or
24 VDC max.

24 VDC

Output circuit (Word 01)

24 VDC

Caution Do not wire the terminal marked “NC.”

Transistor Output Model

0 1

C0

2

C1

3

02

4

04

5

06

6

08

7

10

8

C0

9

02

10

03

11

C2

12

06

13

07

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

15

15
NC 00 01 03 05 07 09 11 00 01 C1 04 05 C3

0
NC

Input circuit (Word 00)
Output circuit (Word 01)

C1 C3

C2C0

Input circuit (Word 00)

24-VDC
power supply

High-speed
counter input

Hard reset input

: Input contact
: Load

24 VDC

24 VDC

Output circuit (Word 01)

24 VDC

SYSMAC
BUS

(RS-485)

24 VDC

Caution Do not wire the terminal marked “NC.”

Wiring Section 2-3

17

2-3-1 Power Supply
Use independent power sources for the inputs, the output loads, and the PC.
Voltage fluctuations caused by current surges to motors may affect operation
of the PC. When using more than one PC, use a separate power supply for
each PC, firstly to prevent voltage drops caused by surge currents and sec-
ondly, to prevent the breaker from malfunctioning.

The following diagrams show the proper way to connect the power source to
the PC. Refer to Appendix B Specifications for detailed specifications.

DC Connections Supply 24 VDC and keep voltage fluctuations within the specified range.

2-3-2 I/O Connections
Connect the I/O devices to the I/O terminals using wire with a cross-sectional
area of 1.04 to 2.63 mm2. The terminals have screws with M3.5 heads and
self-rising pressure plates. Connect the lead wires to the terminals as shown
below. Tighten the screws with a torque of 8 kg-cm maximum.

If you wish to attach solderless type terminals to the ends of the lead wires,
use terminals having the following dimensions.

7.5 mm max.7.5 mm max.

Input Circuits
Either positive or negative poles of the power supply can be connected to the
common (COM) terminals, enabling connection of both PNP (negative com-
mon) and NPN (positive common) inputs.

The input circuit consumes about 6 mA (typ. at 24 VDC) per input point.

DC Input Examples The following diagrams show the correct way to wire the terminals on the
CPU. When wiring, work carefully to ensure that all terminals are wired cor-
rectly. If an input device is connected to an output point, damage may result.
Check all I/O devices to ensure they meet the specifications (refer to Appen-
dix B Specifications).

The DC inputs in the following diagrams are NPN (positive common). Re-
verse the polarity if PNP (negative common) is used.

DC Input Devices

DC input
6 mA

IN

COM

SK20

24 VDC

Wiring Section 2-3

18

NPN Open-collector Outputs

Output

Sensor
power
supply

DC input
IN

COM

SK20

6 mA
0 V

NPN Current Outputs

DC inputIN
COM

SK20

6 mA
0 V

Current
regulator Output

Sensor
power
supply

Use the same power supply
for the input and sensor.

PNP Current Outputs

Output

Sensor
power
supply

DC input
IN

COM

SK20

6 mA

0 V

2-3-3 Precautions

Unit Sticker A sticker is provided on the upper face of the CPU to prevent foreign objects,
such as wire clippings, from entering the CPU. Leave this protective sticker
on until the CPU is ready for operation. The sticker must be removed before
operation to enable proper cooling.

Contact Outputs High inductance on for contact outputs will reduce relay life. Keep inductance
low and use an arc suppressor (such as a diode for DC loads). This is partic-
ular important with inductive DC loads.

Vibration Relay operation may be adversely affected if the relay is located near contac-
tors, valves, motors, or other devices that produce vibration.

Protective Circuits We recommend the use of arc suppressors to increase contact life and allevi-
ate the affects of noise. Arc suppressors, however, will delay release time
somewhat and, if used incorrectly, they can inhibit proper operation. The
most common arc suppressors for AC are capacitor-resistor circuits and va-
ristor circuits; for DC: capacitor-resistor circuits, diode circuits, and varistor
circuit. Do not use a capacitor without a resistor as the charging current flow
to the capacitor when current is turned ON can cause the contacts to fuse.

Wiring Section 2-3

19

2-4 Programming Console
Connect the Programmable Console to the SK20 with the connecting cable.
The cable can be connected or removed any time the Programmable Con-
sole is not communicating.

Type of Cable

SP10-PRO01-V1

Connecting Cable Use one of the following Connecting Cables to connect the Programming Console.

SP10-CN221 (2 m)

SP10-CN421 (4 m)

2-4-1 Input Filters
To prevent the PC from malfunctioning due to the chattering (bouncing) of the
input device signals or induced noise, the input signals are received via a
filter. The filter may be adjusted so that input pulses of a duration less than a
minimum specified duration of the filter are ignored. The minimum duration
before the detection of an input signal may be set to 0, 1, 5, or 10 ms. The
following diagram illustrates the use of a filter.

External input

Input detection time

t t

The input detection time, t, for the various possible settings is given in the
following table. The “key” column shows which key is pressed to input each
setting in the key sequence below.

Key Setting Actual detection time

0 0 ms t = 150 µs

1 1 ms t = 1 to 1.5 ms

2 5 ms t = 5 to 5.5 ms

3 10 ms t = 10 to 10.5 ms

During the period t to t + 0.5 ms, the positive and negative transitions of the
input signal may or may not be detected.

Programming Console Section 2-4

20

The filter values are set using the Programming Console. The input circuits
are grouped into three groups. The circuits included in each group depend on
the PC, as shown in the table below. A different filter value can be set for
each group. The filter values can be set in PROGRAM mode only and must
be set before operating the PC. The filter values are set simultaneously in the
PC and in the Programming Console.

PC model Group 1 inputs Group 2 inputs Group 3 inputs

SK20 0 and 1 2 to 9 10 and 11

Always set the filter values after transferring the program and before starting
operation. Set the filter value to 5 or 10 ms when the PC is installed in envi-
ronments subject to noise, or when input devices that may cause chattering
are connected to the PC. If the filter value is set to 0 or 1 ms, be sure that the
input wiring is carefully installed to prevent interference.

Input 0 to specify 0 ms, 1 for 1 ms, 2 for 5 ms, and 3 for 10 ms.

Group 1 Group 2

A B C

Group 3

D

The following diagrams illustrate the Programming Console displays at the
respective positions marked in the key sequence diagram.

���������	
�����

��
���������
��

���������	
�����

��
���������
��

A

B

C
���������	
�����

��
���������
��

���������	
���
�
D

Set the filter values of groups 1, 2, and 3 at the same time. After entering the
filter values, read them on the Programming Console for confirmation. Use
the following key sequence. Reading is possible in either RUN or PROGRAM
mode.

Key Sequence

The Programming Console will display the information in the following format.

Filter Value Settings

Key Sequence

Programming Console Section 2-4

21

SP10-PRO01-V1
The display will show the settings for groups 1, 2, and 3 when the program-
ming console is connected to an SK20.

�������������

�������������

PC settings
Group 1: 0 ms; group 2: 1 ms; group 3: 5 ms.

Programming Console settings
Group 1: 0 ms; group 2: 5 ms; group 3: 5 ms.

Programming Console Section 2-4

23

SECTION 3
Programming

This section takes you all the way through the programming procedure from understanding memory area allocation to
debugging and executing the program. Section 4 Operation will then provide procedures for monitoring PC operation
and manipulating data after you have written, input, and debugged the program.

3-1 Introduction 25.
3-2 Memory Areas 25.

3-2-1 Data Area Structure 26.
3-2-2 I/O Bits 28.
3-2-3 Work Bits 28.
3-2-4 Dedicated Bits 28.
3-2-5 DR Area 31.
3-2-6 TC (Timer/Counter) Area 31.

3-3 The Programming Console 32.
3-3-1 The Keyboard 32.
3-3-2 PC Modes 33.

3-4 Basic Programming 34.
3-4-1 Terminology 34.
3-4-2 Mnemonic Code 35.
3-4-3 Ladder Instructions 36.
3-4-4 OUTPUT and OUTPUT NOT 38.
3-4-5 The END Instruction 39.
3-4-6 Logic Block Instructions 39.
3-4-7 Coding Multiple Right-hand Instructions 45.

3-5 Inputting the Program 45.
3-5-1 Initial Programming Console Operation 46.
3-5-2 Clearing Memory 47.
3-5-3 Clearing Error Messages 48.
3-5-4 Setting and Reading from Program Memory Address 48.
3-5-5 Entering or Editing Programs 49.
3-5-6 Checking the Program 51.
3-5-7 Program Transfer 52.
3-5-8 Program Searches 55.
3-5-9 Inserting and Deleting Instructions 55.

3-6 Advanced Programming 58.
3-6-1 Interlocks 58.
3-6-2 Controlling Bit Status 60.
3-6-3 DIFFERENTIATE UP and DIFFERENTIATE DOWN 60.
3-6-4 KEEP 60.
3-6-5 Self-maintaining Bits (Seal) 61.
3-6-6 Work Bits (Internal Relays) 61.
3-6-7 Programming Precautions 63.

3-7 Instruction Set 65.
3-7-1 Notation 65.
3-7-2 Instruction Format 65.
3-7-3 Data Areas, Definer Values, and Flags 65.
3-7-4 Coding Right-hand Instructions 66.
3-7-5 LOAD, LOAD NOT, AND, AND NOT, OR, and OR NOT 68.
3-7-6 AND LOAD and OR LOAD 69.
3-7-7 OUTPUT and OUTPUT NOT - OUT and OUT NOT 70.

24

3-7-8 DIFFERENTIATE UP and DIFFERENTIATE DOWN -
DIFU(10) and DIFD(11) 70.

3-7-9 KEEP - KEEP(12) 72.
3-7-10 INTERLOCK and INTERLOCK CLEAR - IL(02) and ILC(03) 74.
3-7-11 END - END(01) 76.
3-7-12 NO OPERATION - NOP(00) 76.
3-7-13 Timers and Counters 76.
3-7-14 TIMER - TIM 77.
3-7-15 TIMER - TIMM(20) 81.
3-7-16 HIGH-SPEED TIMER - TIMH(21) 82.
3-7-17 ANALOG TIMER - ATIM(22) 82.
3-7-18 ANALOG TIMER 1 and 2 - ATM1(25) and ATM2(26) 83.
3-7-19 COUNTER - CNT 84.
3-7-20 REVERSIBLE DRUM COUNTER -RDM(23) 88.
3-7-21 HIGH-SPEED COUNTER - CNTH(24) 89.
3-7-22 SHIFT REGISTER - SFT(33) 91.
3-7-23 MOVE - MOV(30) 93.
3-7-24 MOVE NOT - MVN(31) 94.
3-7-25 COMPARE - CMP(32) 94.
3-7-26 BLOCK COMPARE - BCMP(34) 96.
3-7-27 CLEAR CARRY - CLC(44) 98.
3-7-28 BCD ADD - ADD(40) 98.
3-7-29 BCD SUBTRACT - SUB(41) 99.
3-7-30 AND WORD- ANDW(42) 101.
3-7-31 OR WORD - ORW(43) 101.
3-7-32 STEP DEFINE and STEP START-STEP(04)/SNXT(05) 102.

3-8 Debugging 106.
3-8-1 Displaying and Clearing Error Messages 106.
3-8-2 Reading the Cycle Time 107.

3-9 Program Execution 108.
3-9-1 Cycle 108.

3-10 I/O Response Time 109.
3-10-1 Single PCs 109.
3-10-2 Operation and Cycle Time at Power ON 111.
3-10-3 I/O Response Time 112.

3-11 Using SK20 SYSMAC BUS Functions 113.
3-11-1 I/O Response Time 113.

25

3-1 Introduction
There are several basic steps involved in writing a program. Sheets that can
be copied to aid in programming are provided in Appendix F I/O Assignment
Sheets and Appendix G Program Coding Sheet.

1, 2, 3.. Obtain a list of all I/O devices and the I/O points that have been as-
signed to them and prepare a table that shows the I/O bit allocated to
each I/O device.
Determine what words are available for work bits and prepare a table in
which you can allocate these as you use them.
Also prepare tables of TC numbers so that you can allocate these as
you use them. Remember, the function of a TC number can be defined
only once within the program. (TC numbers are described in 3-7-13 Tim-
ers and Counters.)
Draw the ladder diagram.
Input the program into the Programming Console.
Check the program for syntax errors and correct these.
Transfer the program from the Programming Console to the CPU and
execute the program to check for execution errors and correct these.
After the entire Control System has been installed and is ready for use,
execute the program and fine tune it if required.

3-2 Memory Areas
Details, including the name, acronym, range, and function of each area are
summarized in the following table. All but the last area are data areas. Data
and memory areas are normally referred to by their acronyms. Bits not listed
in the following table cannot be used.

Area No. of
bits

Word
addresses

Bit
addresses

Function

Input bits 12 00 0000 to 0011 Input external signals to the PC. These bits can be used as
many times as required in the program.

Output bits 8 01 0100 to 0107 Each of these bits can be used in only one instruction
controlling its status, but can be used as many times as
required in other instructions. If the status of the same output
bit is controlled by more than one instruction, only the status
determined by the last instruction will be output.

Work bits 172 00 0012 to 0015 These bits are used within the program to aid programming.

01 0108 to 0115

02 0200 to 0215

10 to 18 1000 to 1815

SYSMAC BUS
communications

32* 19 1900 to 1915 SK20 to Master transmitted data
communications
bits 20 2000 to 2015 Master to SK20 received data

Dedicated bits 112 03 to 09 0300 to 0915 These bits are assigned specific functions. For details, refer to
the table in 3-2-4 Dedicated Bits.

Data Retention
(DR)

256
max.

DR 00 to
DR 15

DR 0000 to
DR 1515

These bits retain their ON/OFF state even during power
interruptions.

Timer/Counter
(TC)

16 TIM/CNT 00 to 15 Used to define timers and counters and to access Completion
Flags, PV, and SV for them. TC 11 and TC12 are used by the
instructions ANALOG TIMER1 (ATM1) and ANALOG TIMER2
(ATM2) respectively. TC 14 is used by the HIGH-SPEED
TIMER instruction (TIMH), and TC 15 is used by the ANALOG
TIMER instruction.

*Note The SYSMAC BUS communications bits (words 19 and 20) are available in
the SK20-C1DR-D/SK20-C1DT-D only. These bits are work bits in the
SK20-C2DR-D/SK20-C2DT-D.

Memory Areas Section 3-2

26

3-2-1 Data Area Structure
When designating a data area, the acronym for the area is always required
for the DR, and TC areas.
An actual data within any data area but the TC area is designated by its ad-
dress. The address designates the bit or word within the area where the de-
sired data is located. The TC area consists of TC numbers, each of which is
used for a specific timer or counter defined in the program. Refer to 3-2-6 TC
(Timer/Counter) Area for more details on TC numbers.

The rest of the data area consists of words, each of which consists of 16 bits
numbered 00 through 15 from right to left. Words 000 and 001 are shown
below with bit numbers. Here, the content of each word is shown as all zeros.
Bit 00 is called the rightmost bit; bit 15, the leftmost bit.

The term least significant bit is often used for rightmost bit; the term most
significant bit, for leftmost bit. These terms are not used in this manual be-
cause a single data word is often split into two or more parts, with each part
used for different parameters or operands. When this is done, the rightmost
bits of a word may actually become the most significant bits, i.e., the leftmost
bits in another word, when combined with other bits to form a new word.

Bit number

Word 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Word 001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

To designate data by word, all that is necessary is the acronym (if required)
and the two-digit word address. To designate data by bit, the word address is
combined with the bit number as a single four-digit address. The following
table show examples of this. The two rightmost digits of a bit designation
must indicate a bit between 00 and 15, i.e., the rightmost digit must be 5 or
less the next digit to the left, either 0 or 1.

The same TC number can be used to designate either the present value (PV)
of the timer or counter, or a bit that functions as the Completion flag for the
timer or counter.

Area Word designation Bit designation

I/O, work, and
dedicated bits

00 0015 (leftmost bit in word 00)

TC TC 03 (designates PV) TC 03 (designates Completion Flag)

DR DR 15 DR 0513

Word data input as decimal values is stored in binary-coded decimal (BCD);
word data entered as hexadecimal is stored in binary form. Each four bits of
a word represents one digit, either a hexadecimal or decimal digit, numerical-
ly equivalent to the value of the binary bits. One word of data thus contains
four digits, which are numbered from right to left. These digit numbers and
the corresponding bit numbers for one word are shown below.

Bit number

Contents 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Digit number 3 2 1 0

When referring to the entire word, the digit numbered 0 is called the right-
most digit; the one numbered 3, the leftmost digit.

When inputting data into data areas, it must be input in the proper form for
the intended purpose. This is no problem when designating individual bits,

Data Structure

Memory Areas Section 3-2

27

which are merely turned ON (equivalent to a binary value of 1) or OFF (a
binary value of 0). When inputting word data, however, it is important to input
it either as decimal or as hexadecimal, depending on what is called for by the
instruction it is to be used for. 3-7 Instruction Set specifies when a particular
form of data is required for an instruction.

Binary and hexadecimal can be easily converted back and forth because
each four bits of a binary number is numerically equivalent to one digit of a
hexadecimal number. The binary number 0101111101011111 is converted to
hexadecimal by considering each set of four bits in order from the right.
Binary 1111 is hexadecimal F; binary 0101 is hexadecimal 5. The hexadeci-
mal equivalent would thus be 5F5F, or 24,415 in decimal (163 x 5 + 162 x 15
+ 16 x 5 + 15).

Decimal and BCD are easily converted back and forth. In this case, each
BCD digit (i.e., each group of four BCD bits) is numerically equivalent of the
corresponding decimal digit. The BCD bits 0101011101010111 are converted
to decimal by considering each four bits from the right. Binary 0101 is deci-
mal 5; binary 0111 is decimal 7. The decimal equivalent would thus be 5,757.
Note that this is not the same numeric value as the hexadecimal equivalent
of 0101011101010111, which would be 5,757 hexadecimal, or 22,359 in deci-
mal (163 x 5 + 162 x 7 + 16 x 5 + 7).

Because the numeric equivalent of each four BCD binary bits must be nu-
merically equivalent to a decimal value, any four bit combination numerically
greater then 9 cannot be used, e.g., 1011 is not allowed because it is numeri-
cally equivalent to 11, which cannot be expressed as a single digit in decimal
notation. The binary bits 1011 are of course allowed in hexadecimal are a
equivalent to the hexadecimal digit C.

Decimal points are used in timers only. The least significant digit represents
tenths of a second. All arithmetic instructions operate on integers only.

Normally, when the content of a data area word is specified for an instruction,
the instruction is performed directly on the content of that word. For example,
suppose CMP(32) (COMPARE), with word 05 as the first operand and DR 10
as the second operand, is used in the program. When this instruction is ex-
ecuted, the content of word 05 is compared with that of DR 10.

It is also possible, however, to use indirect DR addresses as operands for
instructions. If �DR 01 is specified as the data for a programming instruction,
the asterisk in front of DR indicates that it is an indirect address that specifies
another DR word which contains the actual operand data. If, in this case, the
content of DR 01 is 06, then �DR 01 indicates DR 06 as the word that con-
tains the desired data, and the content of DR 06 is used as the operand in
the instruction. The following example shows this type of indirect addressing
with the MOVE instruction (MOV(30)).

MOV(30)

�DR 01

DR 00

 Word Content
DR 00 4C01
DR 01 0006
DR 02 F693

DR 06 5555
DR 07 21A5
DR 08 D945

5555
moved to
DR 00.

Indicates
DR 06.

Indirect
address

Converting Different Forms
of Data

Decimal Points

Indirect Addressing

Memory Areas Section 3-2

28

3-2-2 I/O Bits
Input bits are used to read the status of input terminals, i.e., input bits are
used as operands in the program to control program execution. Output bits
are used to control the status of output terminals, i.e., various conditions in
the program are used to determine the status of output bits through the OUT-
PUT and other instructions. The relationship of the I/O bits and terminals in
the SK20 is shown below.

Inputs Outputs

Word Bit Terminal Word Bit Terminal

00 0000 0 01 0100 0

0001 1 0101 1

0002 2 0102 2

0003 3 0103 3

0004 4 0104 4

0005 5 0105 5

0006 6 0106 6

0007 7 0107 7

0008 8 ---

0009 9

0010 10

0011 11

After the program is executed, the status of outputs determined by the pro-
gram is actually output from the output bits to the output terminals. Also, the
current status of all inputs is read from the input terminals to the input bits.

Do not use normally closed input signals for SK20 with DC power supplies.
Doing so can cause counters and shift registers to reset and bits pro-
grammed with the KEEP instruction to invert when power is interrupted, re-
sulting in errors in program execution.

3-2-3 Work Bits
Work words and bits can be used in programming as required to control oth-
er bits. The work bits listed in the following table well as bits in the DR areas
can be used as work bits if they are not used for other purposes. The actual
application of work bits is described in 3-6-6 Work Bits (Internal Relays). In
the SK20, bits 0006 and 0007 cannot be used for work bits or for any other
purpose.

SK20

Word Bits

00 0012 to 0015

01 0108 to 0115

02 0200 to 0215

10 to 18 1000 to 1815

3-2-4 Dedicated Bits
The dedicated bit area contains flags and control bits used for monitoring
system operation, accessing clock pulses, and signalling errors. In the SK20,
word addresses range from 03 through 09; bit addresses, from 0300 through
0915. Bits in the dedicated bit area that are not assigned functions cannot be
used for work bits or for any other purpose.

The following table lists the functions of flags and control bits in the dedicated
bit area. Most of these bits are described in more detail following the table.

Caution

Memory Areas Section 3-2

29

Unless otherwise stated, flags are OFF until the specified condition arises,
when they are turned ON. Bits 0311 through 0315 are turned OFF when the
END is executed at the end of each program cycle, and thus cannot be moni-
tored on the Programming Console. Other bits are OFF until set by the user.

Information in the following table applies to the SK20.

Word Bit Function

03 0300 Master PC operation status and SYSMAC BUS
communications status written when SYSMAC BUS is
used.
0: Run/Monitor mode
1: Stop/PROGRAM mode/communications error/ error
(cable discontinuity, etc.)

0301 to 0307 Cannot be used

0308 1.0-second Clock Pulse

0309 0.1-second Clock Pulse

0310 0.01-second Clock Pulse

0311 Error (ER) Flag

0312 Carry (CY) Flag

0313 Less Than (LE) Flag

0314 Equals (EQ) Flag

0315 Greater Than (GR) Flag

04 0400 to 0407 Cannot be used

0408 Always ON Flag

0409 Always OFF Flag

0410 First Cycle Flag

0411 Step Flag

0412 to 0415 Cannot be used

05 0500 to 0507 Set whether operation continues if a communications error
occurs or master PC operations stop (including PROGRAM
mode).
Continue operation: 00000000 (default)
Operation halts: 01010101 (55 BCD)

0508 to 0514 Cannot be used

0515 Sets whether the DR data backed up in EEPROM is
transferred to RAM when the Unit is turned on.
0 (OFF): do not transfer
1 (ON): transfer

This Data Retention Bit is set ON when DR data backup is
executed (see 3-5-7 Program Transfer).The status of this
bit is held after the power supply is turned off. When the
power is turned back on, the DR data backed up in
EEPROM is transferred to the RAM. To retain the same DR
data when the power is turned back on, turn OFF this bit
with the Force Set/Reset Bit before turning off the power.
Bit becomes OFF when the All Clear instruction is
executed.

06 --- Cannot be used

07 0700 to 0707 Maximum Cycle Time Area (See page 31) changes
Bits 4 to 7: x 1 ms, bits 0 to 3: x 0.1 ms

0708 to 0715 Current Cycle Time Area (See page 31)
Bits 12 to 15: x 1 ms, bits 8 to 11: x 0.1 ms

Memory Areas Section 3-2

30

Word FunctionBit

08 0800 to 0815 ATM1 Set Value Area (See page 31)
Bits 12 to 15: x 103, bits 8 to 11: x 102, bits 4 to 7: x 101,
bits 0 to 3: x 100

09 0900 to 0915 ATM2 Set Value Area (See page 31)
Bits 12 to 15: x 103, bits 8 to 11: x 102, bits 4 to 7: x 101,
bits 0 to 3: x 100

Descriptions

Error Flag Bit 0311 turns ON when data for an arithmetic operation or indirectly ad-
dressed data is not in BCD. It also turns ON when a specified operand ex-
ceeds the data area, e.g., when an operand requires two words and the last
word in a data area is designated.

Arithmetic Flags The following flags are used in arithmetic calculation , and comparison in-
structions. These flags are all reset when END is executed, and therefore
cannot be monitored from a programming device.

Carry Flag, CY Bit 0312 turns ON when a carry occurs as a result
of arithmetic operation.

Less Than Flag, LE Bit 0313 turns ON when the result of a comparison
operation between two operands shows the first to
be less than the second.

Equals Flag, EQ Bit 0314 turns ON when the result of a comparison
shows two operands to be equal or when the result
of an arithmetic operation is zero.

Greater Than Flag, GR Bit 0315 turns ON when the result of a comparison
operation between two operands shows the first to
be greater than the second.

For relations between arithmetic flags and instructions, refer to Appendix E.

Always ON/OFF Flags Bit 0408 is always ON and bit 0409 is always OFF. These bits can be pro-
grammed to control external indicating devices such as an LED to monitor
the PC’s operating status. They can also be used in programming when an
instruction is to be executed every cycle.

First Cycle Flag Bit 0410 turns ON when program execution starts and turns OFF after one
cycle.

Step Flag Bit 0411 turns ON for one cycle when step execution is started by the STEP
instruction.

Master Missing Flag Bits 0500 to 0507 set whether operation continues if a communication error
occurs or master PC operations stop (including PROGRAM mode). Set to
00000000 to continue operation (default). Set to 01010101 (55 BCD) to halt
operation.

DR Data Transfer Enable Bit Turn bit 0515 ON to transfer DR data from EEPROM to RAM when power is
applied to the PC. This bit will be ON after the “DR Area Transfer” operation
has been performed. The status of bit 0515 is retained in a power interrup-
tion, i.e., DR data will be transferred from EEPROM to RAM when the power
is turned ON if bit 0515 is ON when power is interrupted. If you want to retain
the DR data as it was just before a power interruption, turn bit 0515 OFF with
the “Force Set/Reset” operation. Bit 0515 is turned OFF in the “Data Clear”
operation.

Memory Areas Section 3-2

31

Maximum Cycle Time Area Bits 0700 to 0707 contain the maximum cycle time since start-up in 2-digit
BCD (0.0 to 9.9 ms). The maximum cycle time is reset when the PC begins
operation.

Current Cycle Time Area Bits 0708 to 0715 contain the current cycle time in 2-digit BCD (0.0 to
9.9 ms).

Note The present and maximum cycle time can be read out from the Programming
Console with the SK20. Refer to page 107 for details.

ATM1 Set Value Area Word 08 contains the set value in BCD for analog timer 1 as set with the ad-
justment screw on the front of the CPU.

ATM2 Set Value Area Word 09 contains the set value in BCD for analog timer 2 as set with the ad-
justment screw on the front of the CPU.

3-2-5 DR Area
The DR area is used for data storage and manipulation. All data that is to be
preserved for power interruptions, must be placed in this area.

3-2-6 TC (Timer/Counter) Area
The TC area is used to create and program timers and counters and holds
the Completion Flags, set values (SV), and present values (PV) for all timers
and counters. All of these are accessed through TC numbers ranging from
TC 00 through TC 15. Each TC number is defined as either a timer or count-
er using one of the following instructions: TIM, TIMM(20), TIMH(21),
ATIM(22), ATM1(25), ATM2(26), CNT, RDM(23), or CNTH(24). No prefix is
required when using a TC number as a definer in a timer or counter instruc-
tion.

Once a TC number has been defined using one of these instructions, it can-
not be redefined elsewhere in the program either using the same or a differ-
ent instruction. If the same TC number is defined in more than one of these
instructions or in the same instruction twice, an error will be generated. There
are no restrictions on the order in which TC numbers can be used. TC num-
bers TC 11 through TC 15 are assigned to specific instructions, as shown in
the table below.

TC number Instruction

TC 11 ANALOG TIMER 1, ATM1(25)

TC 12 ANALOG TIMER 2, ATM2(26)

TC 13 HIGH-SPEED COUNTER, CNTH(24)

TC 14 HIGH-SPEED TIMER, TIMH(21)

TC 15 ANALOG TIMER, ATIM(22)

Once defined, a TC number can be designated as an operand in one or more
of certain instructions other than those listed above and can be used as
many times as necessary in ladder instructions. When defined as a timer, a
TC number designated as an operand takes a TIM prefix. The TIM prefix is
used regardless of the timer instruction that was used to define the timer.
Once defined as a counter, the TC number designated as an operand takes
a CNT prefix. The CNT is also used regardless of the counter instruction that
was used to define the counter.

TC numbers can be designated for operands that require bit data or for oper-
ands that require word data. When designated as an operand that requires
bit data, the TC number accesses the Completion Flag of the timer or count-

Memory Areas Section 3-2

32

er. When designated as an operand that requires word data, the TC number
accesses a memory location that holds the PV of the timer or counter.

The TC area retains the SVs of both timers and counters during power inter-
ruptions. The PVs of timers are reset when PC operation is begun and when
reset in interlocked program sections. Refer to 3-7-10 Interlock and Interlock
Clear - IL(02) and ILC(03) for details on timer and counter operation in inter-
locked program sections. The PVs of counters are not reset at these times.

Note that in programming “TIM 0” is used to designate three things: the Timer
instruction defined with TC number 00, the Completion Flag for this timer,
and the PV of this timer. The meaning in context should be clear, i.e., the first
is always an instruction, the second is always a bit, and the third is always a
word. The same is true of all other TC numbers prefixed with TIM or CNT.

3-3 The Programming Console
The Programming Console is used to program, monitor, and maintain the
PCs. All programming is first input into the Programming Console and then
transferred to the CPUs for execution or Memory Cards for storage.

The Programming Console keys are divided into several sections for ease in
operation. The gray keys are used in combination with the white numeric
keys to designate instructions, operands, and Programming Console func-
tions. The yellow keys are used to designate Programming Console opera-
tions. The red Clear Key is used to clear the display and cancel Program-
ming Console operations. Key functions are described in detail in the next
section.

3-3-1 The Keyboard
Key Function

FUN
Function Key Designates instructions via function codes or designates Programming Console

functions.

NOT
NOT Key Pressed after the Load, AND, or OR Key to designate a normally closed

condition with the LOAD, AND, or OR instructions.

SHIFT
Shift Key Designates the upper function on keys that have two functions. Used with the

CH/* Key, the Bit/Constant Key, or Numeric Keys 0 through 5.

AND
AND Key Inputs an AND instruction.

OR
OR Key Inputs an OR instruction.

LD
Load Key Inputs a LOAD instruction when pressed alone or an OR LOAD or AND LOAD

instruction when pressed after the OR or AND Key.

OUT
Output Key Inputs an OUTPUT instruction when pressed alone or an OUTPUT NOT

instruction if pressed before the NOT key.

TIM
Timer Key Inputs a TIMER instruction.

CNT
Counter Key Inputs a COUNTER instruction.

DR
Data Bit Key Indicates a DR (data) bit.

LR
Link Bit Key Indicates a LR (data) bit. This key cannot be used for the SK20 PC.

CH

*
Word/Indirect
Address Key

Indicates an indirect DR address when pressed without the Shift Key and
designates a word address when pressed after the Shift Key.

CONT
#

Bit/Constant Key Indicates a bit or a constant depending on whether the Shift Key is used.

CHG
Change Key Pressed to change the content of a memory address.

The Programming Console Section 3-3

33

Key Function

DEL
Delete Key Pressed to delete an instruction in combination with the Up Key.

INS
Insert Key Pressed to insert an instruction in combination with the Down Key.

CLR
Clear Key Normally cancels operations and resets the Programming Console.

ENT
Enter Key Inputs instructions, set values, and other data.

Up Key Pressed when reading programs to scroll the program memory address or
pressed to delete instructions (see Delete Key).

Down Key Pressed when reading programs to scroll the program memory address or
pressed to insert instructions (see Insert Key).

MON
Monitor Key Pressed to monitor bit status or word content.

to

to

Numeric keys Input numeric values, addresses, and other data. The Shift key is pressed
before the 0 through 5 Keys to input hexadecimal numerals A through F.

3-3-2 PC Modes
There are two PC operating modes that are set from the Programming Con-
sole: RUN and PROGRAM.

RUN mode is used for normal program execution once the program has
been input. In RUN mode, input terminal status is read into the PC and out-
put terminals are updated according to program execution results.

PROGRAM mode is used for programming operations to input and debug the
program when setting up the control system and for data access and manip-
ulation once a control system is running. The program is not executed in
PROGRAM mode.

When the PC is turned on with the Programming Console attached, the
mode switch on the Programming Console will determine the initial operating
mode.

If the Programming Console is not attached, the PC will always start in RUN
mode and the program will be executed immediately.

If the Programming Console is attached after the PC is already turned on, the
current mode will continue regardless of the setting of the Programming Con-
sole mode switch.

Caution Always confirm that the Programming Console is in PROGRAM mode when
turning on the PC with a Programming Console connected unless another
mode is desired for a specific purpose. If the Programming Console is in
RUN mode when PC power is turned on, any program in Program Memory
will be executed, possibly causing a PC-controlled system to begin operation.
If the START input on the CPU Power Supply Unit is ON and there is no de-
vice connected to the CPU, ensure that commencing operation is safe and
appropriate before turning on the PC.

DANGER! Do not leave the Programming Console connected to the PC by an extension
cable when in RUN mode. Noise detected via the extension cable can enter
the PC, affecting the program and thus the controlled system.

Startup Mode

The Programming Console Section 3-3

34

3-4 Basic Programming

3-4-1 Terminology
There are basically two types of instructions used in ladder-diagram pro-
gramming: ladder instructions that correspond to the conditions on the ladder
diagram and right-hand instructions that are used on the right side of the lad-
der diagram and are controlled by the ladder instructions. Ladder instructions
are used in instruction form only when converting a program to mnemonic
code.

Most instructions have at least one or more operands associated with them.
Operands indicate or provide the data on which an instruction is to be per-
formed. These are sometimes input as the actual numeric values, but are
usually the addresses of words or bits that contain the data to be used. For
instance, a MOVE instruction that has word 00 designated as the source op-
erand will move the contents of word 00 to some other location. The other
location is also designated as an operand. A bit whose address is designated
as an operand is called an operand bit; a word whose address is designated
as an operand is called an operand word. If the actual value is entered as a
constant, it is preceded by # to indicate that it is not an address.

Basic Ladder Diagram A ladder diagram consists of one line running down the left side with lines
branching off to the right. The line on the left is called the bus bar; the
branching lines, instruction lines or rungs. (Sometimes a right bus bar is also
drawn.) Along the instruction lines are placed conditions that lead to other
instructions on the right side. The logical combinations of these conditions on
the ladder determine when and how the right-hand instructions are executed.
A simple ladder diagram is shown below.

0000 0001

Instruction

Instruction

0002

0312

0010 0002

0011

0012

0003 DR 0050

Instruction

As shown in the diagram above, instruction lines can branch apart and they
can join back together. The vertical pairs of lines are called conditions. Con-
ditions without diagonal lines through them are called normally open condi-
tions and correspond to a LOAD, AND, or OR instruction. The conditions with
diagonal lines through them are called normally closed conditions and corre-
spond to a LOAD NOT, AND NOT, or OR NOT instruction. The number
above each condition indicates the operand bit for the condition. It is the sta-
tus of the bit associated with each condition that determines the execution
condition for following instructions. The way the operation of each of the in-
structions corresponds to a condition is described below. Before we consider
these, however, there are some basic terms that must be explained.

Each condition in a ladder diagram is either ON or OFF depending on the
status of the operand bit that has been assigned to it. A normally open condi-
tion is ON if the operand bit is ON; OFF if the operand bit is OFF. A normally

Normally Open and
Normally Closed
Conditions

Basic Programming Section 3-4

35

closed condition is ON if the operand bit is OFF; OFF if the operand bit is
ON. Generally speaking, you use a normally open condition when you want
something to happen when a bit is ON, and a normally closed condition when
you want something to happen when a bit is OFF.

Instruction

Instruction

0000

0000
Instruction is executed
when bit 0000 is ON.

Instruction is executed
when bit 0000 is OFF.

Normally open
condition

Normally closed
condition

In ladder diagram programming, the logical combination of ON and OFF con-
ditions before an instruction determines the compound condition under which
the instruction is executed. This condition, which is either ON or OFF, is
called the execution condition for the instruction. All instructions other than
LOAD instructions have execution conditions.

The operands designated for any of the ladder instructions can be any I/O,
work, DR, or dedicated bit. This means that the conditions in a ladder dia-
gram can be determined by I/O status, flag status, status contained in work
bits, timer/counter status, etc.

The way that conditions correspond to what instructions is determined by the
relationship between the conditions within the instruction lines that connect
them. Any group of conditions that go together to create a logic result is
called a logic block. Although ladder diagrams can be written without actually
analyzing individual logic blocks, understanding logic blocks is necessary for
efficient programming and is essential when programs are to be input in
mnemonic code.

3-4-2 Mnemonic Code
The ladder diagram cannot be directly input into the PC via a Programming
Console. To input from a Programming Console, it is necessary to convert
the ladder diagram to mnemonic code. The mnemonic code provides exactly
the same information as the ladder diagram, but in a form that can be typed
directly into the PC. Actually you can program directly in mnemonic code,
although it in not recommended for beginners or for complex programs. Also,
the program is stored in memory in mnemonic form.

Because of the importance of mnemonic code, we will introduce and de-
scribe the mnemonic code along with the ladder diagram.

The program is input into addresses in Program Memory. Addresses in Pro-
gram Memory are slightly different to those in other memory areas because
each address does not necessarily hold the same amount of data. Rather,
each address holds one instruction and all of the definers and operands (de-
scribed in more detail later) required for that instruction. Because some in-
structions require one word, while others require up to five words, Program
Memory addresses can be from one to five words long.

Program Memory addresses start at 000 and run until the capacity of Pro-
gram Memory has been exhausted (144 words). The first word at each ad-
dress defines the instruction. Any definers used by the instruction are also
contained in the first word. Also, if an instruction requires only a single bit

Execution Conditions

Operand Bits

Logic Blocks

Program Memory Structure

Basic Programming Section 3-4

36

operand (with no definer), the bit operand is also programmed on the same
line as the instruction. The rest of the words required by an instruction con-
tain the operands that specify what data is to be used. When converting to
mnemonic code, all but ladder diagram instructions are written in the same
form, one word to a line, just as they appear in the ladder diagram symbols.
An example of mnemonic code is shown below. The instructions used in it
are described later in the manual.

Address Instruction Operands

000 LD DR 0001

001 AND 0001

002 OR 0002

003 LD NOT 0100

004 AND 0101

005 AND LD

006 MOV(30)

00

DR 00

007 CMP(32)

0100

DR 00

The address and instruction columns of the mnemonic code table are filled in
for the instruction word only. For all other lines, the left two columns are left
blank. If the instruction requires no definer or bit operand, the operand col-
umn is left blank for first line. It is a good idea to cross through any blank
data column spaces (for all instruction words that do not require data) so that
the data column can be quickly cycled to see if any addresses have been left
out.

When programming, addresses are automatically displayed and do not have
to be input unless for some reason a different location is desired for the in-
struction. When converting to mnemonic code, it is best to start at Program
Memory address 000 unless there is a specific reason for starting elsewhere.

3-4-3 Ladder Instructions
Ladder instructions are those instructions that correspond to the conditions
on the ladder diagram. Ladder instructions, either independently or in combi-
nation with the logic block instructions described next, form the execution
conditions upon which the execution of all other instructions are based.

The first condition that starts any logic block within a ladder diagram corre-
sponds to a LOAD or LOAD NOT instruction. Each of these instructions re-
quires one line of mnemonic code. “Instruction” is used as a dummy instruc-
tion in the following examples and could be any of the right-hand instructions
described later in this manual.

0000

0000

A LOAD instruction.

A LOAD NOT instruction.

Address Instruction Operands

000 LD 0000

001 Instruction

002 LD NOT 0000

003 Instruction

When this is the only condition on the instruction line, the execution condition
for the instruction at the right is ON when the condition is ON. For the LOAD
instruction (i.e., a normally open condition), the execution condition would be

LOAD and LOAD NOT

Basic Programming Section 3-4

37

ON when bit 0000 was ON; for the LOAD NOT instruction (i.e., a normally
closed condition), it would be ON when bit 0000 was OFF.

When two or more conditions lie in series on the same instruction line, the
first one corresponds to a LOAD or LOAD NOT instruction; and the rest of
the conditions, to AND or AND NOT instructions. The following example
shows three conditions which correspond in order from the left to a LOAD, an
AND NOT, and an AND instruction. Again, each of these instructions requires
one line of mnemonic code.

0000 0100 DR 0000
Instruction

Address Instruction Operands

000 LD 0000

001 AND NOT 0100

002 AND DR 0000

003 Instruction

The instruction would have an ON execution condition only when all three
conditions are ON, i.e., when bit 0000 was ON, bit 0100 was OFF, and DR
0000 was ON.

AND instructions in series can be considered individually, with each taking
the logical AND of the execution condition (i.e., the total of all conditions up
to that point) and the status of the AND instruction’s operand bit. If both of
these are ON, an ON execution condition will be produced for the next in-
struction. If either is OFF, the result will also be OFF. The execution condition
for the first AND instruction in a series is the first condition on the instruction
line.

Each AND NOT instruction in a series would take the logical AND between
its execution condition and the inverse of its operand bit.

When two or more conditions lie on separate instruction lines running in par-
allel and then joining together, the first condition corresponds to a LOAD or
LOAD NOT instruction; the rest of the conditions correspond to OR or OR
NOT instructions. The following example shows three conditions which corre-
spond in order from the top to a LOAD NOT, an OR NOT, and an OR instruc-
tion. Again, each of these instructions requires one line of mnemonic code.

Instruction

0100

DR 0000

0000 Address Instruction Operands

000 LD 0000

001 OR NOT 0100

002 OR DR 0000

003 Instruction

The instruction would have an ON execution condition when any one of the
three conditions was ON, i.e., when bit 0000 was OFF, when bit 0100 was
OFF, or when DR 0000 was ON.

OR and OR NOT instructions can be considered individually, each taking the
logical OR between its execution condition and the status of the OR instruc-
tion’s operand bit. If either one of these were ON, an ON execution condition
would be produced for the next instruction.

AND and AND NOT

OR and OR NOT

Basic Programming Section 3-4

38

When AND and OR instructions are combined in more complicated dia-
grams, they can sometimes be considered individually, with each instruction
performing a logic operation on the execution condition and the status of the
operand bit. The following is one example. Study this example until you are
convinced that the mnemonic code follows the same logic flow as the ladder
diagram.

Instruction
0002 00030000 0001

0100

Address Instruction Operands

000 LD 0000

001 AND 0001

002 OR 0100

003 AND 0002

004 AND NOT 0003

005 Instruction

Here, an AND is taken between the status of bit 0000 and that of bit 0001 to
determine the execution condition for an OR with the status of bit 0100. The
result of this operation determines the execution condition for an AND with
the status of bit 0002, which in turn determines the execution condition for an
AND with the inverse (i.e., and AND NOT) of the status of bit 0003.

In more complicated diagrams, however, it is necessary to consider logic
blocks before an execution condition can be determined for the final instruc-
tion, and that’s where AND LOAD and OR LOAD instructions are used. Be-
fore we consider more complicated diagrams, however, we’ll look at the in-
structions required to complete a simple “input-output” program.

3-4-4 OUTPUT and OUTPUT NOT
The simplest way to output the results of combining execution conditions is to
output it directly with the OUTPUT and OUTPUT NOT. These instructions are
used to control the status of the designated operand bit according to the ex-
ecution condition. With the OUTPUT instruction, the operand bit will be
turned ON as long as the execution condition is ON and will be turned OFF
as long as the execution condition is OFF. With the OUTPUT NOT instruc-
tion, the operand bit will be turned ON as long as the execution condition is
OFF and turned OFF as long as the execution condition is ON. These appear
as shown below. In mnemonic code, each of these instructions requires one
line.

0000

0101

0100

0001

Address Instruction Operands

000 LD 0000

001 OUT 0100

Address Instruction Operands

000 LD 0001

001 OUT NOT 0101

In the above examples, bit 0100 will be ON as long as bit 0000 is ON and bit
0101 will be OFF as long as bit 0001 is ON. Here, bit 0000 and bit 0001 are
input bits and bit 0100 and bit 0101 are output bits, i.e., the signals coming in
through inputs 0 and 1 are controlling outputs 0 and 1, respectively.

The length of time that a bit is ON or OFF can be controlled by combining the
OUTPUT or OUTPUT NOT instruction with Timer instructions. Refer to Ex-
amples under 3-7-14 Timer - TIM for details.

Combining AND and OR
Instructions

Basic Programming Section 3-4

39

3-4-5 The END Instruction
The last instruction required to complete a simple program is the END in-
struction. When the CPU cycles the program, it executes all instruction up to
the first END instruction before returning to the beginning of the program and
beginning execution again. Although an END instruction can be placed at
any point in a program, which is sometimes done when debugging, no in-
structions past the first END instruction will be executed until it is removed.
The number following the END instruction in the mnemonic code is its func-
tion code, which is used when inputting most instructions into the PC. These
are described later. The END instruction requires no operands and no condi-
tions can be placed on the same instruction line with it.

Instruction
0000 0001

END(01)
Program execution
ends here.

Address Instruction Operands

000 LD 0000

001 AND NOT 0001

002 Instruction

003 END(01) ---

If there is no END instruction anywhere in the program, the program will not
be executed at all.

Now you have all of the instructions required to write simple input-output pro-
grams. Before we finish with ladder diagram basics and go on to inputting the
program into the PC, let’s look at logic block instructions (AND LOAD and OR
LOAD), which are sometimes necessary even with simple diagrams.

3-4-6 Logic Block Instructions
Logic block instructions do not correspond to specific conditions on the lad-
der diagram; rather, they describe relationships between logic blocks. The
AND LOAD instruction logically ANDs the execution conditions produced by
two logic blocks. The OR LOAD instruction logically ORs the execution con-
ditions produced by two logic blocks.

Although simple in appearance, the diagram below requires an AND LOAD
instruction.

Instruction
0002

0003

0000

0001

Address Instruction Operands

000 LD 0000

001 OR 0001

002 LD 0002

003 OR NOT 0003

004 AND LD ---

The two logic blocks are indicated by dotted lines. Studying this example
shows that an ON execution condition will be produced when: either of the
conditions in the left logic block is ON (i.e., when either bit 0000 or bit 0001 is
ON), and when either of the conditions in the right logic block is ON (i.e.,
when either bit 0002 is ON or bit 0003 is OFF).

The above ladder diagram cannot be converted to mnemonic code using
AND and OR instructions alone. If an AND between bit 0002 and the results
of an OR between bit 0000 and bit 0001 is attempted, the OR NOT between
bit 0002 and bit 0003 is lost and the OR NOT ends up being an OR NOT be-
tween just bit 0003 and the result of an AND between bit 0002 and the first
OR. What we need is a way to do the OR (NOT)’s independently and then
combine the results.

AND LOAD

Basic Programming Section 3-4

40

To do this, we can use the LOAD or LOAD NOT instruction in the middle of
an instruction line. When LOAD or LOAD NOT is executed in this way, the
current execution condition is saved in special buffers and the logic process
is begun over. To combine the results of the current execution condition with
that of a previous “unused” execution condition, an AND LOAD or an OR
LOAD instruction is used. Here “LOAD” refers to loading the last unused ex-
ecution condition. An unused execution condition is produced by using the
LOAD or LOAD NOT instruction for any but the first condition on an instruc-
tion line.

Analyzing the above ladder diagram in terms of mnemonic instructions, the
condition for bit 0000 is a LOAD instruction and the condition below it is an
OR instruction between the status of bit 0000 and that of bit 0001. The condi-
tion at bit 0002 is another LOAD instruction and the condition below is an OR
NOT instruction, i.e., an OR between the status of bit 0002 and the inverse of
the status of bit 0003. To arrive at the execution condition for the instruction
at the right, the logical AND of the execution conditions resulting from these
two blocks would have to be taken. AND LOAD does this. The mnemonic
code for the ladder diagram is shown in the previous table. The AND LOAD
instruction requires no operands of its own, because it operates on previous-
ly determined execution conditions. Here too, dashes are used to indicate
that no operand needs to be designated or input.

The following diagram requires an OR LOAD instruction between the top log-
ic block and the bottom logic block. An ON execution condition would be pro-
duced for the instruction at the right either when bit 0000 is ON and bit 0001
is OFF or when bit 0002 and bit 0003 are both ON. The operation of the
mnemonic code for the OR LOAD instruction is exactly the same as those for
a AND LOAD instruction except that the current execution condition is ORed
with the last unused execution condition.

Instruction
0000 0001

0002 0003

Address Instruction Operands

000 LD 0000

001 AND NOT 0001

002 LD 0002

003 AND 0003

004 OR LD ---

Naturally, some diagrams will require both AND LOAD and OR LOAD instruc-
tions.

To code diagrams with logic block instructions in series, the diagram must be
divided into logic blocks. Each block is coded as normal using a LOAD in-
struction to code the first condition, and then AND LOAD or OR LOAD is
used to logically combine the blocks. First input the first two logic blocks and
then the logic block instruction to combine the results. Then input each addi-
tional logic block along with the logic block instruction required to combine it
with the previous result. Examples are given next.

OR LOAD

Logic Block Instructions in
Series

Basic Programming Section 3-4

41

The following diagram requires AND LOAD to be converted to mnemonic
code because three pairs of parallel conditions lie in series.

0000 0002 0004

0001 0003 0005

0100 Address Instruction Operands

000 LD 0000

001 OR NOT 0001

002 LD NOT 0002

003 OR 0003

004 AND LD —

005 LD 0004

006 OR 0005

007 AND LD —

008 OUT 0100

The following diagram requires OR LOAD instructions to be converted to
mnemonic code because three pairs of conditions in series lie in parallel to
each other. The first of each pair of conditions is converted to LOAD with the
assigned bit operand and then ANDed with the other condition. The first two
blocks are coded first, followed by OR LOAD, the last block, and another OR
LOAD.

0000 0001

0002 0003

00040 0005

0101 Address Instruction Operands

000 LD 0000

001 AND NOT 0001

002 LD NOT 0002

003 AND NOT 0003

004 OR LD —

005 LD 0004

006 AND 0005

007 OR LD —

008 OUT 0101

AND LOAD and OR LOAD can naturally be used in the same section of pro-
gram. The following diagram contains only two logic blocks as shown. It is
not necessary to further separate block b components, because it can coded
directly using only AND and OR.

0000 0001 0002 0003

0201

0101

0004

Block
a

Block
b

Address Instruction Operands

000 LD 0000

001 AND NOT 0001

002 LD 0002

003 AND 0003

004 OR 0201

005 OR 0004

006 AND LD —

007 OUT 0101

Although the following diagram is similar to the one above, block b in the dia-
gram below cannot be coded without separating it into two blocks combined
with OR LOAD. Here the three logic blocks are coded first followed by the
two logic block instructions required to combine them. When coding the logic
block instructions together at the end of the logic blocks they are combining,

Combining AND LOAD and
OR LOAD

Basic Programming Section 3-4

42

they must, as shown below, be coded in reverse order, i.e., the logic block
instruction for the last two blocks is coded first, followed by the one to com-
bine the execution condition resulting from the first logic block instruction and
the execution condition of the logic block third from the end, and on back to
the first logic block that is being combined.

0000 0001 0002 0003
0102

0004 0104

Block
a

Block
b

Block
b2

Block
b1 Address Instruction Operands

000 LD NOT 0000

001 AND 0001

002 LD 0002

003 AND NOT 0003

004 LD NOT 0004

005 AND 0104

006 OR LD —

007 AND LD —

008 OUT 0102

When determining what logic block instructions will be required to code a dia-
gram, it is sometimes necessary to break the diagram into large blocks and
then continue breaking the large blocks down until logic blocks that can be
coded without logic block instructions have been formed. These blocks are
then coded, combining the small blocks first, and then combining the larger
blocks. Either AND LOAD or OR LOAD is used to combine the blocks, i.e.,
AND LOAD or OR LOAD always combines the last two execution conditions
that existed, regardless of whether the execution conditions resulted from a
single condition, from logic blocks, or from previous logic block instructions.

When working with complicated diagrams, blocks will ultimately be coded
starting at the top left and moving down before moving across. This will gen-
erally mean that, when there might be a choice, OR LOAD will be coded be-
fore AND LOAD.

The following diagram must be broken down into two blocks and each of
these then broken into two blocks before it can be coded. As shown below,
blocks a and b require an AND LOAD. Before AND LOAD can be used, how-
ever, OR LOAD must be used to combine the top and bottom blocks on both
sides, i.e., to combine a1 and a2; b1 and b2.

0000 0001 0004 0005
0103

Block
a

Block
b

0008 0009

Block
b2

Block
b1

0002 0003

Block
a2

Block
a1

Blocks a1
and a2

Blocks b1
and b2
Blocks a
and b

Address Instruction Operands

000 LD 0000

001 AND NOT 0001

002 LD NOT 0002

003 AND 0003

004 OR LD —

005 LD 0004

006 AND 0005

007 LD 0008

008 AND 0009

009 OR LD —

010 AND LD —

011 OUT 0103

The following type of diagram can be coded easily if each block is coded in
order: first top to bottom and then left to right. In the following diagram,
blocks a and b would be combined using AND LOAD as shown above, and
then block c would be coded and a second AND LOAD would be used to

Complicated Diagrams

Basic Programming Section 3-4

43

combined it with the execution condition from the first AND LOAD. Then
block d would be coded, a third AND LOAD would be used to combine the
execution condition from block d with the execution condition from the sec-
ond AND LOAD, and so on through to block n.

Block bBlock a

0100

Block nBlock c

The following diagram requires an OR LOAD followed by an AND LOAD to
code the top of the three blocks, and then two more OR LOADs to complete
the mnemonic code.

0002 0003

DR 0000

0000 0001

0004 0005

0106 0107

Address Instruction Operands

000 LD 0000

001 LD 0001

002 LD 0002

003 AND NOT 0003

004 OR LD --

005 AND LD --

006 LD NOT 0004

007 AND 0005

008 OR LD --

009 LD NOT 0106

010 AND 0107

011 OR LD --

012 OUT DR 0000

Although the program will execute as written, this diagram could be drawn as
shown below to eliminate the need for the first OR LOAD and the AND
LOAD, simplifying the program and saving memory space.

0002 0003
DR 0000

0001

0000

0004 0005

0106 0107

Address Instruction Operands

000 LD 0002

001 AND NOT 0003

002 OR 0001

003 AND 0000

004 LD NOT 0004

005 AND 0005

006 OR LD --

007 LD NOT 0106

008 AND 0107

009 OR LD --

010 OUT DR 0000

The following diagram requires five blocks, which here are coded in order
before using OR LOAD and AND LOAD to combine them starting from the
last two blocks and working backward. The OR LOAD at program address

Basic Programming Section 3-4

44

008 combines blocks d and e, the following AND LOAD combines the result-
ing execution condition with that of block c, etc.

DR 0000

0000

0003 0004

0106 0107

0001 0002

0005

Block e

Block dBlock c

Block b

Block a

Address Instruction Operands

Blocks d and e

Block c with result of above

Block b with result of above

Block a with result of above

000 LD 0000

001 LD 0001

002 AND 0002

003 LD 0003

004 AND 0004

005 LD 0005

006 LD 0106

007 AND 0107

008 OR LD --

009 AND LD --

010 OR LD --

011 AND LD --

012 OUT DR 0000

Again, this diagram can be redrawn as follows to simplify program structure
and coding and to save memory space.

0106 0107
DR 0000

0005

0001 0002

0003 0004 0000
Address Instruction Operands

000 LD 0106

001 AND 0107

002 OR 0005

003 AND 0003

004 AND 0004

005 LD 0001

006 AND 0002

007 OR LD --

008 AND 0000

009 OUT DR 0000

The next and final example may at first appear very complicated but can be
coded using only two logic block instructions. The diagram appears as fol-
lows:

0000 0001

0100

0002 0003

0010 0011

0004 0005

0100

0106

Block cBlock b

Block a

Basic Programming Section 3-4

45

The first logic block instruction is used to combine the execution conditions
resulting from blocks a and b, and the second one is to combine the execu-
tion condition of block c with the execution condition resulting from the nor-
mally closed condition assigned bit 0003. The rest of the diagram can be
coded with OR, AND, and AND NOT instructions. The logical flow for this
and the resulting code are shown below.

0000 0001

0100

0002 0003

0010 0011

0004 00050100

0106

Block c

Block bBlock a

OR LD

LD 0000
AND 0001

OR 0100

AND 0002
AND NOT 0003

LD 0010
AND 0011

LD 0106

LD 0004
AND 0005

AND LD

Address Instruction Operands

000 LD 0000

001 AND 0001

002 LD 0010

003 AND 0011

004 OR LD --

005 OR 0100

006 AND 0002

007 AND NOT 0003

008 LD 0004

009 AND 0005

010 OR 0106

011 AND LD --

012 OUT 0100

3-4-7 Coding Multiple Right-hand Instructions
If there is more than one right-hand instruction executed with the same ex-
ecution condition, they are coded consecutively following the last condition
on the instruction line. In the following example, the last instruction line con-
tains one more condition that corresponds to an AND with bit 0004.

0000 0003

0001

00040002

DR 0000

DR 0001

0100

0106

Address Instruction Operands

000 LD 0000

001 OR 0001

002 OR 0002

003 OR DR 0000

004 AND 0003

005 OUT DR 0001

006 OUT 0100

007 AND 0004

008 OUT 0106

3-5 Inputting the Program
Once a program is written in mnemonic code, it can be input directly into the
PC from a Programming Console. Mnemonic code is keyed into Program
Memory addresses from the Programming Console. Checking the program
involves a syntax check to see that the program has been written according
to syntax rules. Once syntax errors are corrected, a trial execution can begin
and, finally, correction under actual operating conditions can be made.

The operations required to input a program are explained below. Operations
to modify programs that already exist in memory are also provided in this
section, as well as the procedure to obtain the current cycle time.

Inputting the Program Section 3-5

46

Before starting to input a program, check to see whether there is a program
already loaded. If there is a program already loaded that you do not need,
clear it first using the program memory clear key sequence, then input the
new program. If you need the previous program, be sure to check it with the
program check key sequence and correct it as required.

3-5-1 Initial Programming Console Operation
When operating the Programming Console for the first time, use the following
procedure:

1, 2, 3.. Connect the Programming Console to the PC. Make sure that the Pro-
gramming Console is securely connected; improper connection may
inhibit operation.
Set the mode selector of the Programming Console to PRGM (PRO-
GRAM) mode.
Turn on the PC.
The backlight on the display of the Programming Console will light, and
“<PROGRAM> PASSWORD!” will be displayed.
Press CLR and then MON (the password). “<PROGRAM> BZ” will be
displayed.
If more then one PC is connected, designate the PC.
Clear memory.

Each of these operations from entering the password on is described in detail
in the following subsections. All operations should be done in PROGRAM
mode unless otherwise noted.

Password To gain access to the PC’s programming functions, you must first enter the
password. The password prevents unauthorized access to the program.

The PC prompts you for a password when PC power is turned on or, if PC
power is already on, after the Programming Console has been connected to
the PC. To gain access to the system when the “Password!” message ap-
pears, press CLR and then MON. Then press CLR to clear the display.

If the Programming Console is connected to the PC when PC power is al-
ready on, the first display below will indicate the mode the PC was in before
the Programming Console was connected. Ensure that the PC is in PRO-
GRAM mode before you enter the password. When the password is en-
tered, the PC will shift to the mode set on the mode switch, causing PC oper-
ation to begin if the mode is set to RUN. The mode can be changed to RUN
with the mode switch after entering the password.

Indicates the mode set by the mode selector switch.

���
��
��

�
���
� !

���
��
������"#

Immediately after the password is input or anytime immediately after the
mode has been changed, SHIFT and then the 1 key can be pressed to turn
on and off the buzzer that sounds when Programming Console keys are
pressed. If BZ is displayed in the upper right corner, the buzzer is operative.
If BZ is not displayed, the buzzer is not operative.

This buzzer also will also sound whenever an error occurs during PC opera-
tion. Buzzer operation for errors is not affected by the above setting.

Buzzer

Inputting the Program Section 3-5

47

3-5-2 Clearing Memory

Using the Memory Clear operation it is possible to clear part or all of the Pro-
gram Memory, work bits, and the DR and TC areas. Unless otherwise speci-
fied, the clear operation will clear all of the above memory areas, as well as
the contents of the Programming Console’s memory.

Before beginning to program for the first time or when installing a new pro-
gram, clear all memory areas. Before clearing memory, check to see if a pro-
gram is already loaded that you need. If you need the program, clear only the
memory areas that you do not need, and be sure to check the existing pro-
gram with the program check key sequence before using it. The check se-
quence is provided later in this section. To clear all memory areas, press
CLR until all zeros are displayed, and then input the keystrokes given in the
top line of the following key sequence. The branch lines shown in the se-
quence are used only when performing a partial memory clear, which is de-
scribed below. When program memory has been cleared NOP(00) instruc-
tions (00) are written to the entire area of memory. These instructions per-
form nothing.

Memory can be cleared in PROGRAM mode only.

Key Sequence

[Address]

The following procedure is used to clear memory completely.

It is possible to retain the data in specified areas or part of the Program
Memory. To retain the data in the TC and/or DR areas, press the appropriate
key after entering the function number 60. If not specified for retention, both
areas will be cleared. CNT is used for the entire TC area. The display will
show those areas that will be cleared.

It is also possible to retain a portion of the Program Memory from the first
memory address to a specified address. After designating the data areas, DR
and/or CNT, to be retained, specify the first Program Memory address to be
cleared. For example, to leave addresses 000 to 029 untouched, but to clear
addresses from 030 to the end of Program Memory, input 030.

All Clear

Partial Clear

Inputting the Program Section 3-5

48

As an example, to leave the DR area untouched and retain Program Memory
addresses 000 through 029, input as follows:

�����

�������������
�

����������� �

�������������
�

���������

�������������
�

���������

3-5-3 Clearing Error Messages
Before inputting a new program, any error messages recorded in memory
should be cleared. It is assumed here that the causes of any of the errors for
which error messages appear have already been taken care of. If the buzzer
sounds when an attempt is made to clear an error message, eliminate the
cause of the error, and then clear the error message (refer to Section 5 Trou-
bleshooting).

To display any recorded error messages, press CLR, FUN, 6, 1, and then
MON. The first message will appear. Pressing MON again will clear the pres-
ent message and display the next error message. Continue pressing MON
until all messages have been cleared. The ERROR indicator will go OFF
when all messages have been cleared.

Although error messages can be accessed in any mode, they can be cleared
only in PROGRAM mode.

Key Sequence

3-5-4 Setting and Reading from Program Memory Address
When inputting a program for the first time, it is generally written to Program
Memory starting from address 000. Because this address appears when the
display is cleared, it is not necessary to specify it.

When inputting a program starting from other than 000 or to read or modify a
program that already exists in memory, the desired address must be desig-
nated. To designate an address, press CLR and then input the desired ad-
dress.

Once the address is entered, press the up or down key and the desired con-
tents will be displayed. The up and down keys can then be used to scroll
through Program Memory. Each time one of these keys is pressed, the next
or previous word in Program Memory will be displayed.

If Program Memory is read in RUN mode, the ON/OFF status of any dis-
played bit will also be shown.

Inputting the Program Section 3-5

49

Key Sequence

If the following mnemonic code has already been input into Program
Memory, the key inputs below would produce the displays shown.

�����

���$�

���$���
 �������

� ��������������

���$���
 �������

� ��
����������

���$���
 �������

���������������

���$���
 �������

���������������

���$%��
 �������

� �������������

���$$��
 �������

���������������

050 LD 0000

051 AND NOT 0200

052 OR 0201

053 OR 0100

054 AND 0001

055 OUT 0100

Address Instruction Operands

3-5-5 Entering or Editing Programs
Programs can be entered or edited only in PROGRAM mode.

The same procedure is used to either input a program for the first time or to
change a program that already exists. In either case, the current contents of
Program Memory is overwritten.

To input a program, just follow the mnemonic code that was produced from
the ladder diagram, ensuring that the proper address is set before starting.
Once the proper address is displayed, input the first instruction word, and
input any operands required, pressing ENT after each operand is typed into
the Programming Console, i.e., ENT is pressed at the end of each line of the

Example

Inputting the Program Section 3-5

50

mnemonic code. When ENT is pressed, the designated instruction will be
entered and the next display will appear. If the instruction requires two or
more words, the next display will indicate the next operand required and pro-
vide a default value for it. If the instruction requires only one word, the next
address will be displayed. Continue inputting each line of the mnemonic code
until the entire program has been entered.

When inputting numeric values for operands, it is not necessary to input lead-
ing zeros. Leading zeros are required only when inputting function codes
(see below). When designating operands, be sure to designate the data area
for all DR addresses by pressing the corresponding data area key, and to
designate each constant by pressing CONT/#. CONT/# is not required for
counter or timer SVs (see below).TC numbers as bit operands (i.e., comple-
tion flags) are designated by pressing either TIM or CNT before the address,
depending on whether the TC number has been used to define a timer or a
counter. To designate an indirect DR address, press CH/� before DR.

The SV (set value) for a timer or counter is generally entered as a constant,
although inputting the address of a word that holds the SV is also possible.
When inputting an SV as a constant, CONT/# is not required; just input the
numeric value and press ENT. To designate a word, press CLR and then in-
put the word address as described above.

The most basic instructions are input using the Programming Console keys
provided for them. All other instructions are entered using function codes.
These function codes are always written after the instruction’s mnemonic. If
no function code is given, there should be a Programming Console key for
that instruction.

To input an instruction using a function code, set the address, press FUN,
input the function code, input any bit operands or definers required on the
instruction line, and then press ENT.

Enter function codes with care.

Key Sequence

[Instruction word]? ?

The following program can be entered using the key inputs shown below.
Displays will appear as indicated.

Address Instruction Operands

000 LD 0000

001 TIM 00

0150

002 TIMH(21) 01

9500

Inputting SV for Counters
and Timers

Designating Instructions

Caution

Example

Inputting the Program Section 3-5

51

����������������

� ��������������

�������
 ������

�
��&��'

����������������

����������������

�������
 �
�
�

�����������(����

����������
�
�

�����������(��$�

�������

�
��&��'

�����

����&��'

�����

���)&��'�������%

�������
 �
�
�

���)&��'���(����

����������
�
�

���)&��'���(*$��

�������

�
��&��'

The following error messages may appear when inputting a program. Correct
the error as indicated and continue with the input operation.

Error Message Error Type Possible Cause/Correction

PRGM OVER Program too
large

Program size exceeds the capacity. (The last
address is not a NOP instruction, so the
program cannot be written.)
Clear any data after the END instruction or
shorten the program.

ADR OVER Address too
large

Program exceeds program memory’s last
address.
Set the address again.

I/O No. ERR Operand error An illegal value has been entered for an
operand. Reconfirm the allowable operand
area for each instruction, and correct the
data.

3-5-6 Checking the Program
Once a program has been entered, it should be checked for syntax to be
sure that no programming rules have been violated. This check should also
be performed if the program has been changed in any way that might create
a syntax error.

To check the program, input the key sequence shown below. When MON is
entered, the program check will start. If an error is discovered, the check will
stop and a display indicating the error and the error’s address will appear.

Error Messages

Inputting the Program Section 3-5

52

Press MON to continue the check. If an error is not found, the program will
be checked through to the first END(01). When the check has reached the
first END, “PRGM CHK END(01)” will be displayed. If an error occurs, read
the address which contains the error, and correct the program. Be sure to
check corrected code by re-running the check function. CLR can be pressed
to cancel the check after it has been started.

Note A syntax check can be performed on a program only in PROGRAM mode.

Key Sequence

Error message Name Meaning

PRGM CHK
END (01)

Program check
end

The check has been completed to the END
instruction with no (more) errors having been
found in the program.

(program
address)

or

????

- An error has been detected in the program at
the displayed address. Correct the code.
If the DR area setting has been changed,
“????” will be displayed. Change the DR
area setting ensuring the region is identical
to that specified when the program was
created.

NO END INST No END
instruction

An END instruction cannot be found in the
program. Input the END instruction at the
end of the program.

3-5-7 Program Transfer
After all errors are removed from the program, the program may be trans-
ferred from the Programming Console to the PC. Nothing is written to the
SK20 if a program is only written with the Programming Console. The pro-
gram transfer operation from the Programming Console to the PC is required
to write a program to the SK20 memory (RAM/EEPROM).

To be executed, the program has to be transferred to the PC from RAM in the
Programming Console. Whenever a program is written to RAM in the PC, the
program is automatically transferred to the EEPROM in the PC.

The program and/or data may also be stored in Memory Cards via the Pro-
gramming Console. This provides a backup facility for programs and the later
use of them to form the outline of new programs.

Data transfers are always referred to from the point of view of the Program-
ming Console, i.e., downloading is always away from the Programming Con-
sole; uploading is always toward the Programming Console.

Inputting the Program Section 3-5

53

Note To monitor or edit the program of the SK20, the program must be transferred
from the PC to the Programming Console. Refer to the transfer procedure
below for details. To save a program in the Memory Card, the program must
be transferred from the Programming Console to the Memory Card. Refer to
the transfer procedure below for details.

PC Programming Console

Memory Card

Automatic
data transfer

Memory
backup

EEP-
ROM

RAM RAM

RAM

Download

Upload

Compare

Download Upload

Program key
input, write, edit,
and transfer

Note New Memory Cards must be initialized before data can be stored. Be sure
to format Memory Cards before use.
Placing a 18th program on the memory card will inhibit rewriting opera-
tions; do not store more than 17 programs per card.
If the size of the DR area is changed after programming operations have
been started or the program code accesses illegal addresses, program
transfer cannot be performed and the message “????” will be displayed
on the Programming Console.

The key sequence for transferring data between the PC and the Program-
ming Console or the Programming Console and the Memory Card is given
below. By selecting 1 or 2, after entering the function number, CPU or
Memory Card transfer is selected.The up arrow or down arrow keys can be
used to toggle between uploading and downloading.

Transfer Procedure

Inputting the Program Section 3-5

54

Key Sequence

File name

Program trans-
ferred to Program-
ming Console.

File
deleted.

Download
ProCo→PC

Download
ProCo→CARD

Upload
PC→ProCo

Upload
CARD→ProCo

UM

UM+DR

UM

UM+DR

PC

Memory
Card

UM: indicates the users pro-
gram, filter value, and DR size.

DR: indicates Data relay
memory’s current contents.

A B

C B

B

Program
transferred
to card.

Program trans-
ferred to PC or to
Programming Con-
sole.

D E

DR area data is usually written to
the PC directly. Hence, if both the
program and the data in the PC is
to be transferred, specify UM+DR.

The Programming Consoles displays at different stages of the keying se-
quence are shown below.

���������
������

������������
�

���������
������

���������+��

���������
������

��
���,

���������
�����

�� ������+��

A

B

When 1 or 2 is selected as the response to this
prompt, the display will indicate the selection by plac-
ing a flashing cursor over the corresponding number.

The display will indicate the direction of the transfer by
use of an arrow. During transfer, a cursor will flash over
the arrow.

This display indicates the transfer is complete, in this
example from the Programming Console to the PC.

When writing to a Memory Card, a file name must be
assigned to the program to allow identification. The file
name can consist of up to a maximum of 8 characters,
the allowable characters 0 through 9 and A through F.

B

C

������� ������

������������

Indicates that a file containing only the user program
called “1000” will be deleted.D

��������� �����

�� ���������

Indicates that the file called “1000” has been deleted.

E

Files that have been deleted cannot be recovered. Be sure that you have
designated the correct file before pressing the ENT Key.

Caution

Inputting the Program Section 3-5

55

3-5-8 Program Searches
The program can be searched for occurrences of any data area address or
timer/counter used in an instruction. Searches can be performed from any
currently displayed address or from a cleared display.

Once an occurrence of an instruction or bit address has been found, any ad-
ditional occurrences of the same instruction or bit can be found by pressing
MON again.

When the first word of a multiword instruction is displayed for a search opera-
tion, the other words of the instruction can be displayed by pressing the down
key before continuing the search.

Key Sequence

[Bit Address]

�����

������
�����
��)

����������������

������
�����
��)

����������������

���$��
�����
��)

� ��
����������

3-5-9 Inserting and Deleting Instructions
In PROGRAM mode, any instruction that is currently displayed can be de-
leted or another instruction can be inserted before it. These operations are
not possible in RUN mode.

To insert an instruction, display the instruction before which you want the new
instruction to be placed, input the instruction word in the same way as when
inputting a program initially, and then press INS and the down key. If other
words are required for the instruction, input these in the same way as when
inputting the program initially.

To delete an instruction, display the instruction word of the instruction to be
deleted and then press DEL and the up key. All the words for the designated
instruction will be deleted.

Be careful not to inadvertently delete instructions; there is no way to recover
them without re-inputting them completely.

Example:

Caution

Inputting the Program Section 3-5

56

Key Sequences

Locate position in
program, then enter:

Instruction

When an instruction is inserted or deleted, all addresses in Program Memory
following the operation are adjusted automatically so that there are no blank
addresses and no unaddressed instructions.

The following mnemonic code shows the changes that are achieved in a pro-
gram through the key sequences and displays shown below.

Original Program

Address Instruction Operands

000 LD 0000

001 AND 0001

002 LD 0201

003 AND NOT 0002

004 OR LD -

005 AND 0003

006 AND NOT 0004

007 OUT 0101

008 END(01) -

00050000 0003 00040001

0001

END(01)

0002

0101

Delete

00040000 0003

0005

0001

0001

END(01)

0002

0101

Before Insertion: Before Deletion:

The following key inputs and displays show the procedure for achieving the
program changes shown above.

Example

Inputting the Program Section 3-5

57

������
�����
��)

����������������

Find the address prior
to the insertion point

Insert the
instruction

Program After Insertion

Inserting an Instruction

�����

������
�����
��)

����������������

����-�
�����
��)

���������������

����.��

� ��
���������%

����.

� �������������

����.

� ������������$

����.�������

� ������������$

����-���������

� ��
���������%

����.��

� ������������$

Address Instruction Operands

000 LD 0000

001 AND 0001

002 LD 0001

003 AND NOT 0002

004 OR LD -

005 AND 0003

006 AND 0005

007 AND NOT 0004

008 OUT 0101

009 END(01) -

000 LD 0000

001 AND NOT 0001

002 LD 0001

003 AND NOT 0002

004 OR LD -

005 AND 0003

006 AND 0005

007 OUT 0101

008 END(01) -

Find the instruction
that requires deletion.

Confirm that this is the
instruction to be deleted.

Program After Deletion

Deleting an Instruction

����-� ������

� ��
���������%

����- ��������

���������������

����.��

� ������������$

Address Instruction Operands

������
�����
��)

����������������

�����

������
�����
��)

����������������

����/�
�����
��)

���������������

����-��

� ��
���������%

Inputting the Program Section 3-5

58

3-6 Advanced Programming

3-6-1 Interlocks

When an instruction line branches into two or more lines, it is sometimes
necessary to use interlocks to maintain the execution condition that existed
at a branching point. This is because instruction lines are executed across to
a right-hand instruction before returning to the branching point to execute
instructions one a branch line. If a condition exists on any of the instruction
lines after the branching point, the execution condition could change during
this time making proper execution impossible. The following diagrams illus-
trate this. In both diagrams, instruction 1 is executed before returning to the
branching point and moving on to the branch line leading to instruction 2.

Instruction 1

0002

0000

Instruction 2

Branching
point

Instruction 1

0002

0000

Instruction 2

Branching
point

Diagram B: Incorrect Operation

Diagram A: Correct Operation

0001

Address Instruction Operands

000 LD 0000

001 Instruction 1

002 AND 0002

003 Instruction 2

Address Instruction Operands

000 LD 0000

001 AND 0001

002 Instruction 1

003 AND 0002

004 Instruction 2

If, as shown in diagram A, the execution condition that existed at the branch-
ing point cannot be changed before returning to the branch line (instructions
at the far right do not change the execution condition), then the branch line
will be executed correctly and no special programming measure is required.

If, as shown in diagram B, a condition exists between the branching point
and the last instruction on the top instruction line, the execution condition at
the branching point and the execution condition after completing the top in-
struction line will sometimes be different, making it impossible to ensure cor-
rect execution of the branch line.

The problem of storing execution conditions at branching points can be han-
dled by using the INTERLOCK (IL(02)) and INTERLOCK CLEAR (ILC(03))
instructions to eliminate the branching point completely while allowing a spe-
cific execution condition to control a group of instructions. The INTERLOCK
and INTERLOCK CLEAR instructions are always used together.

When an INTERLOCK instruction is placed before a section of a ladder pro-
gram, the execution condition for the INTERLOCK instruction will control the
execution of all instruction up to the next INTERLOCK CLEAR instruction. If
the execution condition for the INTERLOCK instruction is OFF, timers will be
reset; counters, shift registers, and the KEEP instruction will be frozen (i.e.,
their operands and present values will not change); and all other instructions
will be ignored through the next INTERLOCK CLEAR instruction.

Advanced Programming Section 3-6

59

To create an interlocked program section, the conditions leading up to the
branching point (i.e., the ones that are to control the interlocked section) are
placed on an instruction line for the INTERLOCK instruction, all of lines lead-
ing from the branching point are written as separate instruction lines, and
another instruction line is added for the INTERLOCK CLEAR instruction. No
conditions are allowed on the instruction line for INTERLOCK CLEAR. Nei-
ther INTERLOCK nor INTERLOCK CLEAR requires an operand.

Instruction 1

0002

0000

Instruction 2

0001

ILC(03)

IL(02) Address Instruction Operands

000 LD 0000

001 IL(02) ---

002 LD 0001

003 Instruction 1

004 LD 0002

005 Instruction 2

006 ILC(03) ---

If bit 0000 is ON in the revised version of diagram B, above, the status of bit
0001 and that of bit 0002 would determine the execution conditions for in-
structions 1 and 2, respectively. Because bit 0000 is ON (otherwise the inter-
locked section would not be executed), this would produce the same results
as ANDing the status of each of these bits. If bit 0000 is OFF, the INTER-
LOCK instruction would produce an OFF execution condition for instructions
1 and 2 and then execution would continue with the instruction line following
the INTERLOCK CLEAR instruction.

As shown in the following diagram, more than one INTERLOCK instruction
can be used within one instruction block; each is effective through the next
INTERLOCK CLEAR instruction (i.e., you can have two or more INTERLOCK
instructions without an INTERLOCK CLEAR instruction between them, but
two or more INTERLOCK CLEAR instructions without an INTERLOCK in-
struction between them is meaningless).

Instruction 1

0000

Instruction 2

0001

ILC(03)

IL(02)

0004

Instruction 3

Instruction 4
0008

0005

0003

0002

IL(02)

Address Instruction Operands

000 LD 0000

001 IL(02) ---

002 LD 0001

003 Instruction 1

004 LD 0002

005 IL(02) ---

006 LD 0003

007 AND NOT 0004

008 Instruction 2

009 LD 0005

010 Instruction 3

011 LD 0008

012 Instruction 4

013 ILC(03) ---

If bit 0000 in the above diagram is OFF (i.e., if the execution condition for the
first INTERLOCK instruction is OFF), the section of the program from instruc-
tion 1 through 4 would be interlocked and execution would move to the in-
struction following the INTERLOCK CLEAR instruction. If bit 0000 is ON, the
status of bit 0001 would be loaded as the execution condition for instruction 1
and then the status of bit 0002 would be loaded to form the execution condi-
tion for the second INTERLOCK instruction. If bit 0002 is OFF, the section

Advanced Programming Section 3-6

60

from instruction 2 through 4 would be interlocked. If bit 0002 is ON, bit 0003,
bit 0005, and bit 0008 would determine the first execution condition for the
next instruction lines and execution would continue normally.

Note STEP(04) and SNXT(05) cannot be used between the INTERLOCK and IN-
TERLOCK CLEAR instructions.

3-6-2 Controlling Bit Status
There are five instructions that can be used generally to control individual bit
status. These are the OUTPUT, OUTPUT NOT, DIFFERENTIATE UP, DIF-
FERENTIATE DOWN, and KEEP instructions. All of these instructions ap-
pear as the last instruction in an instruction line and take a bit address for an
operand.These instructions (except for OUTPUT and OUTPUT NOT, which
have already been introduced) are introduced here because of their impor-
tance in most programs. Although these instructions are used to turn ON and
OFF output bits (i.e., to send or stop output signals to external devices), they
are also used to control the status of work bits and other bits in memory.

3-6-3 DIFFERENTIATE UP and DIFFERENTIATE DOWN
DIFFERENTIATE UP and DIFFERENTIATE DOWN instructions are used to
turn the operand bit ON for one cycle at a time. The DIFFERENTIATE UP
instruction turns ON the operand bit for one cycle after the execution condi-
tion for it goes from OFF to ON; the DIFFERENTIATE DOWN instruction
turns ON the operand bit for one cycle after the execution condition for it
goes from ON to OFF. Both of these instructions require only one line of
mnemonic code.

0000

0001

DIFU(10) 0200

DIFD(11) 0201

Address Instruction Operands

000 LD 0000

001 DIFU(10) 0200

Address Instruction Operands

000 LD 0001

001 DIFD(11) 0201

Here, bit 0200 will be turned ON for one cycle after bit 0000 goes ON. The
next time DIFU(10) 0200 is executed, bit 0200 will be turned OFF, regardless
of the status of bit 0000. With the DIFFERENTIATE DOWN instruction, bit
0201 will be turned ON for one cycle after bit 0001 goes OFF (bit 0201 will be
kept OFF until then), and will be turned OFF the next time DIFD(11) 0201 is
executed.

Up to a total of 16 DIFFERENTIATE UP and DIFFERENTIATE DOWN in-
struction can be used in a program.

3-6-4 KEEP
The KEEP instruction is used to maintain the status of the operand bit based
on two execution conditions. To do this, the KEEP instruction is connected to
two instruction lines. When the execution condition at the end of the first in-
struction line is ON, the operand bit of the KEEP instruction is turned ON.
When the execution condition at the end of the second instruction line is ON,
the operand bit of the KEEP instruction is turned OFF. (If both execution con-
ditions are ON, the operand bit is also turned OFF.) The operand bit for the
KEEP instruction will maintain its ON or OFF status even if it is located in an
interlocked section of the diagram.

In the following example, DR 0000 will be turned ON when bit 0002 is ON
and bit 0003 is OFF. DR 0000 will then remain ON until either bit 0004 or bit

Advanced Programming Section 3-6

61

0005 turns ON. With KEEP, as with all instructions requiring more than one
instruction line, the instruction lines are coded first before the instruction that
they control.

 KEEP(12)

DR 0000

0002

0004

0003

0005
R: reset input

S: set input

Address Instruction Operands

000 LD 0002

001 AND NOT 0003

002 LD 0004

003 OR 0005

004 KEEP(12) DR 0000

3-6-5 Self-maintaining Bits (Seal)
Although the KEEP instruction can be used to create self-maintaining bits, it
is sometimes necessary to create self-maintaining bits in another way so that
they can be turned OFF when in an interlocked section of a program.

To create a self-maintaining bit, the operand bit of an OUTPUT instruction is
used as a condition for the same OUTPUT instruction in an OR setup so that
the operand bit of the OUTPUT instruction will remain ON or OFF until
changes occur in other bits. At least one other condition is used just before
the OUTPUT instruction to function as a reset. Without this reset, there would
be no way to control the operand bit of the OUTPUT instruction.

The above diagram for the KEEP instruction can be rewritten as shown be-
low. The only difference in these diagrams would be their operation in an in-
terlocked program section when the execution condition for the INTERLOCK
instruction was ON. Here, just as in the same diagram using the KEEP in-
struction, two reset bits are used, i.e., DR 0000 can be turned OFF by turning
ON either bit 0004 or bit 0005.

0002 0003

DR 0000

DR 0000

0004 0005 Address Instruction Operands

000 LD 0002

001 AND NOT 0003

002 OR DR 0000

003 AND NOT 0004

004 AND NOT 0005

005 OUT DR 0000

3-6-6 Work Bits (Internal Relays)
In programming, combining conditions to directly produce execution condi-
tions is often extremely difficult. These difficulties are easily overcome, how-
ever, by using certain bits to trigger other instructions indirectly. Such pro-
gramming is achieved by using work bits. Sometimes entire words are re-
quired for these purposes. These words are referred to as work words.

Work bits are not transferred to or from the PC. They are bits selected by the
programmer to facilitate programming as described above. I/O bits and other
dedicated bits cannot be used as works bits. All bits in the bit area that are
not allocated as I/O bits, and certain unused bits in the DR area, are avail-
able for use as work bits. Be careful to keep an accurate record of how and
where you use work bits. This helps in program planning and writing, and
also aids in debugging operations.

Advanced Programming Section 3-6

62

Work Bit Applications Examples given later in this subsection show two of the most common ways
to employ work bits. These should act as a guide to the almost limitless num-
ber of ways in which the work bits can be used. Whenever difficulties arise in
programming a control action, consideration should be given to work bits and
how they might be used to simplify programming.

Work bits are often used with the OUTPUT, OUTPUT NOT, DIFFERENTIATE
UP, DIFFERENTIATE DOWN, and KEEP instructions. The work bit is used
first as the operand for one of these instructions so that later it can be used
as a condition that will determine how other instructions will be executed.
Work bits can also be used with other instructions, e.g., with the SHIFT REG-
ISTER instruction (SFT(33)). An example of the use of work words and bits
with the SHIFT REGISTER instruction is provided 3-7-22 SHIFT REGISTER
- SFT(33).

Although they are not always specifically referred to as work bits, many of the
bits used in the examples later in this section use work bits. Understanding
the use of these bits is essential to effective programming.

Work bits can be used to simplify programming when a certain combination
of conditions is repeatedly used in combination with other conditions. In the
following example, bit 0000, bit 0001, bit 0002, and bit 0003 are combined in
a logic block that stores the resulting execution condition as the status of bit
0103. Bit 0103 is then combined with various other conditions to determine
output conditions for bit 0000, bit 0001, and bit 0002, i.e., to turn the outputs
allocated to these bits ON or OFF.

0000

0003

0001

0004

0002

0005

0004

0009

0008

00050103

0103

0103

0103

0100

0101

0102

Address Instruction Operands

000 LD 0000

001 AND NOT 0001

002 OR 0002

003 OR NOT 0003

004 OUT 0103

005 LD 0103

006 AND 0004

007 AND NOT 0005

008 OUT 0100

009 LD 0103

010 OR NOT 0004

011 AND 0005

012 OUT 0101

013 LD NOT 0103

014 OR 0008

015 OR 0009

016 OUT 0102

Differentiated Conditions Work bits can also be used if differential treatment is necessary for some, but
not all, of the conditions required for execution of an instruction. In this exam-
ple, bit 0100 must be left ON continuously as long as bit 0001 is ON and both
bit 0002 and bit 0003 are OFF, or as long as bit 0004 is ON and bit 0005 is
OFF. It must be turned ON for only one cycle each time bit 0000 turns ON
(unless one of the preceding conditions is keeping it ON continuously).

This action is easily programmed by using bit 0200 as a work bit as the oper-
and of the DIFFERENTIATE UP instruction (DIFU(10)). When bit 0000 turns

Reducing Complex
Conditions

Advanced Programming Section 3-6

63

ON, bit 0100 will be turned ON for one cycle and then be turned OFF the
next cycle by DIFU(10). Assuming the other conditions controlling bit 0100
are not keeping it ON, the work bit 0200 will turn bit 0100 ON for one cycle
only.

0200

DIFU(10) 0200

0000

0001 0002 0003

0004 0005

0100

Address Instruction Operands

000 LD 0000

001 DIFU(10) 0200

002 LD 0200

003 LD 0001

004 AND NOT 0002

005 AND NOT 0003

006 OR LD ---

007 LD 0004

008 AND NOT 0005

009 OR LD ---

010 OUT 0100

3-6-7 Programming Precautions
The number of conditions that can be used in series or parallel is unlimited
as long as the memory capacity of the PC is not exceeded. Therefore, use as
many conditions as required to draw a clear diagram. Although very compli-
cated diagrams can be drawn with instruction lines, there must not be any
conditions on lines running vertically between two other instruction lines. Dia-
gram A shown below, for example, is not possible, and should be drawn as
diagram B. Mnemonic code is provided for diagram B only; coding diagram A
would be impossible.

Instruction 2

Instruction 1

0002

0003

0000

0001

0004

Diagram A

Instruction 1

0004

0003

0000

0001

Diagram B

0002

Instruction 2

00040000

0001

Address Instruction Operands

000 LD 0001

001 AND 0004

002 OR 0000

003 AND 0002

004 Instruction 1

005 LD 0000

006 AND 0004

007 OR 0001

008 AND NOT 0003

009 Instruction 2

The number of times any particular bit can be assigned to conditions is not
limited, so use them as many times as required to simplify your program. Of-
ten, complicated programs are the result of attempts to reduce the number of
times a bit is used.

Except for instructions for which conditions are not allowed (e.g., INTER-
LOCK CLEAR, see below), every instruction line must also have at least one
condition on it to determine the execution condition for the instruction at the
right. Again, diagram A , below, must be drawn as diagram B. If an instruction

Advanced Programming Section 3-6

64

must be continuously executed (e.g., if an output must always be kept ON
while the program is being executed), the Always ON Flag (bit 0408) can be
used.

Instruction
0408

Instruction

Diagram A

Diagram B

Address Instruction Operands

000 LD 0408

001 Instruction

There are a few exceptions to this rule, including the INTERLOCK CLEAR
and step instructions. Each of these instructions is used as the second of a
pair of instructions and is controlled by the execution condition of the first of
the pair. Conditions should not be placed on the instruction lines leading to
these instructions.

When drawing ladder diagrams, it is important to keep in mind the number of
instructions that will be required to input it. In diagram A, below, an OR LOAD
instruction will be required to combine the top and bottom instruction lines.
This can be avoided by redrawing as shown in diagram B so that no AND
LOAD or OR LOAD instructions are required. Refer to 3-7-6 AND LOAD and
OR LOAD for more details.

0000

0001 0107

0107

0001

0000

0107
0107

Diagram A

Diagram B

Address Instruction Operands

000 LD 0000

001 LD 0001

002 AND 0107

003 OR LD ---

004 OUT 0107

Address Instruction Operands

000 LD 0001

001 AND 0107

002 OR 0000

003 OUT 0107

Advanced Programming Section 3-6

65

3-7 Instruction Set
The remainder of this section explains SK20 instructions individually.

Note The SK20 communicates with other Units via the SYSMAC BUS Remote I/O
Slave Unit. All references to local I/O bits also apply to remote I/O bits as
well.

3-7-1 Notation
In the remainder of this manual, all instructions will be referred to by their
mnemonics. For example, the OUTPUT instruction will be called OUT; the
AND LOAD instruction, AND LD. If you’re not sure of the instruction a mne-
monic is used for, refer to Appendix C Programming Instructions and Execu-
tion Times.

If an instruction is assigned a function code, it will be given in parentheses
after the mnemonic. These function codes, which are 2-digit decimal num-
bers, are used to input most instructions into the CPU and are described
briefly below. A table of instructions listed in order of function codes, is also
provided in Appendix C.

3-7-2 Instruction Format
Most instructions have at least one or more operands associated with them.
Operands indicate or provide the data on which an instruction is to be per-
formed. These are sometimes input as the actual numeric values (i.e., as
constants), but are usually the addresses of data area words or bits that con-
tain the data to be used. A bit whose address is designated as an operand is
called an operand bit; a word whose address is designated as an operand is
called an operand word. In some instructions, the word address designated
in an instruction indicates the first of multiple words containing the desired
data.

Each instruction requires one or more words in Program Memory. The first
word is the instruction word, which specifies the instruction and contains any
definers (described below) or operand bits required by the instruction. Other
operands required by the instruction are contained in following words, one
operand per word. Some instructions require up to five words.

A definer is an operand associated with an instruction and contained in the
same word as the instruction itself. These operands define the instruction
rather than telling what data it is to use. Examples of definers are TC num-
bers, which are used in timer and counter instructions to create timers and
counters. Bit operands are also contained in the same word as the instruction
itself, although these are not considered definers.

3-7-3 Data Areas, Definer Values, and Flags
In this section, each instruction description includes its ladder diagram sym-
bol, the data areas that can be used by its operands, and the values that can
be used as definers. Details for the data areas are also specified by the oper-
and names and the type of data required for each operand (i.e., word or bit
and, for words, hexadecimal or BCD).

Not all addresses in the specified data areas are necessarily allowed for an
operand, e.g., if an operand requires two words, the last word in a data area
cannot be designated as the first word of the operand because all words for a
single operand must be within the same data area. Other specific limitations
are given in a Limitations subsection. Refer to 3-2 Memory Areas for ad-
dressing conventions and the addresses of flags and control bits.

Instruction Set Section 3-7

66

The Flags subsection lists flags that are affected by execution of an instruc-
tion. These flags include the following.

Abbreviation Name Bit

ER Instruction Execution Error Flag 0311

CY Carry Flag 0312

LE Less Than Flag 0313

EQ Equals Flag 0314

GR Greater Than Flag 0315

ER is the flag most commonly used for monitoring an instruction’s execution.
When ER goes ON, it indicates that an error has occurred in attempting to
execute the current instruction. The Flags subsection of each instruction lists
possible reasons for ER being ON. ER will turn ON if operands are not en-
tered correctly. Instructions are not executed when ER is ON. A table of in-
structions and the flags they affect is provided in Appendix E Error and Arith-
metic Flag Operation.

When the DR area is specified for an operand, an indirect address can be
used. Indirect DR addressing is specified by placing an asterisk before the
DR: �DR.

When an indirect DR address is specified, the designated DR word will con-
tain the address of the DR word that contains the data to be used as the op-
erand of the instruction. If, for example, �DR 01 was designated as the first
operand and DR 00 as the second operand of MOV(30), the contents of DR
01 was 0006, and DR 06 contained 5555, the value 5555 would be moved to
DR 00.

MOV(30)

�DR 01

DR 00

 Word Content
DR 00 4C23
DR 01 0006
DR 02 F3A3

DR 06 5555
DR 07 2255
DR 08 D1C5

5555
moved to
DR 00.

Indicates
DR 06.

Indirect
address

When using indirect addressing, the address of the desired word must be in
BCD and it must specify a word within the DR area. In the above example,
the content of �DR 00 would have to be in BCD and between 0000 and
0015.

Although data area addresses are most often given as operands, many oper-
ands and all definers are input as constants. The available value range for a
given definer or operand depends on the particular instruction that uses it.
Constants must also be entered in the form required by the instruction, i.e., in
BCD or in hexadecimal.

3-7-4 Coding Right-hand Instructions
Writing mnemonic code for ladder instructions has already been described
for ladder instructions. Converting the information in the ladder diagram sym-
bol for all other instructions follows the same pattern, as described below,
and is not specified for each instruction individually.

Indirect Addressing

Designating Constants

Instruction Set Section 3-7

67

The first word of any instruction defines the instruction and provides any de-
finers. If the instruction requires only a signal bit operand with no definer, the
bit operand is also placed on the same line as the mnemonic. All other oper-
ands are placed on lines after the instruction line, one operand per line and in
the same order as they appear in the ladder symbol for the instruction.

The address and instruction columns of the mnemonic code table are filled in
for the instruction word only. For all other lines, the left two columns are left
blank. If the instruction requires no definer or bit operand, the data column is
left blank for first line. It is a good idea to cross through any blank data col-
umn spaces (for all instruction words that do not require data) so that the
data column can be quickly cycled to see if any addresses have been left
out.

If an I/O bit, work bit, or dedicated bit address is used in the data column, the
left side of the column is left blank. If a DR or TC data address is used, the
data area abbreviation is placed on the left side and the address is place on
the right side. If a constant to be input, the number symbol (#) is placed on
the left side of the data column and the number to be input is placed on the
right side. Any numbers input as definers in the instruction word do not re-
quire the number symbol on the right side. TC bits, once defined as a timer
or counter, take a TIM (timer) or CNT (counter) prefix.

When coding an instruction that has a function code, be sure to write in the
function code, which will be necessary when inputting the instruction via the
Programming Console.

The following diagram and corresponding mnemonic code illustrates the
points described above.

Address Instruction Data

000 LD 0000

001 AND 0001

002 OR 0002

003 DIFU(10) 0215

004 LD 0005

005 TIM 00

0150

006 LD TIM 00

007 MOV(30) --

DR 00

DR 10

008 LD DR 0015

009 OUT NOT 0100

DIFU(10) 0215

0100

MOV(30)

DR 00

DR 10

TIM 00

0002

0005

DR 0015

0000 0001

TIM 00

#0150

Instruction Set Section 3-7

68

If a right-hand instruction requires multiple instruction lines (such as
KEEP(12)), all of the lines for the instruction are entered before the
right-hand instruction. Each of the lines for the instruction is coded, starting
with LD or LD NOT, to form ‘logic blocks’ that are combined by the right-hand
instruction. An example of this for SFT(33) is shown below.

I

P

R

SFT(33)

DR 00

Address Instruction Data

000 LD 0000

001 AND 0001

002 LD 0002

003 LD 0215

004 AND NOT 0200

005 LD 0201

006 AND NOT 0214

007 AND NOT DR 0000

008 OR LD --

009 AND 0215

010 SFT(33) --

DR 00

011 LD DR 0015

012 OUT NOT 0100

0215 0200

0100

0201 0214 DR 0000

0215

0002

DR 0015

0000 0001

When you have finished coding the program, make sure you have placed
END(01) at the last address. If there is not END(01) instruction in the pro-
gram, the program will not be executed even if you switch to RUN mode.

3-7-5 LOAD, LOAD NOT, AND, AND NOT, OR, and OR NOT

B: Bit

I/O, work, dedicated, DR, TC

Ladder Symbols Operand Data Areas

LOAD - LD
B

B: Bit

I/O, work, dedicated, DR, TC
LOAD NOT - LD NOT B

B: Bit

I/O, work, dedicated, DR, TC
AND - AND

B

B: Bit

I/O, work, dedicated, DR, TC
AND NOT - AND NOT

B

B: Bit

I/O, work, dedicated, DR, TC
OR - OR B

B: Bit

I/O, work, dedicated, DR, TC
OR NOT - OR NOT B

Multiple Instruction Lines

END(01)

Instruction Set Section 3-7

69

There is no limit to the number of any of these instructions, or restrictions in
the order in which they must be used, as long as the memory capacity of the
PC is not exceeded.

These six basic instructions correspond to the conditions on a ladder dia-
gram. As described in 3-4 Basic Programming, the status of the bits assigned
to each instruction determines the execution conditions for all other instruc-
tions. Each of these instructions and each bit address can be used as many
times as required. Each can be used in as many of these instructions as re-
quired.

The status of the bit operand (B) assigned to LD or LD NOT determines the
first execution condition. AND takes the logical AND between the execution
condition and the status of its bit operand; AND NOT, the logical AND be-
tween the execution condition and the inverse of the status of its bit operand.
OR takes the logical OR between the execution condition and the status of
its bit operand; OR NOT, the logical OR between the execution condition and
the inverse of the status of its bit operand. The ladder symbol for loading TR
bits is different from that shown above. Refer to 3-4-3 Ladder Instructions for
details.

There are no flags affected by these instructions.

3-7-6 AND LOAD and OR LOAD

Ladder Symbol

AND LOAD - AND LD
0002

0003

0000

0001

Ladder Symbol

OR LOAD - OR LD
0000 0001

0002 0003

When instructions are combined into blocks that cannot be logically com-
bined using only OR and AND operations, AND LD and OR LD are used.
Whereas AND and OR operations logically combine a bit status and an ex-
ecution condition, AND LD and OR LD logically combine two execution con-
ditions, the current one and the last unused one.

In order to draw ladder diagrams, it is not necessary to use AND LD and OR
LD instructions. They are used to convert the program to and input it in mne-
monic form.

In order to reduce the number of programming instructions required, a basic
understanding of logic block instructions is required. For an introduction to
logic blocks, refer to 3-4-6 Logic Block Instructions.

There are no flags affected by these instructions.

Limitations

Description

Flags

Description

Flags

Instruction Set Section 3-7

70

3-7-7 OUTPUT and OUTPUT NOT - OUT and OUT NOT

B: Bit

Output bits, work bits, DR

Ladder Symbol Operand Data Areas
OUTPUT - OUT

B

B: Bit

Output bits, work bits, DR

Ladder Symbol Operand Data Areas
OUTPUT NOT - OUT NOT

B

Any output bit can generally be used in only one instruction that controls its
status. Refer to 3-2-2 I/O Bits for details.

OUT and OUT NOT are used to control the status of the designated bit ac-
cording to the execution condition.

OUT turns ON the designated bit for an ON execution condition, and turns
OFF the designated bit for an OFF execution condition.

OUT NOT turns ON the designated bit for a OFF execution condition, and
turns OFF the designated bit for an ON execution condition.

OUT and OUT NOT can be used to control execution by turning ON and OFF
bits that are assigned to conditions on the ladder diagram, thus determining
execution conditions for other instructions. This is particularly helpful and al-
lows a complex set of conditions to be used to control the status of a single
work bit, and then that work bit can be used to control other instructions.

The length of time that a bit is ON or OFF can be controlled by combining the
OUT or OUT NOT with TIM. Refer to Examples under 3-7-14 TIMER - TIM
for details.

There are no flags affected by these instructions.

3-7-8 DIFFERENTIATE UP and DIFFERENTIATE DOWN -
DIFU(10) and DIFD(11)

B: Bit

Output bits, work bits, DR

Ladder Symbols Operand Data Areas

DIFU(10) B

B: Bit

Output bits, work bits, DR
DIFD(11) B

The total of all DIFU(10) and DIFD(11) instruction in any one program must
be 16 or less. Any output bit can generally be used in only one instruction
that controls its status. Refer to 3-2-2 I/O Bits for details.

DIFU(10) and DIFD(11) are used to turn the designated bit ON for one cycle
only.

Whenever executed, DIFU(10) compares its current execution with the pre-
vious execution condition. If the previous execution condition was OFF and

Limitations

Description

Flags

Limitations

Description

Instruction Set Section 3-7

71

the current one is ON, DIFU(10) will turn ON the designated bit. If the pre-
vious execution condition was ON and the current execution condition is ei-
ther ON or OFF, DIFU(10) will either turn the designated bit OFF or leave it
OFF (i.e., if the designated bit is already OFF). The designated bit will thus
never be ON for longer than one cycle, assuming it is executed each cycle
(see Precautions, below).

Whenever executed, DIFD(11) compares its current execution with the pre-
vious execution condition. If the previous execution condition is ON and the
current one is OFF, DIFD(11) will turn ON the designated bit. If the previous
execution condition was OFF and the current execution condition is either
ON or OFF, DIFD(11) will either turn the designated bit OFF or leave it OFF.
The designated bit will thus never be ON for longer than one cycle, assuming
it is executed each cycle (see Precautions, below).

There are no flags affected by these instructions.

DIFU(10) and DIFD(11) operation can be uncertain when the instructions are
programmed between IL and ILC. Refer to 3-7-10 INTERLOCK and INTER-
LOCK CLEAR - IL(02) and ILC(03) for details.

In diagram A, below, whenever CMP(32) is executed with an ON execution
condition it will compare the contents of the two operand words (DR 10 and
DR 00) and set the arithmetic flags (GR, EQ, and LE) accordingly. If the ex-
ecution condition remains ON, flag status may be changed each cycle if the
content of one or both operands change. Diagram B, however, is an example
of how DIFU(10) can be used to ensure that CMP(32) is executed only once
each time the desired execution condition goes ON.

0000

CMP(32)

DR 10

DR 00Diagram A

0215

CMP(32)

DR 10

DR 00Diagram B

DIFU(10) 0215

0000

Address Instruction Operands

000 LD 0000

001 CMP(32)

DR 10

DR 00

Address Instruction Operands

000 LD 0000

001 DIFU(10) 0215

002 LD 0215

003 CMP(32)

DR 10

DR 00

Flags

Precautions

Example 1: One-time
Execution of Other
Instructions

Instruction Set Section 3-7

72

The following diagram would be very complicated to draw without using
DIFU(10) because only one of the conditions determining the execution con-
dition for MOV(30) requires differentiated treatment.

0215

MOV(30)

DR 10

DR 00

DIFU(10) 0215

0000

0001 0002 0003

0004 0005

Address Instruction Operands

000 LD 0000

001 DIFU(10) 0215

002 LD 0215

003 LD 0001

004 AND NOT 0002

005 AND NOT 0003

006 OR LD ---

007 LD 0004

008 AND NOT 0005

009 OR LD ---

010 MOV(30)

DR 10

DR 00

3-7-9 KEEP - KEEP(12)

B: Bit

Output bits, work bits, DR

Ladder Symbol Operand Data Areas

S

R

 KEEP(12)

B

Any output bit can generally be used in only one instruction that controls its
status. Refer to 3-2-2 I/O Bits for details.

KEEP(12) is used to maintain the status of the designated bit based on two
execution conditions. These execution conditions are labeled S and R. S is
the set input; R, the reset input. KEEP(12) operates like a latching relay that
is set by S and reset by R.

When S turns ON, the designated bit will go ON and stay ON until reset, re-
gardless of whether S stays ON or goes OFF. When R turns ON, the desig-
nated bit will go OFF and stay OFF until reset, regardless of whether R stays
ON or goes OFF. The relationship between execution conditions and
KEEP(12) bit status is shown below.

S execution condition

R execution condition

Status of B

Example 2: Use to Simplify
Programming

Limitations

Description

Instruction Set Section 3-7

73

KEEP(12) operates like the self-maintaining bit described in 3-6-5 Self-main-
taining Bits (Seal). The following two diagrams would function identically,
though the one using KEEP(12) requires one less instruction to program and
would maintain status even in an interlocked program section.

0002 0003

0100

0100
Address Instruction Operands

Address Instruction Operands

000 LD 0002

001 OR 0100

002 AND NOT 0003

003 OUT 0100

000 LD 0002

001 LD 0003

002 KEEP(12) 0100

S

R

 KEEP(12)

0100

0002

0003

There are no flags affected by this instruction.

If a Data Retention Bit is used as the bit number for KEEP(12), do not re-
trieve data for set input or reset input from the normally closed contact of the
external device connected to the SK20. The internal circuitry of the PC will be
active for a while after the PC is turned off. Therefore, the input data may be
read and the ON/OFF status of the Data Retention Bit may be reversed. This
situation is shown below.

Input Unit

A

NEVER

S

R

 KEEP(12)

DR 03A

Bits used in KEEP are not reset in interlocks. Refer to the 3-7-10 INTER-
LOCK and INTERLOCK CLEAR - IL(02) and ILC(03) for details.

If a DR bit is used, bit status will be retained even during a power interrup-
tion. KEEP(12) can thus be used to program bits that will maintain status af-
ter restarting the PC following a power interruption. An example of this that
can be used to produce a warning display following a system shutdown for
an emergency situation is shown below. Bits 0002, 0003, and 0004 would be
turned ON to indicate some type of error. Bit 0001 would be turned ON to
reset the warning display. DR 0000, which is turned ON when any one of the

Flags

Precautions

Example

Instruction Set Section 3-7

74

three bits indicates an emergency situation, is used to turn ON the warning
indicator through 0100.

DR 0000

0100

0002

0003

0004

0001
Reset input

Indicates
emergency
situation

Activates
warning
display

Address Instruction Operands

000 LD 0002

001 OR 0003

002 OR 0004

003 LD 0001

004 KEEP(12) DR 0000

005 LD DR 0000

006 OUT 0100

S

R

 KEEP(12)

DR 0000

KEEP(12) can also be combined with TIM to produce delays in turning bits
ON and OFF. Refer to 3-7-14 TIMER - TIM for details.

3-7-10 INTERLOCK and INTERLOCK CLEAR - IL(02) and ILC(03)

Ladder Symbol IL(02)

Ladder Symbol ILC(03)

IL(02) is always used in conjunction with ILC(03) to create interlocks. Inter-
locks are used to create program sections that are either executed normally
or partially reset and frozen, depending on the interlock condition (i.e., the
execution condition of IL(02)). If the execution condition of IL(02) is ON, the
program will be executed as written.

If the execution condition for IL(02) is OFF, the interlocked section between
IL(02) and ILC(03) will be treated as shown in the following table:

Instruction Treatment

OUT and OUT NOT Designated bit turned OFF.

TIM, TIMM(20), TIMH(21), ATIM(22),
ATM1(25), and ATM2(26)

Reset.

CNT, RDM(23), and CNTH(24) Frozen and PV maintained.

KEEP(12) Bit status maintained.

DIFU(10) and DIFD(11) Not executed (see below).

All others Not executed.

IL(02) and ILC(03) do not necessarily have to be used in pairs. IL(02) can be
used several times in a row, with each IL(02) creating an interlocked section
through the next ILC(03). ILC(03) cannot be used unless there is at least one
IL(02) between it and any previous ILC(03).

Changes in the execution condition for a DIFU(10) or DIFD(11) are not re-
corded if the DIFU(10) or DIFD(11) is in an interlocked section and the ex-
ecution condition for the IL(02) is OFF. When DIFU(10) or DIFD(11) is execu-
tion in an interlocked section immediately after the execution condition for the
IL(02) has gone ON, the execution condition for the DIFU(10) or DIFD(11)
will be compared to the execution condition that existed before the interlock

Description

DIFU(10) and DIFD(11) in
Interlocks

Instruction Set Section 3-7

75

became effective (i.e., before the interlock condition for IL(02) went OFF).
The ladder diagram and bit status changes for this are shown below. The
interlock is in effect while bit 0000 is OFF. Notice that bit 0215 is not turned
ON at the point labeled A even though 0001 has turned OFF and then back
ON.

0000

IL(02)

DIFU(10) 0215

ILC(03)

0001

0000

0001

ON

OFF

ON

OFF

0215
ON

OFF

A

Address Instruction Operands

000 LD 0000

001 IL(02)

002 LD 0001

003 DIFU(10) 0215

004 ILC(03)

There must be an ILC(03) following any one or more IL(02).

Although as many IL(02) instructions as necessary can be used with one
ILC(03), ILC(03) instructions cannot be used consecutively without at least
one IL(02) in between. Whenever a ILC(03) is executed, all interlocks be-
tween the active ILC(03) and the preceding ILC(03) are cleared.

STEP(04) and SNXT(05) cannot be used between the INTERLOCK and IN-
TERLOCK CLEAR instructions.

There are no flags affected by these instructions.

The following diagram shows IL(02) being used twice with one ILC(03).

0000

0001

ILC(03)

IL(02)

0005

0003

0002

IL(02)

0102

CP

R

CNT 01

#0150
0004

Address Instruction Operands

000 LD 0000

001 IL(02)

002 LD 0001

003 TIM 00

0015

004 LD 0002

005 IL(02)

006 LD 0003

007 LD 0004

008 CNT 01

0150

009 LD 0005

010 OUT 0102

011 ILC(03)

TIM 00

#0015 1.5 s

When the execution condition for the first IL(02) is OFF, TIM 00 will be reset
to 1.5 s, CNT 01 will not be changed, and 0102 will be turned OFF. When the
execution condition for the first IL(02) is ON and the execution condition for
the second IL(02) is OFF, TIM 00 will be executed according to the status of
0001, CNT 01 will not be changed, and 0102 will be turned OFF. When the
execution conditions for both the IL(02) are ON, the program will execute as
written.

Precautions

Flags

Example

Instruction Set Section 3-7

76

3-7-11 END - END(01)

Ladder Symbol END(01)

END(01) is required as the last instruction in any program. No instructions
written after END(01) will be executed. END(01) can be placed anywhere in
the program to execute all instructions up to that point, as is sometimes done
to debug a program, but it must be removed to execute the remainder of the
program.

If there is no END(01) in the program, no instructions will be executed and
the error message “NO END INST” will appear.

END(01) turns OFF the ER, CY, GR, EQ, and LE flags.

3-7-12 NO OPERATION - NOP(00)

NOP(00) is not generally required in programming and there is no ladder
symbol for it. When NOP(00) is found in a program, nothing is executed and
program execution moves to the next instruction. When memory is cleared
prior to programming, NOP(00) is written at all addresses. NOP(00) can be
input through the 00 function code.

There are no flags affected by NOP(00).

3-7-13 Timers and Counters
TIM and TIMM(20) are decrementing ON-delay timer instructions which re-
quire a TC number and a set value (SV). The TIM SV is input to the tenths of
a second; the TIMM(20) SV is input to the hundredths of a second.

TIMH(21) is a decrementing ON-delay timer instruction which requires an SV,
The SV is input to the thousandths of a second.

ATIM(22) is a decrementing ON-delay timer with a hardware adjustment for
the SV.

ATM1(25) and ATM2(26), like ATIM(22), are decrementing ON-delay timers
and the SV can be set by hardware adjustments on the front of the CPU. Un-
like ATIM(22), the SV can also be set in a word.

CNT is a decrementing counter instruction and RDM(23) is a reversible drum
counter instruction. Both require a TC number and a SV. Both are also con-
nected to multiple instruction lines which serve as an input signal(s), a reset,
and for RDM(23), an up/down input. RDM(23) also requires specification of
the first word in the results table.

CNTH(24) is a high-speed incrementing counter. It can count pulses as fast
as 3.3 kHz.

Any one TC number cannot be defined twice, i.e., once it has been used as
the definer in any of the timer or counter instructions, it cannot be used
again. Once defined, TC numbers can be used as many times as required as
operands in instructions.

TC numbers run from 00 through 15. No prefix is required when using a TC
number as a definer in a timer or counter instruction. Once defined as a tim-
er, a TC number can be prefixed with TIM for use as an operand in certain
instructions. The TIM prefix is used regardless of the timer instruction that
was used to define the timer. Once defined as a counter, a TC number can

Description

Flags

Description

Flags

Instruction Set Section 3-7

77

be prefixed with CNT for use as an operand in certain instructions. The CNT
is also used regardless of the counter instruction that was used to define the
counter.

TC numbers can be designated as operands that require either bit or word
data. When designated as an operand that requires bit data, the TC number
accesses a bit that functions as a ‘Completion Flag’ that indicates when the
time/count has expired, i.e., the bit, which is normally OFF, will turn ON when
the designated SV has expired. When designated as an operand that re-
quires word data, the TC number accesses a memory location that holds the
present value (PV) of the timer or counter. The PV of a timer or counter can
thus be used as an operand in CMP(32), or any other instruction for which
the TC area is allowed. This is done by designating the TC number used to
define that timer or counter to access the memory location that holds the PV.

TC numbers TC 11 through TC 15 are assigned to specific instructions, as
shown in the table below.

TC number Instruction

TC 11 ANALOG TIMER 1, ATM1(25)

TC 12 ANALOG TIMER 2, ATM2(26)

TC 13 HIGH-SPEED COUNTER, CNTH(24)

TC 14 HIGH-SPEED TIMER, TIMH(21)

TC 15 ANALOG TIMER, ATIM(22)

Note The present value of timers and counters can be monitored through the Pro-
gramming Console. Refer to the Bit/TC Monitor and Multibit/TC Monitor oper-
ations.

3-7-14 TIMER - TIM

N: TC number

(00 through 15)

Ladder Symbol

Definer Values

SV: Set value (BCD)

I/O, work, DR, #

Operand Data Areas
TIM N

SV

SV is between 000.0 and 999.9 seconds. The decimal point is not entered.

Each TC number can be used as the definer in only one timer or counter in-
struction.

TC 11 through TC 15 should not be used in TIM if they are required for the
specific instruction to which they are assigned. Refer to the table on page 77.

Timer accuracy: 0/–0.1 s

A timer is activated when its execution condition goes ON and is reset (to
SV) when the execution condition goes OFF. Once activated, TIM measures
in units of 0.1 second from the SV. TIM accuracy is +0.0/–0.1 second.

If the execution condition remains ON long enough for TIM to time down to
zero, the Completion Flag for the TC number used will turn ON and will re-
main ON until TIM is reset (i.e., until its execution condition is goes OFF).

Limitations

Description

Instruction Set Section 3-7

78

The following figure illustrates the relationship between the execution condi-
tion for TIM and the Completion Flag assigned to it.

Execution condition

Completion Flag

ON

OFF

ON

OFF

SV SV

Timers in interlocked program sections are reset when the execution condi-
tion for IL(02) is OFF. Power interruptions also reset timers. If a timer that is
not reset under these conditions is desired, dedicated clock pulse bits can be
counted to produce timers using CNT. Refer to 3-7-19 COUNTER - CNT for
details.

Flags ER: The Error Flag (0311) will be turned ON when the SV is set in a word
but the content of the indicated word is not BCD. The instruction will
be executed, but operation will not be reliable.

All of the following examples use OUT to control output bits. There is no rea-
son, however, why these diagrams cannot be modified to control execution of
other instructions.

The following example shows two timers. Here, 0100 will be turned ON after
bit 0000 goes ON and stays ON for at least 15 seconds. When bit 0000 goes
OFF, the timer will be reset and 0100 will be turned OFF. When 0001 goes
ON, TIM 01 is started. Bit 0101 is also turned ON when 0001 goes ON.
When 20 seconds have expired, 0101 is turned OFF. This bit will also be
turned OFF when TIM 01 is reset, regardless of whether or not SV has ex-
pired.

0000

TIM 00

0001

TIM 01

0100

0101

Address Instruction Operands

000 LD 0000

001 TIM 00

0150

002 LD TIM 00

003 OUT 0100

004 LD 0001

005 TIM 01

0200

006 AND NOT TIM 01

007 OUT 0101

TIM 00

#0150

TIM 01

#0200

Precautions

Examples

Example 1:
Basic Application

Instruction Set Section 3-7

79

There are two ways to achieve timers that operate for longer than 999.9 sec-
onds. One method is to program consecutive timers, with the Completion
Flag of each timer used to activate the next timer. A simple example with two
900.0-second (15-minute) timers combined to functionally form a 30-minute
timer.

0000

TIM 01

TIM 02

0100

Address Instruction Operands

000 LD 0000

001 TIM 01

9000

002 LD TIM 01

003 TIM 02

9000

004 LD TIM 02

005 OUT 0100

TIM 01

#9000

TIM 02

#9000

900.0 s

900.0 s

In this example, bit 0100 will be turned ON 30 minutes after bit 0000 goes
ON.

TIM can also be combined with CNT or CNT can be used to count dedicated
clock pulse bits to produce longer timers. An example is provided in 3-7-18
COUNTER - CNT.

TIM can be combined with KEEP(12) to delay turning a bit ON and OFF in
reference to a desired execution condition. KEEP(12) is described 3-7-9
KEEP - KEEP(12).

To create delays, the Completion Flags for two TIM are used to determine
the execution conditions for setting and reset the bit designated for
KEEP(12). The bit whose manipulation is to be delayed is used in KEEP(12).
Turning ON and OFF the bit designated for KEEP(12) is thus delayed by the
SV for the two TIM. The two SV could naturally be the same if desired.

In the following example, 0100 would be turned ON 5.0 seconds after 0000
goes ON and then turned OFF 3.0 seconds after 0000 goes OFF. It is neces-
sary to use both 0100 and 0000 to determine the execution condition for TIM
02; 0000 in a normally closed condition is necessary to reset TIM 02 when
0000 goes ON and 0100 is necessary to activate TIM 02 (when 0000 is
OFF).

0000

0100 0000

TIM 01

TIM 02

0000

0100

5.0 s 3.0 s

Address Instruction Operands

000 LD 0000

001 TIM 01

0050

002 LD 0100

003 AND NOT 0000

004 TIM 02

0030

005 LD TIM 01

006 LD TIM 02

007 KEEP(12) 0100

TIM 01

#0050

TIM 02

#0030

S

R

 KEEP(12)

0100

5.0 s

3.0 s

Example 2:
Extended Timers

Example 3:
ON/OFF Delays

Instruction Set Section 3-7

80

The length of time that a bit is kept ON or OFF can be controlled by combin-
ing TIM with OUT or OUT NOT. The following diagram demonstrates how
this is possible. In this example, bit 0103 would remain ON for 1.5 seconds
after 0000 goes ON regardless of the time 0000 stays ON. This is achieved
by using 0215 as a self-maintaining bit activated by 0000 and turning ON
0103 through it. When TIM 01 comes ON (i.e., when the SV of TIM 01 has
expired), 0103 will be turned OFF through TIM 01 (i.e., TIM 01 will turn ON
and because it is programmed as a normally closed condition, an OFF ex-
ecution condition will be created for OUT 0103).

0000

TIM 010215

0215

0215 TIM 01

0215

0103

0000

0103

1.5 s 1.5 s

Address Instruction Operands

000 LD 0215

001 AND NOT TIM 01

002 OR 0000

003 OUT 0215

004 LD 0215

005 TIM 01

0015

006 LD 0215

007 AND NOT TIM 01

008 OUT 0103

TIM 01

#0015 1.5 s

Bits can be programmed to turn ON and OFF at regular intervals while a des-
ignated execution condition is ON by using TIM twice. One TIM functions to
turn ON and OFF a specified bit, i.e., the Completion Flag of this TIM turns
the specified bit ON and OFF. The other TIM functions to control the opera-
tion of the first TIM, i.e., when the first TIM’s Completion Flag goes ON, the
second TIM is started and when the second TIM’s Completion Flag goes ON,
the first TIM is started.

0000

TIM 01

TIM 01
0103

0000

0103

1.5 s1.0 s 1.5 s1.0 s

Address Instruction Operands

000 LD 0000

001 AND NOT TIM 02

002 TIM 01

0010

003 LD TIM 01

004 TIM 02

0015

005 LD TIM 01

006 OUT 0103

TIM 02

#0015

TIM 01

#0010 1.0 s

1.5 s

TIM 02

A simpler but less flexible method of creating a flicker bit is to AND one of the
dedicated clock pulse bits with the execution condition that is to be ON when
the flicker bit is operating. Although this method does not use TIM, it is in-

Example 4:
One-Shot Bits

Example 5:
Flicker Bits

Instruction Set Section 3-7

81

cluded here for comparison. This method is more limited because the ON
and OFF times must be the same and they depend on the clock pulse bits
available.

In the following example the 1-second clock pulse is used (0308) so that
0101 would be turned ON and OFF every second, i.e., it would be ON for 0.5
seconds and OFF for 0.5 seconds. Precise timing and the initial status of
0101 would depend on the status of the clock pulse when 0000 goes ON.

0000 0308
0101

Address Instruction Operands

000 LD 0000

001 AND 0308

002 OUT 0101

3-7-15 TIMER - TIMM(20)

N: TC number

(00 through 15)

Ladder Symbol

Definer Values

SV: Set value (BCD)

I/O, work, DR, #

Operand Data Areas
TIMM(20) N

SV

SV is between 00.00 and 99.99 seconds. The decimal point is not entered.

Each TC number can be used as the definer in only one timer or counter in-
struction.

TC 11 through TC 15 should not be used in TIMM(20) if they are required for
the specific instruction to which they are assigned. Refer to the table on page
77.

Timer accuracy: 0/–0.01 s

TIMM(20) operates in the same way as TIM except that TIMM(20) measures
in units of 0.01 second.

Refer to 3-7-14 TIMER - TIM for operational details and examples. Except for
the above, and all aspects of operation are the same.

Timers in interlocked program sections are reset when the execution condi-
tion for IL(02) is OFF. Power interruptions also reset timers. If a timer that is
not reset under these conditions is desired, dedicated clock pulse bits can be
counted to produce timers using CNT. Refer to 3-7-19 COUNTER - CNT for
details.

Flags ER: The Error Flag (0311) will be turned ON when the SV is set in a word
but the content of the indicated word is not BCD. The instruction will
be executed, but operation will not be reliable.

Limitations

Description

Precautions

Instruction Set Section 3-7

82

3-7-16 HIGH-SPEED TIMER - TIMH(21)

Ladder Symbol

TIMH(21)

SV

SV: Set value (BCD)

I/O, work, DR, #

Operand Data Areas

SV is between 0.000 and 9.999 seconds. The decimal point is not entered. In
practice, the accuracy of TIMH(21) is limited to the cycle time (i.e., because
outputs are refreshed only once each cycle, the accuracy of TIMH(21) is lim-
ited to the order of magnitude of the cycle time). Refer to 3-9 Program Ex-
ecution for details on the cycle time.

The TC number is automatically set to TIM 14 when TIMH(21) is designated
and does not need to be input.

Timer accuracy: 0/–0.001 s

TIMH(21) operates in the same way as TIM and TIMM(20) except that
TIMH(21) measures in units of 0.001 second.

Refer to 3-7-14 TIMER - TIM for operational details and examples. Except for
the above, and all aspects of operation are the same.

Timers in interlocked program sections are reset when the execution condi-
tion for IL(02) is OFF. Power interruptions also reset timers. If a timer that is
not reset under these conditions is desired, dedicated clock pulse bits can be
counted to produce timers using CNT. Refer to 3-7-19 COUNTER - CNT for
details.

Flags ER: The Error Flag (0311) will be turned ON when the SV is set in a word
but the content of the indicated word is not BCD. The instruction will
be executed, but operation will not be reliable.

3-7-17 ANALOG TIMER - ATIM(22)

Ladder Symbol ATIM(22)

The SV is determined by a hardware setting (see below) and does not re-
quire numeric input with the instruction.

The TC number is automatically set to TIM 15 when ATIM(22) is designated
and does not need to be input.

Limitations

Description

Precautions

Limitations

Instruction Set Section 3-7

83

ATIM(22) operates in the same way as TIM and TIMM(20) except that the SV
is determined by the hardware analog timer adjustment on the front of the
CPU. The adjustment for the SK20 is shown below. The hardware setting is
converted to BCD and stored inside the PC. This setting is between 0.1 and
25.0 seconds. Both ATIM(22) and ATM1(25) are adjusted with the #1 analog
timer adjustment on the front of the SK20.

Adjust with a small
Phillips screwdriver.

Refer to 3-7-14 TIMER - TIM for other operational details and examples. Ex-
cept for the above, all aspects of operation are the same.

Timers in interlocked program sections are reset when the execution condi-
tion for IL(02) is OFF. Power interruptions also reset timers. If a timer that is
not reset under these conditions is desired, dedicated clock pulse bits can be
counted to produce timers using CNT. Refer to 3-7-19 COUNTER - CNT for
details.

The SV of the analog timer can vary up to 10% with changes in the ambient
temperature.

3-7-18 ANALOG TIMER 1 and 2 - ATM1(25) and ATM2(26)

Ladder Symbols

ATM1(25)

RD

RD: Range designation (BCD)

I/O, work, DR, #

Operand Data Areas

ATM2(26)

RD

The SV cannot be entered directly. A range designation is entered to indicate
the range within which the SV is set using a hardware adjustment (see be-
low).

The TC number is automatically set to TIM 11 when ATM1(25) is designated
and TIM 12 when ATM2(26) is designated. The TC number cannot be input
as any other number.

ATM1(25) and ATM2(26) operate in the same way as TIM and TIMM(20) ex-
cept that their SVs are determined by the #1 and #2 analog timer adjust-
ments on the front of the CPU. The hardware setting is converted to BCD

Description

Precautions

Limitations

Description

Instruction Set Section 3-7

84

and stored in dedicated word 08. The ranges within which the hardware ad-
justment operations is designated as the operand (RD) of the instruction.
These designations are shown in the following table.

RD SV range

0000 1 to 250 seconds

0001 0.1 to 25.0 seconds

0002 0.01 to 2.50 seconds

RD can be designated either as a constant, or as the contents of a word by
designated a word address.

Both ATIM(22) and ATM1(25) are adjusted with the #1 analog timer adjust-
ment on the front of the SK20. Although both of these instructions can be
used at the same time, their SVs cannot be adjusted independently, although
the range of the set value for ATM1(25) can be controlled as described
above. ATM2(26) is adjusted with the #2 analog timer adjustment and can
thus be set independently from other timers.

Refer to 3-7-14 TIMER - TIM for other operational details and examples. Ex-
cept for the above, and all aspects of operation are the same.

Timers in interlocked program sections are reset when the execution condi-
tion for IL(02) is OFF. Power interruptions also reset timers. If a timer not re-
set under these conditions is desired, clock pulse bits can be counted to pro-
duce timers using CNT. Refer to 3-7-19 COUNTER - CNT for details.

The SV of the analog timer can vary up to 10% with changes in the ambient
temperature.

Flags ER: The Error Flag (0311) will be turned ON when the RD contained in a
word is not BCD. The instruction will be executed, but operation will
not be reliable.

3-7-19 COUNTER - CNT

N: TC number

(00 through 15)

Ladder Symbol

Definer Values

CP

R

CNT N

SV

SV: Set value (BCD)

I/O, work, DR, #

Operand Data Areas

Each TC number can be used as the definer in only one timer or counter in-
struction.

TC 11 through TC 15 should not be used in CNT if they are required for the
specific instruction to which they are assigned. Refer to the table on page 77.

CNT is used to count down from SV when the execution condition on the
count pulse, CP, goes from OFF to ON, i.e., the present value (PV) will be
decremented by one whenever CNT is executed with an ON execution condi-

Precautions

Limitations

Description

Instruction Set Section 3-7

85

tion for CP and the execution condition was OFF for the last execution. If the
execution condition has not changed or has changed from ON to OFF, the
PV of CNT will not be changed. The Completion Flag for a counter is turned
ON when the PV reaches zero and will remain ON until the counter is reset.

CNT is reset with a reset input, R. When R goes from OFF to ON, the PV is
reset to SV. The PV will not be decremented while R is ON. Counting down
from SV will begin again when R goes OFF. The PV for CNT will not be reset
in interlocked program sections or by power interruptions.

When the normally closed contact of the external device connected to the
SK20 is used for count input, the count input may be retrieved when the ex-
ternal device is turned off, in which case the present value will be –1.

When the normally closed contact of the external device is used for reset in-
put, the reset input will be activated when the external device is turned off, in
which case the present value will not be retained.

Changes in execution conditions, the Completion Flag, and the PV are illus-
trated below. PV line height is meant only to indicate changes in the PV.

Execution condition
on count pulse (CP)

Execution condition
on reset (R)

ON

OFF

ON

OFF

Completion Flag
ON

OFF

PV
SV

SV – 1

SV – 2

0002

0001

0000

SV

Flags ER: The Error Flag (0311) will be turned ON when the SV is contained in
a word but the content of the indicated word is not BCD. The instruc-
tion will be executed, but operation will not be reliable.

In the following example, the PV will be decremented whenever both 0000
and 0001 are ON provided that 0002 is OFF and either 0000 or 0001 was
OFF the last time CNT 04 was executed. When 150 pulses have been
counted down (i.e., when PV reaches zero), 0103 will be turned ON.

0000
CP

R

CNT 04

#0150
0002

0001

0103

CNT 04

Address Instruction Operands

000 LD 0000

001 AND 0001

002 LD 0002

003 CNT 04

0150

004 LD CNT 04

005 OUT 0103

Here, 0000 can be used to control when CNT is operative and 0001 can be
used as the bit whose OFF to ON changes are being counted.

Example 1:
Basic Application

Instruction Set Section 3-7

86

The above CNT can be modified to restart from SV each time the PC starts
operating. This is done by using the First Cycle Flag (0410) to reset CNT as
shown below.

0000
CP

R

CNT 04

#0150
0002

0001

0103

CNT 04

0410

Address Instruction Operands

000 LD 0000

001 AND 0001

002 LD 0002

003 OR 0410

004 CNT 04

0150

005 LD CNT 04

006 OUT 0103

Counters that can count past 9,999 can be programmed by using one CNT to
count the number of times another CNT has counted to zero from SV.

In the following example, 0000 is used to control when CNT 01 operates.
CNT 01, when 0000 is ON, counts down the number of OFF to ON changes
in 0001. CNT 01 is reset by its Completion Flag, i.e., it starts counting again
as soon as its PV reaches zero. CNT 02 counts the number of times the
Completion Flag for CNT 01 goes ON. Bit 0002 serves as a reset for the en-
tire extended counter, resetting both CNT 01 and CNT 02 when it is OFF.
The Completion Flag for CNT 02 is also used to reset CNT 01 to inhibit CNT
01 operation, once SV for CNT 02 has been reached, until the entire ex-
tended counter is reset via 0002.

Because in this example the SV for CNT 01 is 100 and the SV for CNT 02 is
200, the Completion Flag for CNT 02 turns ON when 100 x 200 or 20,000
OFF to ON changes have been counted in 0001. This would result in 0103
being turned ON.

0103

CP

R

CNT 01

#0100

CP

R

CNT 02

#0200

CNT 01

0002

CNT 02

0000 0001

0002

CNT 01

CNT 02

Address Instruction Operands

000 LD 0000

001 AND 0001

002 LD NOT 0002

003 OR CNT 01

004 OR CNT 02

005 CNT 01

0100

006 LD CNT 01

007 LD NOT 0002

008 CNT 02

0200

009 LD CNT 02

010 OUT 0103

CNT can be used in sequence as many times as required to produce count-
ers capable of counting any desired values.

CNT can be used to create extended timers in two ways: by combining TIM
with CNT and by counting dedicated clock pulse bits.

In the following example, CNT 02 counts the number of times TIM 01 reach-
es zero from its SV. The Completion Flag for TIM 01 is used to reset TIM 01

Example 2:
Reset for Power
Interruptions

Example 3: Extended
Counter

Example 4:
Extended Timers

Instruction Set Section 3-7

87

so that is runs continuously and CNT 02 counts the number of times the
Completion Flag for TIM 01 goes ON (CNT 02 would be executed once each
time between when the Completion Flag for TIM 01 goes ON and TIM 01 is
reset by its Completion Flag). TIM 01 is also reset by the Completion Flag for
CNT 02 so that the extended timer would not start again until CNT 02 was
reset by 0001, which serves as the reset for the entire extended timer.

Because in this example the SV for TIM 01 is 5.0 seconds and the SV for
CNT 02 is 100, the Completion Flag for CNT 02 turns ON when 5 seconds x
100 times, i.e., 500 seconds (or 8 minutes and 20 seconds) have expired.
This would result in bit 0100 being turned ON.

0000 TIM 01 CNT 02

TIM 01

0001

CNT 02

0100

CP

R

CNT 02

#0100

Address Instruction Operands

000 LD 0000

001 AND NOT TIM 01

002 AND NOT CNT 02

003 TIM 01

0050

004 LD TIM 01

005 LD 0001

006 CNT 02

0100

007 LD CNT 02

008 OUT 0100

TIM 01

#0050

In the following example, CNT 01 counts the number of times the 1-second
clock pulse bit (0308) goes from OFF to ON. Here again, 0000 is used to
control the times when CNT is operating.

Because in this example the SV for CNT 01 is 700, the Completion Flag for
CNT 02 turns ON when 1 second x 700 times, or 11 minutes and 40 seconds
have expired. This would result in 0102 being turned ON.

CP

R

CNT 01

#0700

0000 0308

0001

CNT 01
0102

Address Instruction Operands

000 LD 0000

001 AND 0308

002 LD NOT 0001

003 CNT 01

0700

004 LD CNT 01

005 OUT 0102

Instruction Set Section 3-7

88

3-7-20 REVERSIBLE DRUM COUNTER -RDM(23)

N: TC number

(00 to 15)

Ladder Symbol

Definer Values

St: Starting table word

DR

Operand Data Areas

II

DI

RI

 RDM(23)
N

St

R

R : Results word

Output bits, work bits, DR

St must be between 0000 and 0003. All unused bits in R can be used as
work bits.

TC 11 through TC 15 should not be used in RDM(23) if they are required for
the specific instruction to which they are assigned. Refer to the table on page
77.

The reversible drum counter is a ring counter with a counting range of 0000
to 9999. It uses three execution conditions, the count input (II), the decre-
ment/increment input (DI) and the reset input (RI).

RDM(23) is executed each time the ON execution condition for II has
changed from OFF to ON since the last cycle, i.e., on the rising edge of II.
RDM(23) increments the present value if DI is OFF and decrements the pres-
ent value if it is ON.

The value (n) in St indicates the number of comparison ranges with which the
PV is to be compared. Up to 6 ranges are possible (4 in the SK20). The num-
ber of ranges is one greater than the value in St. The present value of the
counter is compared with the upper and lower limits of a set of ranges which
have been preset in St+1 through St+2(n+1).

Check which designated range the present value is stored in. Each section
consists of two words (the lower and upper limits). If the upper limit is equal
to or greater than the lower limit, 1 will be output to the comparison result
word when the present value is between the lower and upper limits, and 0
will be output when the comparison data is not between the lower and upper
limits. Ranges 1 to 6 correspond to bits 00 to 05.

If the lower limit is set to be greater than the upper limit value, 0 will be output
when the present value is larger than the upper limit and less than the lower
limit, and 1 will be output if the present value is equal to or greater than the
lower limit or the present value is equal to or less than the upper limit.

Use the comparison table first word, as shown below, to specify the number
(final set range number) of ranges to be compared. A maximum of six ranges
(0005) can be set.

When the reset input (RI) goes ON, the present value is reset to 0000.

When the normally closed contact of the external device connected to the
SK20 is used for count input, the count input may be retrieved when the ex-
ternal device is turned off, in which case the present value will be –1.

Limitations

Description

Instruction Set Section 3-7

89

When the normally closed contact of the external device is used for reset in-
put, the reset input will be activated when the external device is turned off, in
which case the present value will not be retained.

The following table shows the upper and lower limits that need to be set in St
+ 1 through St + 2n +2. PV is the present value of the counter.

Lower limit Upper limit Present value of the counter Corresponding
bit of R

St + 1 St + 2 Value of St + 1 ≤ PC ≤ value of St + 2 00

St + 3 St + 4 Value of St + 3 ≤ PC ≤ value of St + 4 01

St + 5 St + 6 Value of St + 5 ≤ PC ≤ value of St + 6 02

St + 7 St + 8 Value of St + 7 ≤ PC ≤ value of St + 8 03

St + 9 St + 10 Value of St + 9 ≤ PC ≤ value of St + 10 04

St + 11 St + 12 Value of St + 11 ≤ PC ≤ value of St + 12 05

The values must be four-digit BCD in the range 0000 through 9999.

The following timing example uses DR 00 as the results word. Here, the first
range is 0001 to 0002 (the content of St+1 is 0001 and St+2 is 0002), and
the second range is 0004 to 0002 (the content of St+3 is 0004 and St+4 is
0002).

DR 0000
Limits: 0001 to 0002

Count input (II)

0000 0001 0002 0003 0004 0005 0004 0003 0002 0001 0000 9999 9998 9997 0000 00000000

DR 0001
Limits: 0004 to 0002

Present value

Reset input (RI)

Decrement/increment
input (DI))

3-7-21 HIGH-SPEED COUNTER - CNTH(24)

SV: Set value (BCD)

I/O, work, DR, #

Operand Data AreasLadder Symbol

SI

R

CNTH(24) N

SV

The TC number is automatically set to CNT 13, the count pulse (CP) to input
bit 0000, and the hard reset input (R) to input bit 0001 when CNTH(24) is
designated. Inputs 0000 and 0001 cannot be used as normal input terminals
when CNTH(24) is being used.

CNTH(24) is a high-speed incrementing counter. The present value (PV) be-
gins at 0000 and will be incremented by one whenever CP (input bit 0000)
goes from OFF to ON as long as the start input condition (SI) is ON and the
reset input (R) is OFF. The start input and reset input conditions are entered

Upper and Lower Limit
Settings

Timing Example

Limitations

Description

Instruction Set Section 3-7

90

with LD before CNTH(24) is entered. The Completion Flag, CNT 13, is turned
ON when the PV reaches the SV and will remain ON for one cycle only.
When the SV is reached, the PC will be automatically reset to zero.

The maximum counter value can be set by setting the SV to 0000 rather than
to 9999, i.e., the counter will count to 10,000 when the SV is set to 0000.

CNTH(24) is reset with R. When R goes from OFF to ON, the PV is reset to
zero. The PV will not be incremented while R is ON. Counting from zero will
begin again when R goes OFF. The PV for CNT 13 will not be reset in inter-
locked program sections or by power interruptions.

CNTH(24) counting is enabled with SI. When SI is OFF, the PV is not
changed even if R is OFF and CP goes from OFF to ON. Counting will re-
sume when SI is turned ON again.

Do not use the normally closed contact of the external device connected to
the SK20 for reset input. If the normally closed contact of the external device
is used for reset input, the reset input will be activated when the external de-
vice is turned off, in which case the present value will not be retained.

The count pulse for CNTH(24) is input bit 0000 and the hard reset input is
input bit 0001. The count signal must be at least 150 �s (2 kHz) wide and
have a duty factor of 1:1.33 kHz max., and the reset signal must have an ON
time of at least 250 �s, as shown below.

150
�s

Input
0000

150
�s

250 �s min.

Input
0001

Inputs 0000 and 0001 can be used as normal inputs when CNTH(24) is not
used, but the input signals must be 1 kHz max. (500 �s wide min.).

Do not use the 0001 reset input in combination with other input bits in the
reset execution condition.

0002
SI

R

CNTH(24)

CNT13

#0150
0003

0004

0001

Incorrect
0002

SI

R

CNTH(24)

CNT13

#0150
0001

Correct

0002
SI

R

CNTH(24)

CNT13

#0150
0003 00010004

0002
SI

R

CNTH(24)

CNT13

#0150
0003

0004

Precautions

Instruction Set Section 3-7

91

Flags ER: The Error Flag (0311) will be turned ON when the SV is not BCD.
The instruction will be executed, but operation will not be reliable.

In the following example, the PV will be incremented whenever the count
pulse, 0000, goes from OFF to ON provided that the start input, 0002, is ON
and the reset input, 2003 is OFF. When 150 pulses have been counted (i.e.,
when the PV reaches the SV), the Completion Flag, CNT 13, and 0101 will
be turned ON.

0002
SI

R

CNTH(24)

CNT13

#0150
2003

0101

CNT 13

Address Instruction Operands

000 LD 0002

001 LD 2003

002 CNTH(24) CNT 13

0150

003 LD CNT 13

004 OR 0101

005 OUT 0101

0101

Completion Flag
CNT 13

Count input, CP
(0000)

0000 0001 0002 0003 0000

0101

Present value

Reset input, R
(2003)

Start input, SI
(0002)

0149

ON for 1 cycle

3-7-22 SHIFT REGISTER - SFT(33)

Wd: Shift word

Output bits, work bits, DR

Operand Data AreasLadder Symbol

I

P
SFT(33)

Wd

R

A maximum of 16 SFT(33) instructions can be used in any one program.

Example 1:
Basic Application

Limitations

Instruction Set Section 3-7

92

SFT(33) is controlled by three execution conditions, I, P, and R. If SFT(33) is
executed and 1) execution condition P is ON and was OFF the last execution
and 2) R is OFF, then execution condition I is shifted into the rightmost bit of
a shift register defined between St and E, i.e., if I is ON, a 1 is shifted into the
register; if I is OFF, a 0 is shifted in. When I is shifted into the register, all bits
previously in the register are shifted to the left and the leftmost bit of the reg-
ister is lost.

Execution
condition I

Lost
data

Wd

The execution condition on P functions like a differentiated instruction, i.e., I
will be shifted into the register only when P is ON and was OFF the last time
SFT(33) was executed. If execution condition P has not changed or has gone
from ON to OFF, the shift register will remain unaffected.

When execution condition R goes ON, all bits in the shift register will be
turned OFF (i.e., reset to 0) and the shift register will not operate until R goes
OFF again.

Do not use the normally closed contact of the external device connected the
SK20. If the normal closed contact of the external device is used, the data of
the SK20 may vary or the SK20 will be reset when the external device is
turned off.

The following example uses the 1-second clock pulse bit (0308) so that the
execution condition produced by 0005 is shifted into register DR 10 every
second.

I

P

SFT(33)

DR 10

R

0005

0308

0008

Address Instruction Operands

000 LD 0005

001 LD 0308

002 LD 0008

003 SFT(33)

DR 10

The following program controls the conveyor line shown below so that faulty
products detected at the sensor are pushed down a chute. To do this, the
execution condition determined by inputs from the first sensor (0001) are
stored in a shift register: ON for good products; OFF for faulty ones. Convey-
or speed has been adjusted so that DR 0003 of the shift register can be used
to activate a pusher (0100) when a faulty product reaches it, i.e., when DR
0003 turns ON, 0100 is turned ON to activate the pusher.

The program is set up so that a rotary encoder (0000) controls execution of
SFT(33) through a DIFU(10), the rotary encoder is set up to turn ON and
OFF each time a product passes the first sensor. Another sensor (0002) is

Description

Example 1:
Basic Application

Example 2:
Control Action

Instruction Set Section 3-7

93

used to detect faulty products in the chute so that the pusher output and DR
0003 of the shift register can be reset as required.

Sensor

Chute

(0002)

(0100)

Sensor
(0001)

Rotary Encoder
(0000)

Pusher

I

P

SFT(33)

DR 00

R

0001

0000

0003

0100

DR 0003

0002

DR 0003

0100

Address Instruction Operands

000 LD 0001

001 LD 0000

002 LD 0003

003 SFT(33)

DR 00

004 LD DR 0003

005 OUT 0100

006 LD 0002

007 OUT NOT 0100

008 OUT NOT DR 0003

3-7-23 MOVE - MOV(30)

S: Source word

I/O, work, dedicated (03 only), DR, TC, #

D: Destination word

Output bits, work bits, DR

Ladder Symbol Operand Data Areas

MOV(30)

S

D

When the execution condition is OFF, MOV(30) is not executed. When the
execution condition is ON, MOV(30) copies the content of S to D.

Source word Destination word

Bit status
not changed.

MOV(30) will be executed every cycle unless programmed with DIFU(10) or
DIFD(11).

Flags ER: Indirectly addressed DR word is non-existent. (Content of �DR word
is not BCD, or the DR area boundary has been exceeded.)

EQ: ON when all zeros are transferred to D.

Description

Precautions

Instruction Set Section 3-7

94

3-7-24 MOVE NOT - MVN(31)

S: Source word

I/O, work, dedicated (03 only), DR, TC, #

D: Destination word

Output bits, work bits, DR

Ladder Symbol Operand Data Areas

MVN(31)

S

D

When the execution condition is OFF, MVN(31) is not executed. When the
execution condition is ON, MVN(31) transfers the complement of S to D, i.e.,
for each ON bit in S, the corresponding bit in D is turned OFF, and for each
OFF bit in S, the corresponding bit in D is turned ON.

Source word Destination word

Bit status
inverted.

 MVN(31) will be executed every cycle unless programmed with DIFU(10) or
DIFD(11).

ER: Indirectly addressed DR word is non-existent. (Content of �DR word
is not BCD, or the DR area boundary has been exceeded.)

EQ: ON when all zeros are transferred to D.

3-7-25 COMPARE - CMP(32)

Cp1: First compare word

I/O, work, dedicated (03 only), DR, TC, #

Ladder Symbol Operand Data Areas

CMP(32)

Cp1

Cp2
Cp2: Second compare word

I/O, work, dedicated (03 only), DR, TC, #

When comparing a value to the PV of a timer or counter, the value must be in
BCD.

When the execution condition is OFF, CMP(32) is not executed. When the
execution condition is ON, CMP(32) compares Cp1 and Cp2 and outputs the
result to the GR, EQ, and LE flags in the dedicated area.

Placing other instructions between CMP(32) and the operation which ac-
cesses the EQ, LE, and GR flags may change the status of these flags. Be
sure to access them before the desired status is changed.

ER: Indirectly addressed DR word is non-existent. (Content of �DR word
is not BCD, or the DR area boundary has been exceeded.)

EQ: ON if Cp1 equals Cp2.

LE: ON if Cp1 is less than Cp2.

GR: ON if Cp1 is greater than Cp2.

Description

Precautions

Flags

Limitations

Description

Precautions

Flags

Instruction Set Section 3-7

95

The following example shows how to save the comparison result immediate-
ly. If the content of 01 is greater than that of DR 09, 0100 is turned ON; if the
two contents are equal, 0101 is turned ON; if content of 01 is less than that of
DR 09, 0102 is turned ON. In some applications, only one of the three OUTs
would be necessary, making the use of TR 0 unnecessary. With this type of
programming, 0100, 0101, and 0102 are changed only when CMP(32) is ex-
ecuted.

CMP(32)

01

DR 09

0315
0100

0313
0102

0314

0101

Greater Than

Equal

Less Than

Address Instruction Operands Address Instruction Operands

000 LD 0000

001 IL(02)

002 CMP(32)

01

DR 09

003 LD 0315

004 OUT 0100

005 LD 0314

006 OUT 0101

007 LD 0313

008 OUT 0102

009 ILC(03)

0000

IL(02)

ILC(03)

Example 1:
Saving CMP(32) Results

Instruction Set Section 3-7

96

The following example uses TIM, CMP(32), and the LE flag (0313) to pro-
duce outputs at particular times in the timer’s countdown. The timer is started
by turning ON 0000. When 0000 is OFF, TIM 10 is reset and the second two
CMP(32)s are not executed (i.e., executed with OFF execution conditions).
Output 0100 is produced after 100 seconds; output 0101, after 200 seconds;
and output 0103, after 500 seconds.

#3000

CMP(32)

TIM 10

CMP(32)

TIM 10

#4000

0101

0103

0100

0313

0313

TIM 10

Output at
100 s.

Output at
200 s.

Output at
500 s.

TIM 10

#5000

0000

IL(02)

ILC(03)

Address Instruction Operands Address Instruction Operands

000 LD 0000

001 IL(02)

002 TIM 10

5000

003 CMP(32)

TIM 10

4000

004 AND 0313

005 OUT 0100

006 CMP(32)

TIM 10

3000

007 AND 0313

008 OUT 0101

009 ILC(03)

010 LD TIM 10

011 OUT 0103

3-7-26 BLOCK COMPARE - BCMP(34)

CD: Compare data

I/O, work, dedicated (03 only), DR, TC, #

CB: First comparison block word

DR (00 to 13 only)

Ladder Symbol Operand Data Areas

R: Result word

I/O (01 only), work, DR

BCMP(34)

CD

CB

R

All data must be in four-digit BCD in the range 0000 through 9999. Press the
CONT/# Key before entering a constant for CD.

Example 2:
Obtaining Indications
during Timer Operation

Limitations

Instruction Set Section 3-7

97

N is the rightmost digit of CB and determines the size of the comparison
block; there will be N+1 comparison ranges. BCMP(34) compares CD to the
ranges defined by a block consisting of CB+1, CB+2, ..., CB+(2N+2). Each
range is defined by two words, the first one providing the lower limit and the
second word providing the upper limit, as shown below. If the lower limit is
less than the upper limit, the corresponding bit of the result word, R, will be
turned ON whenever CD is within the preset range.

Table Comparisons Bit in R
CB+1 ≤ CD ≤ CB+2 Bit 00
CB+3 ≤ CD ≤ CB+4 Bit 01

. . .

. . .

. . .
CB+ (2N+1)≤ CD ≤ CB+(2N+2) Bit N

If the lower limit is greater than the upper limit, the corresponding bit of the
result word will be turned ON whenever CD is not within the preset range.

Table Comparisons Bit in R
CD ≤ CB+1 or CB+2 ≤ CD Bit 00
CD ≤ CB+3 or CB+4 ≤ CD Bit 01

. . .

. . .

. . .
CB+(2N+1) ≤ CD or CB+(2N+2) ≤ CB Bit N

If the content of CB or the table data are changed during execution, execu-
tion will continue with the new values.

ER: Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

The following example shows the comparisons made and the results pro-
vided for BCMP(34). Here, the comparison is made during each cycle when
0000 is ON. The rightmost digit of CB (DR 00) is 5, so the comparison block
is CB+1 to CB+(2N+2) or DR 01 to DR 12.

CB: DR 00 Lower limits Upper limits R: 01

DR 00 0005 DR 01 0000 DR 02 0100 0100 0

DR 03 0101 DR 04 0200 0101 0

DR 05 0201 DR 06 0300 0102 1

CD: 02 DR 07 0501 DR 08 0600 0103 0

DR 09 1401 DR 10 1500 0104 0

02 0210 DR 11 1501 DR 12 1600 0105 0

BCMP(34)

02

DR 00

01

00000

Comparison block: CB+1 to
CB+(2N+2) or DR 01 to DR12.

Address Instruction Operands

000 LD 0000

001 BCMP(34)

02

DR 00

01

Compare data in 02
(which contains 0210).

Description

Flags

Example

Instruction Set Section 3-7

98

3-7-27 CLEAR CARRY - CLC(44)

Ladder Symbol

CLC(44)

When the execution condition is OFF, CLC(44) is not executed.When the ex-
ecution condition is ON, CLC(44) turns OFF CY (0312).

3-7-28 BCD ADD - ADD(40)

Au: Augend word (BCD)

I/O, work, dedicated (03 only), DR, TC, #

Ad: Addend word (BCD)

I/O, work, dedicated (03 only), DR, TC, #

Ladder Symbol

Operand Data Areas

R: Result word

Output bits, work bits, DR

ADD(40)

Au

Ad

R

When the execution condition is OFF, ADD(40) is not executed. When the
execution condition is ON, ADD(40) adds the contents of Au, Ad, and CY,
and places the result in R. CY will be set if the result is greater than 9999.

Au + Ad + CY CY R

ER: Au and/or Ad is not BCD.

Indirectly addressed DR word is non-existent. (Content of �DR word
is not BCD, or the DR area boundary has been exceeded.)

CY: ON when there is a carry in the result.

EQ: ON when the result is 0.

If 0002 is ON, the program represented by the following diagram clears CY
with CLC(44), adds the content of DR 25 to a constant (6103), places the
result in DR 0100, and then moves either all zeros or 0001 into DR 0101 de-
pending on the status of CY (0312). This ensures that any carry from the last
digit is preserved in R+1 so that the entire result can be later handled as
eight-digit data.

0002
CLC(44)

ADD(40)

 DR 15

#6103

DR 00

Address Instruction Operands

000 LD 0002

001 CLC(44)

002 AND(40)

DR 15

6103

DR 00

003 AND 0312

004 AND(40)

0000

0000

DR 01

ADD(40)

 #0000

#0000

DR 01

0312

CY

Description

Flags

Example

Instruction Set Section 3-7

99

3-7-29 BCD SUBTRACT - SUB(41)

Mi: Minuend word (BCD)

I/O, work, dedicated (03 only), DR, TC, #

Su: Subtrahend word (BCD)

I/O, work, dedicated (03 only), DR, TC, #

Ladder Symbol

Operand Data Areas

R: Result word

Output bits, work bits, DR

SUB(41)

Mi

Su

R

When the execution condition is OFF, SUB(41) is not executed. When the
execution condition is ON, SUB(41) subtracts the contents of Su and CY
from Mi, and places the result in R. If the result is negative, CY is set and the
10’s complement of the actual result is placed in R. To convert the 10’s com-
plement to the true result, subtract the content of R from zero (see example
below).

Mi – Su – CY CY R

ER: Mi and/or Su is not BCD.

Indirectly addressed DR word is non-existent. (Content of �DR word
is not BCD, or the DR area boundary has been exceeded.)

CY: ON when the result is negative, i.e., when Mi is less than Su plus CY.

EQ: ON when the result is 0.

Be sure to clear the carry flag with CLC(44) before executing SUB(41) if its
previous status is not required, and check the status of CY after doing a sub-
traction with SUB(41). If CY is ON as a result of executing SUB(41) (i.e., if
the result is negative), the result is output as the 10’s complement of the true
answer. To convert the output result to the true value, subtract the value in R
from 0.

When 0002 is ON, the following ladder program clears CY, subtracts the con-
tents of DR 0100 and CY from the content of DR 10 and places the result
back in DR 10.

If CY is set by executing SUB(41), the result in DR 10 is subtracted from zero
(note that CLC(44) is again required to obtain an accurate result), the result
is placed back in DR 10, and DR 1100 is turned ON to indicate a negative
result.

If CY is not set by executing SUB(41), the result is positive, the second sub-
traction is not performed, and DR 1100 is not turned ON. DR 1100 is pro-
grammed as a self-maintaining bit so that a change in the status of CY will
not turn it OFF when the program is cycled again.

Description

Flags

Caution

Example

Instruction Set Section 3-7

100

In this example, differentiated forms of SUB(41) are used so that the subtrac-
tion operation is performed only once each time 0002 is turned ON. When
another subtraction operation is to be performed, 0002 will need to be turned
OFF for at least one cycle (resetting DR 1100) and then turned back ON.

000 LD 0002

001 CLC(44)

002 SUB(41)

DR 10

0100

DR 10

003 AND 0312

004 CLC(44)

005 SUB(41)

0000

DR 10

DR 10

006 AND 0312

007 OUT DR 1100

CLC(44)

SUB(41)

DR 10

#0100

DR 10

CLC(44)

SUB(41)

#0000

DR 10

DR 10

0312
DR 1100

0002

0312

First
subtraction

Second
subtraction

Turned ON to indicate
negative result.

Address Instruction Operands

The first and second subtractions for this diagram are shown below using
example data for DR 10.

The actual SUB(41) operation involves subtracting Su and CY from 10,000
plus Mi. For positive results the leftmost digit is truncated. For negative re-
sults the 10s complement is obtained. The procedure for establishing the cor-
rect answer is given below.

First Subtraction
DR 10 0089
– 0100
CY – 0

DR 10 9989 (0089 + (10,000 – 0100))
CY 1 (negative result)

Second Subtraction
0000
DR 10 –9989
CY –0

DR 10 0011 (0000 + (10,000 – 9989))
CY 1 (negative result)

In the above case, the program would turn ON DR 1100 to indicate that the
value held in DR 10 is negative.

Note

Instruction Set Section 3-7

101

3-7-30 AND WORD- ANDW(42)

I1: Input 1

I/O, work, dedicated (03 only), DR, TC, #

I2: Input 2

I/O, work, dedicated (03 only), DR, TC, #

Ladder Symbol

Operand Data Areas

R: Result word

Output bits, work bits, DR

ANDW(42)

I1

I2

R

When the execution condition is OFF, ANDW(42) is not executed. When the
execution condition is ON, ANDW(42) logically AND’s the contents of I1 and
I2 bit-by-bit and places the result in R.

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

15 00

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

15 00

15 00

I1

I2

R

Example

ER: Indirectly addressed DR word is non-existent. (Content of �DR word
is not BCD, or the DR area boundary has been exceeded.)

EQ: ON when the result is 0.

3-7-31 OR WORD - ORW(43)

I1: Input 1

I/O, work, dedicated (03 only), DR, TC, #

I2: Input 2

I/O, work, dedicated (03 only), DR, TC, #

Ladder Symbol

Operand Data Areas

R: Result word

Output bits, work bits, DR

ORW(43)

I1

I2

R

When the execution condition is OFF, ORW(43) is not executed. When the
execution condition is ON, ORW(43) logically OR’s the contents of I1 and I2
bit-by-bit and places the result in R.

Description

Flags

Description

Instruction Set Section 3-7

102

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

15 00

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1

15 00

15 00

I1

I2

R

Example

ER: Indirectly addressed DR word is non-existent. (Content of �DR word
is not BCD, or the DR area boundary has been exceeded.)

EQ: ON when the result is 0.

3-7-32 STEP DEFINE and STEP START-STEP(04)/SNXT(05)

B: Control bit

Output bits, work bits, DR

Ladder Symbols Definer Data Areas

STEP(04) B STEP(04)

B: Control bit

Output bits, work bits, DR

SNXT(05) B

Control bits within one section of step programming must be sequential and
from the same word.

STEP(04) uses a control bit that is either an output bit, a work bit, or a bit in
the DR area to define the beginning of a section of the program called a step.
STEP(04) does not require an execution condition, i.e., its execution is con-
trolled through the control bit.

If the start instruction of each step is ON or OFF, the ladder program in the
step will be as follows:

ON: The instructions in the step are executed normally.
ON → OFF: The output of the step is interlocked.
OFF: The instructions in the step are processed as NOP(00).

To start execution of the step, SNXT(05) is used with the same control bit as
used for STEP(04). If SNXT(05) is executed with an ON execution condition,
the step with the same control bit is executed. If the execution condition is
OFF, the step is not executed.

The SNXT(05) instruction must be written into the program so that it is ex-
ecuted before the program reaches the step it starts. It can be used at differ-
ent locations before the step to control the step according to two different
execution conditions. Any step in the program that has not been started with
SNXT(05) will not be executed.

Once SNXT(05) is used in the program, step execution will continue until
STEP(04) is executed without a control bit. STEP(04) without a control bit
must be preceded by SNXT(05) with a dummy control bit.

Flags

Limitations

Description

Instruction Set Section 3-7

103

Execution of a step is completed either by execution of the next SNXT(05) or
by turning OFF the control bit for the step. When the step is completed, all of
operand bits in the step are turned OFF and all timers in the step are reset to
their SVs. Counters, shift registers, and bits used in KEEP(12) maintain sta-
tus. Two simple steps are shown below.

SNXT(05) 0200

STEP(04) 0200

0000

Step controlled by 0200

SNXT(05) 0201

STEP(04) 0201

0001

Step controlled by 0201

SNXT(05) 0202

STEP(04)

0002

Starts step execution

Ends step execution

1st step

2nd step

Address Instruction Operands Address Instruction Operands

000 LD 0000

001 SNXT(05) 0200

002 STEP(04) 0200

Step controlled by 0200.

030 LD 0001

031 SNXT(05) 0201

032 STEP(04) 0201

Step controlled by 0201.

051 LD 0002

052 SNXT(05) 0202

053 STEP(04) ---

Steps can be programmed in consecutively. Each step must start with
STEP(04) and generally ends with SNXT(05). When steps are programmed
in series, three types of execution are possible: sequential, branching, or par-
allel. The execution conditions for, and the positioning of, SNXT(05) deter-
mine how the steps are executed.

Instruction Set Section 3-7

104

Sequential Execution:

(Start-up condition required by step (A))0001

End

(Condition required to go to step (B) from step (A))0002

0003

0004

(Condition required to go to step (C) from step (B))

(Reset condition required by step (C))

Step 1800
(A)

Step 1801
(B)

Step 1802
(C)

SNXT(05) 1800

STEP(04) 1800

SNXT(05) 1801

0001

STEP(04) 1801

SNXT(05) 1802

STEP(04) 1802

SNXT(05) 1815

STEP(04)

0002

0003

0004

Ladder program for step (A)

Ladder program for step (B)

Ladder program for step (C)

Branching Execution:

0001

0003

0004

SNXT(05) DR 0000

SNXT(05) DR 0001

STEP(04) DR 0000

SNXT(05) DR 0002

STEP(04) DR 0001

SNXT(05) DR 0002

SNXT(05)1814

STEP(04) DR 0002

0002

0002

0001

STEP(04)

0005

Ladder program for step (A)

Ladder program for step (B)

Ladder program for step (C)

(Condition required to go
to step (C) from step (A)

Step DR 0000
(A)

Step DR 0001
(B)

Step DR 0002
(C)

0001

End

0002

0005

0003 0004

(Start-up condition re-
quired by step (A))

(Condition required
to go to step (C)
from step (B)

(Reset condition required by step (C))

(Start-up condition
required by step (B))

The upper-right program is used if steps (A) and (B) cannot be executed
simultaneously. If steps (A) and (B) can be executed simultaneously, delete
0002 (LD NOT) and 0001 (LD NOT).

SNXT(05) DR 0002 starts the next step by branching. In such a case, a
double output occurs. No double output error will, however, result during pro-
gram checking.

A double output error will result in a step ladder program only if a bit number
used in a normal ladder program is used with the step ladder instruction.

Examples

Instruction Set Section 3-7

105

Parallel Execution:

Step DR 0001
(B)

Step DR 0001
(D)

Step DR 0002
(E)

0001

End

0002

0005

0003
(Condition required to
go to step (B) from
step (A))

(Condition required
to go to step (E)
from step (D)

(Reset condition required by step (E)

Step DR 0000
(A)

Step DR 0002
(B)

(Condition required to start-up steps (A) and
(C) simultaneously)

0004 (Condition required to go to step (E) when
steps (B) and (D) complete)

DR0003

SNXT(05) DR 0000

SNXT(05) DR 0002

SNXT(05) DR 0001

0001

STEP(04) DR 0000

STEP(04) DR 0001

SNXT(05) DR 0004

SNXT(05) DR 0003

STEP(04) DR 0002

0002

DR0003

0003

Ladder program for step (A)

Ladder program for step (B)

Ladder program for step (C)

STEP(04) DR 0003

STEP(04) DR 0004

SNXT(05) 1813

Ladder program for step (D)

STEP(04)

Ladder program for step (E)
0005

0004

Interlocks and END(01) cannot be used within step programs.

Bits used as control bits must not be used anywhere else in the program un-
less they are being used to control the operation of the step.

If output bits, work bits, or DR bits are used for control bits, their status will be
lost during any power interruption. If it is necessary to maintain status to re-
sume execution at the same step, DR bits must be used.

Precautions

Instruction Set Section 3-7

106

0411: Step Start Flag; turns ON for one cycle when STEP(04) is executed
and can be used to reset counters in steps as shown below if neces-
sary.

SNXT(05) 0200

CP

R

CNT 1

#0003

0000

0210

0411

STEP(04) 0200

1 Cycle

0411

0200

Start

Address Instruction Operands Address Instruction Operands

000 LD 0000

001 SNXT(05) 0200

002 STEP(04) 0200

003 LD 0210

004 LD 0411

005 CNT 1

0003

3-8 Debugging
After inputting a program and correcting it for syntax errors, it must be ex-
ecuted and all execution errors must be eliminated. Execution errors include
an excessively long cycle and inappropriate control actions, i.e., the program
not doing what it is designed to do.

If desired, the program can first be executed isolated from the actual control
system and wired to dummy inputs and outputs to check for certain types of
errors before actual trial operation with the controlled system.

3-8-1 Displaying and Clearing Error Messages
When an error occurs during program execution, it can be displayed for iden-
tification by pressing CLR, FUN, 6, 1 and then MON. If an error message is
displayed, MON can be pressed to access any other error messages that are
stored by the system in memory. If MON is pressed in PRGM mode, the error
message will be cleared from memory; be sure to write down the error mes-
sage when required before pressing MON. CHECK OK will be displayed
when the last message has been cleared.

In RUN mode errors cannot be cleared by pressing MON. Also, if the cause
of the error still exists, it must be eliminated before the error message can be
cleared. Refer to Section 5 Troubleshooting for all details on all error mes-
sages. The sequence in which error messages are displayed depends on the
priority of the errors.

Although error messages can be displayed in any mode, they can be cleared
only in PROGRAM mode. There is no way to restart the PC following a fatal
error without first clearing the error message in PROGRAM mode.

Key Sequence

Flags

Debugging Section 3-8

107

The following displays show some of the messages that may appear. Refer
to Section 5 Troubleshooting for an extensive list of error messages, their
meanings, and the appropriate responses.

Fatal
errors

All errors
have been
cleared

�����

�����
������
���

�����
������
���

�)����
�

�����
������
���

���
�0����

�����
������
���

�
��� �����

�����
������
���

�)����
�

3-8-2 Reading the Cycle Time

The following operation can be used to read the present cycle time and the
maximum cycle time. The Monitor Key can be pressed consecutively to re-
peat the operation. The PC must be in RUN mode.

Key Sequence

Press CLR to end

the operation

The following displays show the cycle time displays.

�����

����
�������

�������	
����/12

���
3��	
�����12

Example

Example

Debugging Section 3-8

108

3-9 Program Execution
The timing of various operations must be considered both when writing and
debugging a program. The time required to execute the program and perform
other CPU operations is important, as is the timing of each signal coming into
and leaving the PC in order to achieve the desired control action at the right
time. This section explains the cycle and shows how to calculate the cycle
time and I/O response times.

3-9-1 Cycle
The major factors in determining program timing are the cycle time and the
I/O response time. When program execution is started, the CPU cycles the
program from top to bottom, checking all conditions and executing all instruc-
tions accordingly as it moves down the bus bar. It is important that instruc-
tions be placed in the proper order so that, for example, the desired data is
moved to a word before that word is used as the operand for an instruction.
Remember that an instruction line is completed to the terminal instruction at
the right before executing an instruction lines branching from the first instruc-
tion line to other terminal instructions at the right.

One cycle of CPU operation is called a cycle; the time required for one cycle
is called the cycle time. The time required to produce a control output signal
following reception of an input signal is called the I/O response time.

The overall flow of CPU operation is as shown in the following flowchart:

 Power application

Initialization on power-up

Overseeing processes

Program execution

I/O refresh

• Transfer the program from EEPROM to RAM.

• Resets the watchdog timer.

• Using the programmed code, executes each
instruction from address 000 through to the
END instruction

• Output Refresh
Refreshes output bits according to output bit
status (results of the executed program).

• Input and output of data via SYSMAC Bus.

• Services the Programming Console
(monitor, edits, etc.).

• Resets data areas (except DR area), resets all
timers, and checks the link status.

• Checks the RUN status and Program Memory.

• Input Refresh
Refreshes input bits according to input signals.

PC cycle time
The time required to
perform this process.

A

B

C

D

E Service Programming
Console commands

SYSMAC BUS service

The first initialization process is performed only once, immediately after pow-
er is applied to the PC. The remaining operations are performed in cyclic
fashion, with each cycle forming one cycle. The cycle time is the time that is

Program Execution Section 3-9

109

required for the CPU to complete one of these cycles. This cycle includes
basically five types of operation.

Overseeing
Program execution
I/O refresh
SYSMAC BUS servicing
Programming Console servicing

The cycle time is the total time required for the PC to perform all of the above
operations. The present and maximum cycle time can be read out from the
Programming Console with the SK20. Refer to page 107 for details.

All peripheral devices are serviced once each cycle in the order given above.

Within the PC, the watchdog timer measures the cycle time and compares it
to a set value. If the cycle time exceeds the set value of the watchdog timer,
100 ms, a CPU error is generated and the CPU stops. One cycle time is ap-
proximately 300 �s plus the time required for program execution.

3-10 I/O Response Time
The I/O response time is the time it takes for the PC to output a control signal
after it has received an input signal. The time it takes to respond depends on
the cycle time and when the CPU receives the input signal relative to the I/O
refresh period.

3-10-1 Single PCs
Both input and output refreshes are performed at the same time in the CPU
cycle, after the program process has been completed. The following section
show how the maximum and minimum I/O response times may be calcu-
lated.

The PC responds most quickly when it receives an input signal just prior to
the I/O refresh period in the cycle. Once the input bit corresponding to the
signal has been turned ON, the program will have to be executed once to
turn ON the output bit for the desired output signal. The I/O response time in
this case is thus found by adding the input delay, the cycle time, and the out-
put delay. This situation is illustrated below.

Input delay

IN

OUT

PC Process Execution Execution Execution

Cycle time

Output delay

Tmin

AB C D E AB C D E B D EC

Tmin = Minimum I/O response time
 = input delay + filter time + cycle time + output delay
 = C + B + (300 �s + program execution time) + A

Watchdog Timer and Long
Cycle Times

Minimum I/O Response
Time

I/O Response Time Section 3-10

110

where A: Output delay (see table below)
B: Filter value (refer to Section 2 Installation)
C: Input delay (see table below)

and Program execution time = sum of instruction execution times (refer to
Appendix C Programming Instructions and Execution Times)

The ON input delay is 300 �s maximum and the OFF input delay is 250 �s
maximum. Output delays are given in the following table.

Output Relay Transistor

ON output delay 10 ms max. 20 �s max.

OFF output delay 10 ms max. 300 �s typical

The PC takes longest to respond when it receives the input signal just after
the I/O refresh phase of the cycle. In this case the CPU does not recognize
the input signal until the end of the next cycle. The maximum response time
is thus one cycle longer than the minimum I/O response time.

Execu-
tion

input delay

IN

OUT

PC Process

Cycle time output
delay

Tmax

AC D E AB C D E B DC

Tmax = Maximum I/O response time
 = input delay + filter time + (cycle time x 2) + output delay
 = C + (B + 0.5 ms) + ((300 �s + program execution time) x 2) + A

Note The duration required to process linked PCs is increased if a PC already
linked is disconnected from the network.

Maximum I/O Response
Time

I/O Response Time Section 3-10

111

3-10-2 Operation and Cycle Time at Power ON
The SK20 initializes when the power is turned on. If no error occurs during
initialization, a series of processes from common processing to Programming
Console service is executed cyclically. The time required to execute the en-
tire series of processes (excluding initialization) is called the “cycle time.”

Power on

System initialization

Program transferred from EEPROM to RAM
I/O bits, work bits, and timers reset
SYSMAC BUS connection status checked

Watchdog timer reset
Operation status checked
User program checked

Program execution

I/O refresh

The ON/OFF status of the I/O bits is controlled by the input buff-
er and output buffer. After program execution is complete, the
SK20 batch refreshes all I/O bits (end refresh).

*Output refresh

The ON/OFF status of the I/O bits resulting from program
execution is set in the output buffer. The output bits turns ON/
OFF according to the contents of the output buffer.

*Input refresh

The ON/OFF status of the input bits is read to the input buffer.

Input and output of data via SYSMAC BUS.

Programmable Controller service

Access to Programmable Controller for monitoring and editing.

Program executed from 000 to end address

Common processing

SYSMAC BUS service

Note The watchdog timer is a timer which monitors the SK20 processing time. It
monitors the processing time for each cycle and stops the CPU if the cycle
time exceeds 100 ms.
For details on operating error displays, see 5-3 Error Messages.
Overhead time: ((1)+(3)+(4)+(5*)) = Approx. 300 µs
* The time required excluding program execution.

I/O Response Time Section 3-10

112

3-10-3 I/O Response Time
The SK20 uses the end refresh method. For details, refer to 3-10-2 Opera-
tion and Cycle Time at Power On.

The end refresh method results in a time difference existing between the ex-
ternal inputs changing and the external outputs changing. Also, the response
time is affected by the timing of the change of inputs and the processing
cycle. The I/O response time is shown below.

Minimum Response Time The cycle time is minimum when the change of input is read immediately be-
fore the I/O refresh execution.

IN

OUT

Input response time

SK20 processing Execute Execute Execute

Output response time

Cycle time

(1)(2) (4)(3) (5) (2) (2)(1)(4)(3) (5) (4)(3) (5)

T min

Minimum response time = Input response time + Filter value + Cycle time + Output response time

Maximum Response Time The cycle time is maximum when the change of input occurs immediately
after the I/O refresh execution and is read during the subsequent cycle.

Input response time

Output
response
time

Cycle time

T max.

IN

OUT

SK20 processing Execute

Maximum response time = Input response time + Filter value + (Cycle time x 2) + Output response time

(3) (1)(4) (5) (2) (2)(1)(4)(3) (5) (4)(3)

Output Response Time
ON response time: 10 ms
OFF response time: 10 ms

Input Response Time
ON response time: 200 µs max.
OFF response time: 250 µs max.

Both output response time and input response time are hardware dependent

Filter value: set value of the filter to eliminate noise, etc.
See 2-4-1 Input Filters for details.

Cycle time: program execution time + overhead time (approx. 300 µs)
See 3-10-2 Operation and Cycle Time at Power On for details.
Program execution time: time to process the instructions
For details on number of instruction words and processing time, refer to Ap-
pendix C Instruction Execution Times.

I/O Response Time Section 3-10

113

3-11 Using SK20 SYSMAC BUS Functions

3-11-1 I/O Response Time

When Connected to C1000H The I/O response time is described for the following circuit example.

Output
Input

SK20 Input/Output

Minimum Response Time

Cycle time

C1000H

Execute
instruction

Execute
instruction

Execute
instruction

Execute
instruction

Remote I/O processing

Remote I/O Master Unit
(remote transfer time)

SK20

Input

Output

SK20 cycle time

Execute
instruction

Execute
instruction

Minimum response time = (C1000H cycle time x 2) + TRM + Output ON response time (10 ms) + (SK20 cycle time x 2)

Note The input response time is minimal and thus omitted.

Maximum Response Time

If C1000H cycle time exceeds SYSMAC BUS transfer time

Maximum response time = (C1000H cycle time x 3) + (TRM x 2) +(TRT or TTT) + Output ON response time (10 ms) +
(SK20 cycle time x 4)

If C1000H cycle time is less than SYSMAC BUS transfer time

Maximum response time = (C1000H cycle time x 3n) + (TRM x 2) +(TRT or TTT) + Output ON response time (10 ms) +
(SK20 cycle time x 4)

Remote I/O processing

Execute
instruction

Execute
instruction

Execute
instruction

Execute
instruction

Execute
instruction

Execute
instruction

SK20 cycle time

SK20

Input

Output

Remote transfer
time

Remote I/O Master
Unit buffer

C1000H

Cycle time

Note The input response time is minimal and thus omitted.

Using SK20 SYSMAC BUS Functions Section 3-11

114

Cycle Time for Maximum Response Time Calculation
For calculating the C1000H maximum response time, use the cycle time
maximum value output to word AR26.

TRM: Transfer time to all RT units from one RM (RM transfer time)
TRT: Transfer time per RT unit (RT transfer time)= 1.4 ms + (0.2 ms x number
I/O words on RT)
TTT: SK20 transfer time
Minimum: 2 ms
Maximum: 2 ms x (number transferred I/O channels to SK20)
n: Remote I/O transfer time / C1000H cycle time*rounded off below decimal
point

Sample calculation
Example: Two SK20 units connected
C1000H cycle time: 30 ms
SK20 cycle time: 3 ms

TRT = Transfer time: 0
TTT = Transfer I/O transfer time

= Minimum: 2 ms
= Maximum: 2 ms x 4 = 8 ms

TRM = RM transfer time = ∑ TRT + TTT
= Minimum: 2 ms
= Maximum: 8 ms

Minimum response time = (30 x 2) + 2 + 10 + (3 x 2) = 78 ms
Maximum response time = (30 x 3) + (8 x 2) + 8 + 10 + (3 x 4) = 136 ms

When Connected to C200H The I/O response time is described for the following circuit example.

Output
Input

Input/Output both SK20

Minimum Response Time

Cycle time

C200H

Remote I/O
Master Unit

SK20

Input

Output

SK20 cycle time

Execute instruction

Execute
instruction

Execute
instruction

RM - unit transfer

RM - SK communica-
tions

Cycle time and Remote I/O transfer time are
synchronized between Remote and PC.

If C200H cycle time exceeds SYSMAC BUS transfer time

Maximum response time = (C200H cycle time x 2) + Output ON response time (10 ms) + (SK20 cycle time x 2)

If C200H cycle time is less than SYSMAC BUS transfer time

Maximum response time = (C200H cycle time x 2n) + Output ON response time (10 ms) + (SK20 cycle time x 2)

Note The input response time is minimal and thus omitted.

Using SK20 SYSMAC BUS Functions Section 3-11

115

Maximum Response Time

If C200H cycle time exceeds SYSMAC BUS transfer time

Maximum response time = (C200H cycle time x 3) + Output ON response time (10 ms) + (SK20 cycle time x 4)

If C200H cycle time is less than SYSMAC BUS transfer time

Maximum response time = (C200H cycle time x 3n) + Output ON response time (10 ms) + (SK20 cycle time x 4)

C200H

Remote I/O
Master Unit

SK20

Input

Output

SK20 cycle time

Execute
instruction

Execute
instruction

Execute
instruction

RM - unit
transfer

RM - SK communications

Cycle time

Note The input response time is minimal and thus omitted.

Cycle Time for Maximum Response Time Calculation
For calculating the C200H maximum response time, use the cycle time maxi-
mum value output to word AR26.

TRM: Transfer time to all RT units from one RM (RM transfer time)
TRT: Transfer time per RT unit (RT transfer time)= 1.4 ms + (0.2 ms x number
I/O words on RT)
TTT: SK20 transfer time = 5 ms + (1 ms x total SK20 terminal transfer chan-
nels)
n: Remote I/o transfer time / C200H cycle time*rounded off below decimal
point

Sample Calculation
Example: Two SK20 units connected
C200H cycle time: 30 ms
TTT (SYSMAC BUS transfer time) = 5 ms + 1 ms x 2 x 2 = 9 ms
In this case, the C200H cycle time exceeds the SYSMAC BUS transfer time.
SK20 cycle time: 3 ms

Minimum response time = (30 x 2) + 10 + (3 x 2) = 76 ms
Maximum response time = (30 x 3) + 10 + (3 x 4) = 112 ms

Using SK20 SYSMAC BUS Functions Section 3-11

117

SECTION 4
Operation

This section describes how to monitor and maintain PC operation once a program has been input and transferred. It also
provides the procedure for initializing memory cards. Refer to 3-5-7 Program Transfer for the procedures for transferring
programs and data between the Programming Console and the PC or Memory Cards.

4-1 Monitoring Operation and Modifying Data 118.
4-1-1 Bit/Multibit Monitor 118.
4-1-2 Force Set/Reset 121.
4-1-3 Hexadecimal/BCD Data Modification 122.
4-1-4 Binary Monitor 123.
4-1-5 Binary Data Modification 124.

4-2 Memory Card Initialization 125.

118

4-1 Monitoring Operation and Modifying Data

The simplest form of operation monitoring is to display the address whose
operand bit status is to be monitored using the Program Read or the search
operation. As long as the operation is performed in RUN mode, the status of
any bit displayed will be indicated.

This section provides other procedures for monitoring data as well as proce-
dures for modifying data that already exists in a data area. Data that can be
modified includes the PV (present value) for any timer or counter.

All monitor operations in this section can be performed in RUN or PRO-
GRAM mode and can be cancelled by pressing CLR.

All data modification operations are performed after first performing one of
the monitor operations. Data modification is possible in either PROGRAM or
RUN mode.

4-1-1 Bit/Multibit Monitor

The status of any bit or word in any data area can be monitored using the
following operation. Although the operation is possible in any mode, ON/OFF
status displays will be provided for bits in RUN mode only.

The Bit/Multibit Monitor operation can be entered either from a cleared dis-
play by designating the first bit or word to be monitored or it can be entered
from any address in the program by displaying the bit or word address whose
status is to be monitored and pressing MON.

When a bit is monitored, it’s ON/OFF status will be displayed (in RUN mode);
when a word address is designated other than a timer or counter, the digit
contents of the word will be displayed; and when a timer or counter number
is designated, the PV of the timer will be displayed and a small box will ap-
pear if the completion flag of a timer or counter is ON. When multiple words
are monitored, a space will appear between the different address designa-
tions. The status of the arithmetic flags are cleared when END(01) is ex-
ecuted and cannot be monitored.

Up to three memory addresses, either bits, words, or a combination of both,
can be monitored at once. To continue designating addresses with the sec-
ond of the following key sequences.

During a monitor operation the up and down keys can be pressed to incre-
ment and decrement the leftmost address on the display and CLR can be
pressed to cancel monitoring the leftmost address on the display. If the last
address is cancelled, the monitor operation will be cancelled. The monitor
operation can also be cancelled regardless of the number of addresses being
monitored by pressing SHIFT and then CLR.

LD and OUT can be used only to designate the first address to be displayed;
they cannot be used when an address is already being monitored.

Monitoring Operation and Modifying Data Section 4-1

119

Bit/Word Monitor
Key Sequence

[Bit address]

Cancels monitor
operation

Clears leftmost
address

Shifts to word
monitor

Program Read

Multibit/Word Monitor
Key Sequence

[Bit Address]

Cancels one bit

Scrolls the dis-
play

Cancels all
monitoring

Monitoring Operation and Modifying Data Section 4-1

120

The following examples show various applications of this monitor operation.

Program Read then Monitor

Indicates Completion flag is ON

Monitor operation
is cancelled

�����

�������

����������������

������

����%

������

!����

�����

����������������

Bit Monitor

�����

�������
 �����
�

� ��������������

�������
 ����
��

� �������������

Word Monitor

�����

������

�)
�������������

��4 ��

������

��4 �*

������

������

�)
������ ������

Examples

Monitoring Operation and Modifying Data Section 4-1

121

Multi-address Monitoring

�����

�����

����������������

������

������

�����������

�����������

�����������

�����������

�����������

��5
�������

��4 ������������

�������5
�������

��4 ������������

�������5
�������

�������4 �������

�������������
��

��4 �������

�������5
��

������

��5
��

�����

�
��������������

Cancels monitoring of
leftmost address

Cancels Monitor
operation

or

4-1-2 Force Set/Reset
When the Bit/Multibit Monitor operation is being performed and a bit, timer, or
counter address is leftmost on the display, CHG and ENT can be pressed to
turn ON/OFF the bit, start/reset the timer, or increment/reset the counter.
Timers will not operate in PROGRAM mode. Dedicated flags and bits cannot
be turned ON and OFF with this operation.

Bit status will remain ON or OFF until the I/O bit status is refreshed, which
occurs each cycle. Hence, forced status will be canceled at each I/O refresh.
If a timer is started, the Completion Flag for it will be turned ON when SV has
been reached.

This operation can be used in RUN mode to check wiring of outputs from the
PC prior to actual program execution.

Key Sequence

Bit/word Monitor

Mutlibit/word Monitor

Monitoring Operation and Modifying Data Section 4-1

122

The following example shows how either bits or counters can be controlled
with the Force Set/Reset operation. The displays shown below are for the
following program section.

000 LD 0000

001 LD 0200

002 CNT 05

0100

003 LD CNT 05

004 OUT 0101

0000

CNT05

0101

0200

CP

R

CNT 05

#0100

Address Instruction Operands

The following displays show what happens when CNT 05 is set when
bit 0000 is ON.

(This example is in RUN mode.)

Indicates that force set/reset is in progress.

�����

�����

����������������

�����

���������������$

�����$

������

����������$

�����������

����������$

��5
�������

����������$

+�5
�������

����������$

��5�
����**

����������$

��5
�����**

After one cycle the value
of 0000 is reset to 0.

4-1-3 Hexadecimal/BCD Data Modification
When the Bit/Multibit Monitor operation is being performed and a BCD or
hexadecimal value is leftmost on the display, CHG can be input to change
the value. Dedicated words cannot be changed.

If a timer or counter is leftmost on the display, the PV will be displayed and
will be the value changed. PV can be changed in RUN mode only when the
timer or counter is operating.

To change contents of the leftmost word address, press CHG, input the de-
sired value, and press ENT.

Example

Monitoring Operation and Modifying Data Section 4-1

123

Key Sequence

Word currently
monitored on
left of display.

[Data]

The following example shows the effects of changing the PV of a timer.

This example is in RUN mode

Timing

Timing

PV changed

Timing

Timing

�����

�����

����������������

������

������

�����������	
��

���������*������

�����������	
��

����������������

������

����**

4-1-4 Binary Monitor

You can specify that the contents of a monitored word be displayed in binary
by pressing SHIFT and MON after the word address has been input. Words
can be successively monitored by using the up and down keys to increment
and decrement the displayed word address. To clear the binary display, press
CLR.

Example

Monitoring Operation and Modifying Data Section 4-1

124

Key Sequence

[Word Address]

Binary Monitor
clear

All monitor
clear

Scrolls the
address

�����

�����

�)
�������������

��4 ��

�����/

�����4 ����
����

����������������

�����

�)
������ ������

��4 ��

�����/

�����

�)
������ ������
or

4-1-5 Binary Data Modification
This operation can be used to change individual binary bit status. The cursor,
which can be shifted to the left with the up key and to the right with the down
key, indicates the position of the bit that can be changed. After positioning at
the desired bit, the 0 or 1 Key can be entered to specify the bit value. After a
bit value has been changed, the blinking square will appear at the next posi-
tion to the right of the changed bit.

Key Sequence

Word currently
displayed in binary.

Example

Monitoring Operation and Modifying Data Section 4-1

125

Bit 15 Bit 00

�����

�����

�)
�������������

�����

�)
������ ������

�����4 ����
�

����������������

�����4 �����)��

����������������

�����4 �����)��

�+��������������

�����4 �����)��

��+�������������

�����4 �����)��

���+������������

�����4 �����)��

����+�����������

�����4 �����)��

���+������������

�����4 �����)��

��+�������������

�����4 ����
�

����������������

4-2 Memory Card Initialization
The Programming Console provides a slot for a Memory Card to allow the
backup of programs. Only one model of Memory Card, HMC-ES141, may be
used. Each Memory Card has 16 Kbytes of S-RAM. A battery is built-in to the
Memory Card to allow the data to be retained. One Memory Card can hold
up to 18 SK20 programs.

A program can be saved to a full memory card and read out, but an error
message (“ERR CARD FULL”) will be displayed when the corrected file is
saved again.

After inserting a new Memory Card into the Programming Console, the Card
must be initialized using the following key sequence.

Key Sequence

The corresponding displays are shown in the following.

Example

Initialization Procedure

Memory Card Initialization Section 4-2

126

Pressing ENT for the first time, the Programming Console displays the speci-
fications of the Memory Card. By pressing ENT again the Programming Con-
sole commences formatting the Memory Card. While the card is being for-
matted, cursors on the display indicate the progress of the format operation.
When END is displayed, formatting is complete.

�����
� ��0�����

������.�"���
�

�����
� ��
��
��

�����

�����

����&��'

�����
� ��
��
��

������+++

�����
� ��
��
��

�� ����+++++++++

+

Note 1. The battery of the memory card (model HMC-BAT01 lithium battery
CR2325 3 V) has to be replaced within the time period indicated on the
back of the memory card. If the battery is not replaced by this date, the
program or the data in the card will be lost. When replacing the battery,
the new battery must be installed within one minute or data in the card will
be lost.

2. While the memory card is being accessed, the M/C ON LED on the Pro-
gramming Console will be lit. If the memory card is pulled out from the
Programming Console while the LED is ON, data on the card will be dam-
aged.

Memory Card Initialization Section 4-2

127

A number of errors relating to the Memory Card may occur during the pro-
gram check. If one of the following errors is shown on the display, program
transfer cannot proceed.

Error Message Meaning/Correction

�
���

����

END instruction cannot be found. Include an END instruction
at the end of the program.

(Program address)
or
????

Displayed address has the inappropriate operand or
inappropriate instruction. Correct the program and transfer
it to the PC again.

�����
�

+������

The program stored in the memory card contains errors.
The memory card data is transferred to the
Programming Console’s RAM to allow it to be checked.
Perform a program check to confirm the program.

�

����
��

�
�

The Memory Card is not initialized, or is not supported by the
Programming Console.
Initialize the Memory Card (or check the specification of the
memory card).

�����
�

����

The memory card is full. Delete unneeded files or use another
initialized Memory Card.

�����
�

�����
�

The Memory Card protect switch is ON, or the inserted
memory card is an EPROM memory card. Adjust the protect
switch, or use a RAM Memory Card.

�
�����

�
�

Memory Card is not inserted properly in the card slot.

Error Messages

Memory Card Initialization Section 4-2

129

SECTION 5
Troubleshooting

This section provides information on error indications. Information in this section is also necessary when debugging a
program.

5-1 Alarm Indicators 130.
5-2 Reading and Clearing Errors and Messages 130.
5-3 Error Messages 130.
5-4 Troubleshooting Communications Errors 132.

5-4-1 RM Unit SR Area 133.
5-4-2 SK20 SR Area 134.

5-5 Error Flags 134.

130

5-1 Alarm Indicators
There are three indicators on the front of the CPU that provide visual indica-
tion of errors in the PC. The power indicator (PWR) indicates errors due to
incorrect application of power to the PC; the error indicator (ERR) indicates
fatal errors (i.e., ones that will stop PC operation); the T/R indicator indicates
communication errors. A flashing T/R indicator means normal communica-
tions.

Caution The PC will turn ON the error indicator (ERROR), stop program execution,
and turn OFF all outputs from the PC for most hardware errors and for fatal
software errors. PC operation will continue for all other errors. It is the user’s
responsibility to take adequate measures to ensure that a hazardous situa-
tion will not result from automatic system shutdown for fatal errors and to en-
sure that proper actions are taken for errors for which the system is not auto-
matically shut down. System flags can be used to program proper actions.

5-2 Reading and Clearing Errors and Messages
System error messages can be displayed on the Programming Console.

On the Programming Console, press the CLR, FUN, 6, 1, and MON keys. If
there are multiple error messages stored by the system, the MON key can be
pressed again to access the next message. If the system is in PROGRAM
mode, pressing the MON key will clear the error message, so be sure to write
down all message errors as you read them.

It is not possible to clear an error or a message while in RUN mode; the PC
must be in PROGRAM mode.

When all messages have been cleared, “CHECK OK” will be displayed and
the ERROR LED will turn OFF.

If a “COMM ERR” occurs, the Programming Console will ignore any key op-
eration other than CLR, so press CLR to clear the communication error and
allow access to CPU. Ensure the correct connection of cables between the
Units.

Note If a memory error occurs in the PC, the Programming Console may not func-
tion properly if the program is transferred from the PC to the Programming
Console. Perform a program comparison between the transferred program
and the program in the PC to see if the programs are the same.

5-3 Error Messages
There are basically two types of errors for which messages are displayed:
programming errors and fatal operating errors.

The type of error can be quickly determined from the indicators on the CPU,
as described below for the two types of errors. If the status of an indicator is
not mentioned in the description, it makes no difference whether it is lit or not.

After eliminating the cause of an error, clear the error message from memory
before resuming operation.

Error Messages Section 5-3

131

Programming Errors

The following error messages appear if an error occurs during programming.
The Programming Console will be in PROGRAM mode. The PWR indicator
will be lit and the RUN indicator will not be lit for either of these.

The following error messages may appear when inputting a program. Correct
the error as indicated and continue with the input operation.

Error Message Error Type Possible Cause/Correction

PRGM OVER Program too
large

Program size exceeds the capacity.
Clear any data after the END instruction or
shorten the program.

ADR OVER Address too
large

Program exceeds program memory’s last
address.
Set the address again.

I/O No. ERR Operand error An illegal value has been entered for an
operand. Reconfirm the allowable operand
area for each instruction, and correct the
data.

Errors Displayed During Program Check

Error Message Possible Cause/Correction

PRGM CHK
END(01)

Program checked to END instruction. All instructions used
correctly.

***????
(***= address)

Operand or instruction is destroyed at address ***. Re-input the
correct instruction. Or DR Area allocation has changed. Revert
to the DR Area allocation at start of operation (zero setting).

NO END INST No END instruction in program. Add an END instruction to the
end of the program.

One of the following messages is displayed if an error occurs during program
save, transfer, read, or verify. Program save or transfer is interrupted when
an error occurs.

Error Message Possible Cause/Correction

NO END INST No END instruction in program. Add an END instruction and
transfer program again.

***????
(***= address)

Operand or instruction could not be understood at address ***.
Correct program and transfer program again.

ERR CARD →
ProCo

Program stored in memory card is destroyed. Transferring
program from memory card to Programmable Console. Check
program.

NO SUPPORT
CARD

Inserted memory card is not initialized or cannot be used. Check
memory card. Initialize if necessary.

ERR CARD
FULL

Memory card is full. Delete unwanted files or use a new card.

PTCT ON OR
EPROM

Memory card is write-protected or an EPROM-type memory card
is inserted. Turn off write-protect switch or use an SRAM-type
memory card.

NO MEM.
CARD

No memory card is inserted.Insert a memory card.

Error Messages

Errors Displayed During
Program Save/Transfer/
Read/verify

Error Messages Section 5-3

132

When an error occurs during operation, operation is halted and the indicators
light to display the type of error. The error message can be displayed using
the read error display operation (see 5-3 Error Messages).

Error Type Error Message LED Indicator Possible Cause/Correction

POWER RUN T/R ERROR

Power failure --- Power cut off. Check the power supply, voltage,
and wiring.

CPU error --- The watchdog timer (100 ms) has timed out.
Turn power OFF, change to PROGRAM mode,
and turn power ON again.

Memory error MEMORY ERR The program may contain an error. Correct the
program, then transfer the corrected program to
the PC from the Programming Console.
Alternatively, turn the PC power OFF and ON. If
the memory error occurs when power is
switched ON, an error may have occurred
when the program was transferred from
EEPROM to RAM.

No END
instruction

NO END INST The END instruction cannot be found in the
program.
Change to PROGRAM mode, and add an END
instruction to the end of the program.

--- / A SYSMAC BUS transfer error occurred.

Lit Not litFlashing

Note When a communication error occurs during a I/O Link operation, the T/R LED
will go ON (lit).

A SYSMAC transfer error may occur due to one of the causes below. Refer
to SYSMAC C Series Remote I/O Unit (Wired Type) Operation Manual for
details.

• No end station set

• Multiple end stations set

• Duplicated addresses

• SK20 power off/master PC power off

• Connecting cable discontinuity

• Connecting cable shorted

Note A memory error (MEMORY ERR.) may occur due to incorrect transfer or
reading of the program inside the SK20.

A number of other error messages are detailed within this manual. Errors in
program input can be found in 3-5 Inputting the Program and errors in pro-
gram transfer are detailed in 3-5-7 Program Transfers.

5-4 Troubleshooting Communications Errors
If a SYSMAC BUS communications error occurs when SYSMAC BUS is
used with the SK20, the unit where the error occurred can be identified by
referring to the SR area. The SK20 determines from SR word (0300) whether
a communications error has occurred.

For details, refer to the SYSMAC C Series Remote I/O Unit (Wired Type) Op-
eration Manual for details.

Operating Errors

Causes of SYSMAC BUS
Transfer Errors

Other Error Messages

Troubleshooting Communications Errors Section 5-5

133

5-4-1 RM Unit SR Area

C120/C500

15 14 13 12 12 11 10 9 8 7 6 5 4 3 2 1SR relay SR0059 0

Bit 15 to 8: Indicate transfer terminal, transfer I/O terminal, transfer unit ad-
dress
Bit 7 to 4: Status 0 or 1 indicates the transfer terminal, transfer I/O terminal,
transfer unit error
Bit 3: Remote error flag indicating a remote I/O, transfer terminal, transfer I/O
terminal, transfer unit
Bit 2 and 1: Always 0
Bit 0: Error advance flag. If an error occurs in multiple units, they are read
sequentially by turning this bit ON and OFF.

C1000H/C2000H/C2000

15 14 13 12 12 11 10 9 8 7 6 5 4 3 2 1SR relay SR0251 0

Bit 15 to 8: Indicate transfer terminal, transfer I/O terminal, transfer unit ad-
dress
Bit 7 to 4: If a transfer terminal, transfer I/O terminal, transfer unit error oc-
curs, contains:0 or 1 for Base #02 or 3 for Base #14 or 5 for Base #26 or 7
for Base #3
Bit 3: Remote error flag indicating a remote I/O, transfer terminal, transfer I/O
terminal, transfer unit
Bit 2 and 1: Always 0
Bit 0: Error advance flag. If an error occurs in multiple units, they are read
sequentially by turning this bit ON and OFF.

Note Bit 25312 turns ON when a remote I/O error occurs.

C200H

15 14 13 12 12 11 10 9 8 7 6 5 4 3 2 1SR relay SR0059 0

Bit 15 to 8: Indicate transfer terminal, transfer I/O terminal, transfer unit ad-
dress
Bit 7 to 4: Status 0 or 1 indicates the transfer terminal, transfer I/O terminal,
transfer unit error
Bit 3: Remote error flag indicating a remote I/O, transfer terminal, transfer I/O
terminal, transfer unit
Bit 2 and 1: Always 0
Bit 0: Error advance flag. If an error occurs in multiple units, they are read
sequentially by turning this bit ON and OFF.

Note Bit 25312 turns ON when a remote I/O error occurs.

The units where the error occurred can be determined by referring to SR251
and AR0014, AR0015, and AR02 to AR06.

AR0014, AR0015: Error unit # of Remote I/O master unit
AR02: Error unit # of Remote I/O slave unit at start of operation
AR03 to AR06: Address of transfer terminal, transfer I/O terminal, transfer
unit when error occurs at start of operation

SR and AR On Errors and
Error Codes

Troubleshooting Communications Errors Section 5-5

134

The error unit numbers of Remote I/O Master Units and Restart Flags are
allocated to the AR area.

AR0014: ON for error in Remote I/O Master Unit (RM) #1
AR0015: ON for error in Remote I/O Master Unit (RM) #0
AR0114: Restart Flag for Remote I/O Master Unit (RM) #1
AR0115: Restart Flag for Remote I/O Master Unit (RM) #0

After operation is stopped due to an error, correct the cause of the error and
set the Restart flag OFF -> ON -> OFF to restart operation.

5-4-2 SK20 SR Area
0300 0 Master PC in Run or Monitor mode, SYSMAC BUS communications

normal

1 Master PC in Program mode (including fatal error) , or SYSMAC BUS
communications error

Set 0500 to 0507 to 55 to stop SK20 operation after the Remote I/O Master
PC operation is halted or a SYSMAC BUS communications error has oc-
curred. Use the Programming Console PV editing functions to set the data.

0500 to 0507 00 (except 55) SK20 operation continues when the Master Unit operation is halted
(including Program mode) or a SYSMAC BUS communications error
has occurred.

55 SK20 operation is halted when the Master Unit operation is halted
(including Program mode) or a SYSMAC BUS communications error
has occurred.

After SK20 operation halts due to a fatal error, determine and correct the
cause of the error (cable connection, for example), then carry out the follow-
ing procedure to restart the SK20.

Set the SK20 mode from PRGM to RUN.
Turn the SK20 power supply back on.

Note I/O refresh for communications data handled by the SK20 is carried out in
1-byte units.

5-5 Error Flags
A number of flags are available in the dedicated bit area that can be used for
troubleshooting. Details are provided in 3-2-4 Dedicated Bits.

Error Unit Numbers of
Remote I/O Master Units
and Restart Flag

Stopping SK20 Operation

Restarting SK20 Operation

Error Flags Section 5-5

135

Appendix A
Standard Models

Name Specifications Model number

SK20 PC Relay contact
output

12 inputs 24 VDC With SYSMAC BUS SK20-C1DR-D

8 outputs Without SYSMAC BUS SK20-C2DR-D

Transistor output 12 inputs With SYSMAC BUS SK20-C1DT-D

8 outputs Without SYSMAC BUS SK20-C2DT-D

Programming
Console

Vertical, hand-held with backlit LCD display. Compatible with Memory Cards.
Memory Card and Connecting Cable sold separately (see below). Usable
only with SP-series and SK20 PCs.

SP10-PRO01-V1

Programming
Console

Connects Programming Console to CPU. 2-m cable SP10-CN221
Console
Connecting Cable 4-m cable SP10-CN421

Memory Card 16-Kbyte SRAM cards (battery built in). Battery will last 5 years from when it
is mounted to the Memory Card.

HMC-ES141

Battery Replacement battery HMC-BAT01

Mounting
Accessories

50-cm DIN Track
7.3 mmDepth

PFP-50N

1-m DIN Track PFP-100N

1-m DIN Track 16.0 mmDepth PFP-100N2

End Plate PFP-M

Spacer PFP-S

137

Appendix B
Specifications

General Ratings
Item Specifications

Power supply voltage 24 VDC

Operating voltage range 20.4 to 26.4 VAC

Power consumption 10 W max.

Insulation resistance 20 MΩ (at 500 VDC) between current-carrying and noncurrent-carrying metal parts

Dielectric strength 1,000 VAC, 50/60 Hz for 1 min. between all VDC external terminals and noncurrent-carrying
metal parts.

Noise immunity 1,500 Vp-p with 100-ns to 1-µs pulse width and 1-ns pulse rise

Vibration resistance 10 to 58 Hz with 0.15-mm double amplitude or 58 to 150 Hz (1G) for 80 min in X, Y, Z
directions

Shock resistance Destruction: 10G three times in X, Y, Z directions

Ambient operating temperature 0 to 55 °C (Programming Console: 0 to 45 °C)

Ambient operating humidity 10% to 90% (with no condensation)

Ambient atmosphere No corrosive gases

Ambient storage temperature –20 to 75 °C (Programming Console: –20 to 65 °C)

Structure Control panel mountable (IP30)

Weight 400 g max.

Dimensions 160 x 50 x 65 (W x H x D) without cables

*Note: Do not use normally closed contacts for inputs to models that run on DC power. Doing so can cause
counters and shift registers to be reset and bits programmed with KEEP(12) to reverse status during
power interruptions.

Input Specifications
Item Specifications Circuit configuration

Input voltage 24 VDC +10%/–15%

Input impedance 3.9 kΩ IN 3.9kΩ 560Ω

ui
t

Input current 6 mA typ. (at 24 VDC)

24 1000pF l c
irc

u
ON voltage 15 VDC min. 24

VDC
1000pF

COM
te

rn
al

OFF voltage 5 VDC max. +
VDC

Photocoupler insulation

COM
In

te

ON/OFF delays ON: 200 µs max.
OFF: 250 µs max.

+

The positive and negative sides of the 24-VDC power supply

Photocoupler insulation

No. of inputs 2 points (1 circuit), 10 points (1 circuit)
The positive and negative sides of the 24 VDC power supply
can be connected in either polarity. Therefore, PNP (negative
common) and NPN (positive common) inputs can be used.

Output Specifications

SK20-C1DR-D/C2DR-D Relay Contact Output Model

Item Specifications Circuit configuration

Switching
capacity

Resistive loads: 2 A, 250 VAC
(cos�=1); 2 A, 24 VDC; 4 A/common

Inductive loads: 0.5 A, 250 VAC
(cos�=0.4)

Photocoupler
insulation

ui
t ui
t

ON/OFF delays ON: 10 ms max.
OFF: 10 ms max.

al
 c

irc
ui

na
l c

irc
u

Minimum
permissible load

100 mA, 5 VDC

In
te

rn
a

In
te

rn
a

No. of outputs 8 pts. (4 circuits, 2 pts each) 24 VDC for relay driving
is supplied internally

In I

Relay life Electrical: 100,000 operations min.
Mechanical: 20,000,000 operations
min. A power supply is required for the load.

is supplied internally.

250 VAC or
24 VDC max.

Specifications Appendix B

138

SK20-C1DT-D/C2DT-D Transistor Output Model

Item Specifications Circuit configuration

Switching
capacity

0.3 A, 24 VDC +10%/–15%

Photocoupler
insulation OUT

ON/OFF delays ON: 20 µs max.
OFF: 300 µs max.

(Load: 0.3 A, 24 VDC)

insulation OUT

er
na

l c
irc

ui
t

No. of outputs 8 pts. (4 circuits, 2 pts each)
COMFuse

In
te

r

Current leakage 0.1 mA max.

24 VDC

COMFuse

(One/common)

Residual voltage 1.0 V max. 24 VDC

Note: The user cannot replace the fuse.

SYSMAC BUS Specifications for SK20-C1DR-D/SK20-C1DT-D Only

Item Specifications

Transmission path Two-conductor cable (VCTF 0.75 x 2C is recommended)

Transmission speed 187.5K bps

Transmission distance Total length of 200 m

Connectable PC as host CV, CVM1, C2000H, C1000H, C500, C200H, C200HS PCs

Remote I/O Master Unit C500-RM201, C200H-RM201

No. of words occupied by the
Terminal Board PC

Input: two words; output: one word

Max. no. of Terminal Board PCs
used by the Remote I/O Master Unit

16

CPU Characteristics
Item Relays

Control method Stored program

I/O control Cyclic scan

Program Ladder diagram

Instruction length 1 step/instruction; 1 to 5 words/instruction

No. of instructions 38: 12 basic, 5 arithmetic, 21 special

Processing speed 0.2 µs min./instruction; 0.72 µs min. average for reading/processing I/O status from memory

Program capacity 348 words (approximately 200 instructions)

I/O bits 20 (bit 0000 to bit 0011 and bit 0100 to bit 0107)

Work bits 172

SYSMAC BUS communications
bits (I/O link)

32 bits
SK to master: send data 1 word
Master to SK: receive data 1 word

Dedicated bits 112

Data-holding bits 256 data-holding bits

Timers/counters 16 total: one 1-ms timer and two analog timers (0.01 to 2.50 s, 0.1 to 25.0 s, or 1 to 250 s) plus
10-ms timers, 100-ms timers, reversible drum counters, a high-speed counter, and
decrementing counters

Memory protection User program memory: RAM/EEPROM
Data-holding bits: RAM (20 days at 25°C*), can be stored in EEPROM
*The power supply must be turned on for at least 10 minutes to charge battery. Length of
memory backup is reduced at higher temperatures.

Program check Check for no END(01) instruction and for instruction errors when RUN mode is entered.

139

Appendix C
Programming Instructions and

Execution Times

In the operand column, I refers to input bits, O to output bits, W to work bits, D to bits in the designated area,
DR to Data Retention bits, and TC to timer and counter Completion Flags and PVs. Refer to 3-2 Memory
Areas for details on bit and word designation.

Basic Instructions
Name/

mnemonic
Symbol Key inputs Description Operands�

LOAD
LD

Bit addressLD

ENT

Creates a normally open condition as the first condition
off the bus bar. All instruction lines begin with either
LOAD or LOAD NOT.

B:
I/O
W
D
DR
TC

LOAD NOT
LD NOT

LD

ENT

NOT

Bit address

Creates a normally closed condition as the first
condition off the bus bar. All instruction lines begin with
either LOAD or LOAD NOT.

B:
I/O
W
D
DR
TC

AND
AND

ENT

AND Bit address
Combines a normally open condition in series with a
previous condition.

B:
I/O
W
D
DR
TC

AND NOT
AND NOT AND

ENT

NOT

Bit address

Combines a normally closed condition in series with a
previous condition.

B:
I/O
W
D
DR
TC

OR
OR

OR

ENT

Bit address
Combines a normally open condition in parallel with a
previous condition.

B:
I/O
W
D
DR
TC

OR NOT
OR NOT

ENT

NOT

Bit address

OR
Combines a normally closed condition in parallel with a
previous condition.

B:
I/O
W
D
DR
TC

AND LOAD
AND LD

ENTLDAND
Combines two groups of conditions in series. These
groups are called blocks.

OR LOAD
OR LD

ENTLDOR
Combines two parallel groups of conditions. These
groups are called blocks.

OUTPUT
OUT

ENT

Bit addressOUT
Specifies an output bit that is to be turned ON for an
ON execution condition and OFF for an OFF condition.

B:
O
W
DR

OUTPUT
NOT
OUT NOT ENT

NOT

Bit address

OUT
Specifies an output bit that is to be turned OFF for an
ON execution condition and ON for an OFF condition.

B:
O
W
DR

TIMER
TIM

TIM

ENT

TIM

ENT

TC number

SV

Creates a 0.1-s decrementing timer that starts from the
set value (SV) when the execution condition turns ON.
SV can be between 0.0 and 999.9 s. When the SV has
been timed out, the Completion Flag is turned ON.

SV:
I/O
W
DR
#

N:
TC

Instruction Set and Execution Times Appendix C

140

Name/
mnemonic

Operands�DescriptionKey inputsSymbol

COUNTER
CNT

CP

R
CNT

ENT

CNT

ENT

TC number

SV

Counts down the number of times the input condition
turns ON. Each time the input condition turns ON, the
present value (PV) is reduced by 1 and when the count
reaches 0, the Completion Flag (accessed through the
counter number) turns ON. The SV can be between 0
and 9999.

SV:
I/O
W
DR
#

N:
TC

NO
OPERATION
NOP(00)

None
FUN 0 0 ENT

Does nothing. Can be inserted into a program before
or after modifications are made to prevent program
addresses from changing.

Special Instructions

Name/
mnemonic

Symbol Key inputs Description Operands�

END
END(01)

END(01)
FUN 0 ENT1

Indicates the end of the program. A program will not be
executed unless the END instruction is used.

INTERLOCK
IL(02)

INTERLOCK
CLEAR
ILC(03)

IL(02)

ILC(03)

FUN 0 ENT2

FUN 0 ENT3

INTERLOCK and INTERLOCK CLEAR are combined
to control the status of multiple outputs based on the
execution condition of INTERLOCK, and are generally
used to prevent specific bits from being ON
simultaneously.

STEP
DEFINE
STEP(04)

STEP(04)

STEP(04)B Bit address

FUN 0 4

ENT

Divides a program into sections called steps that can
be executed as separate processes. Up to five steps
can be created.

Defining the Beginning of a Step (Operand Required)

Ending Step Execution (No Operand)

STEP(04) B

STEP(04)

B:
O
W
DR

STEP START
SNXT(05)

SNXT(05)
FUN 0

ENT

5

Bit address

Turns OFF any previous steps and starts the designated
step.

B:
O
W
DR

DIFFERENTI-
ATE UP
DIFU(10)

DIFU(10)B

Bit address

FUN

ENT

1 0
Turns ON the designated bit for one scan only on the
rising edge of the execution condition (input signal).
Used when an operation is to be performed only once
each time a signal turns ON.

B:
O
W
DR

DIFFERENTI-
ATE DOWN
DIFD(11)

DIFD(11)B
FUN

ENT

1 1

Bit address

Turns ON the designated bit for one scan on the falling
edge of the execution condition (input signal). Used when
an operation is to be performed only once each time a sig-
nal turns OFF.

KEEP
KEEP(12)

KEE
P

S

R

FUN 1 2

ENTBit address

Latches bit status. The bit is set when the set input (I)
turns ON and stays set until the reset input (R) turns
ON.

B:
O
W
DR

10-MS TIMER
TIMM(20)

TIMM(20) N
SV

FUN 2 0

ENT ENTTC
no.

SV

Creates a 10-ms decrementing timer that starts from
the set value (SV) when the execution condition turns
ON. The SV can be between 0.00 and 99.99 s

SV:
#

N:
TC

HIGH-SPEED
TIMER
TIMH(21)

TIMH(21)
SV FUN 2 1 ENT

ENTSV

Creates a 0.001-s decrementing timer that starts from
the set value (SV) when the execution condition turns
ON. The SV can be between 0.000 and 9.999 s.

SV:
#

ANALOG
TIMER
ATIM(22)

ATIM(22) FUN 2 2 ENT
Creates a 0.1-s decrementing timer that starts from the
set value (SV: 0.1 to 25.0 s) when the execution
condition turns ON. Not all timer/counter instruction
require input of the SV. Here it is adjusted with a
manual adjustment on the PC.

Appendix CInstruction Set and Execution Times

141

Name/
mnemonic

Operands�DescriptionKey inputsSymbol

REVERSIBLE
DRUM
COUNTER
RDM(23)

RDM(23)
N
St
R

FUN 2 ENT3

ENT

ENT ENTSt R

TC no.

Creates a counter that indicates when the present
value is within specified ranges by turning ON specific
bits in R. Used to turn operations ON and OFF for
specific count ranges. St defines the size of the table,
which starts in St+1.

St:
DR

N:
TC

R:
O
W
DR

HIGH-SPEED
COUNTER
CNTH(24)

CNTH(24)
R FUN 2 4 ENT

ENTSV

Creates a high-speed incrementing counter. The
present value (PV) will be incremented by one
whenever CP goes from OFF to ON as long as the
start input (SI) is ON and the reset input (R) is OFF.
The Completion Flag, CNT 13, is turned ON when the
PV reaches the SV and will remain ON for one scan
only. The PV is automatically reset to zero when the
SV is reached. The SV can be between 0000 and
9999; setting 0000 creates an SV of 10,000.

SV:
I/O
W
DR
�DR

#

ANALOG
TIMER 1
ATM1(25)

ATM1(25)
RD FUN 2 5 ENT

ENTRD

Creates a decrementing timer that starts from the set
value determined by the #1 analog timer adjustment on
the front of the CPU. If RD=0000, the SV ranges from
1 to 250 s. If RD=0001, the SV ranges from 0.1 to
25.0 s. If RD=0002, the SV ranges from 0.01 to 2.50 s.
The SV can be input only via the hardware adjustment.

RD:
I/O
W
DR
�DR

#

ANALOG
TIMER 2
ATM2(26)

ATM2(26)
RD FUN 2 6 ENT

ENTRD

Creates a decrementing timer that starts from the set
value determined by the #2 analog timer adjustment on
the front of the CPU. If RD=0000, the SV ranges from
1 to 250 s. If RD=0001, the SV ranges from 0.1 to
25.0 s. If RD=0002, the SV ranges from 0.01 to 2.50 s.
The SV can be input only via the hardware adjustment.

RD:
I/O
W
DR
�DR

#

MOVE
MOV(30)

MOV(30)
S
D

FUN 3 0 ENT

ENT ENTS D

Moves the content of a specified word or a specified
constant to a destination word. The Equals Flag will
turn ON when 0 is moved.

D:
O
W
DR
�DR

S:
I/O
W
D

TC
DR
�DR

#

MOVE NOT
MVN(31)

MVN(31)
S
D

FUN 3 ENT

ENT ENT

1

S D

Moves the inverse content of a specified word or a
specified constant to a destination word. The Equals
Flag will turn ON when 0 is moved.

COMPARE
CMP(32)

CMP(32)
Cp1
Cp2

FUN 3 ENT

ENT ENT

2

Cp1 Cp2

Compares the contents of two words or constants and
turns ON the Equals, Less Than, or Greater Than Flag
to indicate which value is larger. These flags can then
be used to control operation based on this comparison.

Cp1./Cp2:
I/O
W
TC
DR
�DR

#

SHIFT
REGISTER
SFT(33)

SFT(33)

Wd

IN

SP

R

FUN 3 3

ENT

ENT

Wd

Shifts the input condition (IN) into a register and shifts
the bits in the register on each rising edge of the shift
pulse (SP). The register is reset to 0 when the reset
input (R) turns ON.

Wd:
O
W
DR

BLOCK
COMPARE
BCMP(34)

BCMP(34)
CD
CB

R

FUN 3 ENT4

ENTCD

ENTCB
ENTR

N is the least significant digit of CB and determines the
size of the comparison block; there will be N+1
comparison ranges. BCMP(34) compares CD to the
ranges defined by a block consisting of CB+1, CB+2,
..., CB+(2N+2). Each range is defined by two words,
the first one providing the lower limit and the second
word providing the upper limit. The corresponding bit of
the result word, R, will be turned ON whenever CD is
within the preset range.

CB:
DR

CD:
I/O
W
D

TC
DR
�DR

#

R:
O
W
DR

Instruction Set and Execution Times Appendix C

142

Arithmetic Instructions
Name/

mnemonic
Symbol Key inputs Description Operands�

BCD ADD
ADD(40)

ADD(40)
Au
Ad
R

FUN 4 0 ENT

ENTENT

ENT

Au Ad

R

Adds two BCD (binary-coded decimal) values and the
contents of the Carry Flag and places the result in the
result word (R) and the Carry Flag. The Carry Flag
must normally be cleared before executing ADD(40).

CY CYAu + Ad + R

R:
O
W
DR
�DR

Au/Ad:
I/O
W
D

TC
DR
�DR

#

BCD
SUBTRACT
SUB(41)

SUB(41)
Mi
Su
R

FUN 4 1 ENT

ENTENT

ENT

Mi Su

R

Subtracts one BCD (binary-coded decimal) value and
the contents of the Carry Flag from another BCD value
and places the result in the result word (R) and the
Carry Flag. The Carry Flag must normally be cleared
before executing SUB(41).

CY CYMi - Su R

R:
O
W
DR
�DR

Mi/Su:
I/O
W
D

TC
DR
�DR

#

LOGICAL
AND
ANDW(42)

ANDW(42)
I1
I2
R

FUN 4 2

ENT

ENT

ENT

ENTI1 I2

R

Performs an AND between two words one bit at a time
and places the result in the result word (R).

I1 RI2AND

R:
O
W
DR
�DR

I1/I2:
I/O
W
D

TC
DR
�DR

#

LOGICAL OR
ORW(43)

ORW(43)
I1
I2
R

FUN 4 3

ENT

ENT

ENTENTI1 I2

R

Performs an OR between two words one bit at a time
and places the result in the result word (R).

I1 RI2OR

R:
O
W
DR
�DR

I1/I2:
I/O
W
D

TC
DR
�DR

#

CLEAR
CARRY
CLC(44)

CLC(44)
FUN 4 4 ENT

Resets the Carry Flag (bit 0312) to 0. Generally used
to clear the Carry Flag just before using ADD(40) or
SUB(41).

Appendix CInstruction Set and Execution Times

143

Instruction Execution Times

The execution time is given in microseconds. “Word” indicates any data area address except for indirectly ad-
dressed DR (�DR).

Instruction Number of words ON execution time Conditions OFF execution time

Words
 00 to 04

(see note 1)

Words
 05 to 20

(see notes
1 and 2)

Words
 00 to 04

Words
 05 to 20

(DIR, TIM,
or CNT are

set)

LD 2 3 0.4 0.8 Always Same as ON time.

LD NOT 2 3 0.4 0.8 Always Same as ON time.

AND 1 2 0.2 0.6 Always Same as ON time.

AND NOT 1 2 0.2 0.6 Always Same as ON time.

OR 1 2 0.2 0.6 Always

OR NOT 1 2 0.2 0.6 Always Same as ON time.

AND LD 2 2 0.4 0.6 Always Same as ON time.

OR LD 2 2 0.4 0.6 Always Same as ON time.

OUT 2 3 2.4 7.0 Always Same as ON time.

OUT NOT 2 3 2.4 7.0 Always Same as ON time.

TIM --- 4 --- 24.4 Constant for SV R: 23.0
IL: 24.8

38.5 Word for SV R: 28.6
IL 27 163.0 �DR for SV IL: 27.1

CNT --- 4 --- 24.4 Constant for SV R: 22.4
IL: 19.8

38.8 Word for SV R: 28.9
IL 4 863.0 �DR for SV IL: 4.8

NOP(00) 1 1 0.2 Always N.A.

END(01) 1 1 9.8 Always N.A.

IL(02) 2 2 19.6 Always 19.8

ILC(03) 1 1 0.2 Always 0.2

STEP(04) 4 4 35.4 Always 23.0

SNXT(05) 4 4 38.2 Always 28.4

DIFU(10) 4 4 39.2 Always Normal: 32.8
IL: 20.0

DIFD(11) 4 4 40.4 Always Normal: 34.4
IL: 20.2

KEEP(12) 4 4 29.0 Always 28.4

TIMM(20) 4 4 29.5 Constant for SV R: 23.6
IL: 22.2

25.8 Word for SV R: 28.8
IL 27 163.0 �DR for SV IL: 27.1

TIMH(21) 4 4 26.0 Constant for SV R: 23.6
IL: 22.2

22.8 Word for SV R: 28.8
IL 27 159.9 �DR for SV IL: 27.1

ATIM(22) 3 3 11.6 Always R: 25.5
IL: 23.9

RDM(23) 5 5 69.4 Always R: 68.0
IL: 19.4

Instruction Set and Execution Times Appendix C

144

Instruction OFF execution timeConditionsON execution timeNumber of words

Words
 05 to 20

(DIR, TIM,
or CNT are

set)

Words
 00 to 04

Words
 05 to 20

(see notes
1 and 2)

Words
 00 to 04

(see note 1)

CNTH(24) 4 4 39.9 Constant for SV R: 51.3
IL 4 7

()

49.4 Word for SV IL: 4.7

73.6 �DR for SV

ATM1(25) 4 4 47.8 Constant for SV R: 47.1
IL 45 4

()

56.3 Word for SV IL: 45.4

81.4 �DR for SV

ATM2(25) 4 4 47.8 Constant for SV R: 47.1
IL 45 4

()

56.3 Word for SV IL: 45.4

81.4 �DR for SV

MOV(30) 4 4 41.6 to 43.4 Moving constant to word. 20.6

104.8 Moving �DR content to �DR word.

MVN(31) 4 4 42.0 to 43.8 Moving constant to word. 20.6

104.8 Moving �DR content to �DR word.

CMP(32) 4 4 33.4 to 36.2 Comparing constant with word. 20.0

97.2 Comparing �DR content.

SFT(33) 3 3 35.2 to 41.8 Always R: 32.2
IL: 19.6

BCMP(34) 5 5 41.5 to 134.4 0 to 5 comparison ranges with a
constant for compare data

R: 13.1
IL: 4.9

43.0 to 136.0 0 to 5 comparison ranges with a
word for compare data

ADD(40) 5 5 70.2 to 72.6 Adding constant to word with
results placed in word.

20.8

167.8 Adding �DR to �DR with results
placed in �DR.

SUB(41) 5 5 70.2 to 72.6 Subtracting constant from word
with results placed in word.

20.8

167.4 Subtracting �DR from �DR with
results placed in �DR.

ANDW(42) 5 5 49.0 to 51.4 ANDing constant and word with
results placed in word.

20.8

146.6 ANDing �DR and �DR with results
placed in �DR

ORW(43) 5 5 49.0 to 51.6 ORing constant and word with
results placed in word.

20.8

146.6 ORing �DR and �DR with results
placed in �DR

CLC(44) 2 2 19.8 Always. 19.6

Note 1. Addresses 00 to 04 correspond to I/O, work or dedicated words.
2. Addresses 05 to 20 correspond to DR or TC words.
3. The work bits for word addresses 05 to 20 belong in this column when

calculating the program words.

145

Appendix D
Programming Console Operations

If the display is not cleared to all zeros when the CLR Key is pressed at the beginning of a Programming Con-
sole operation, continue pressing the CLR Key until the display shows all zeros.

Name Modes Basic key sequences Page

Password
Input

RUN or
PRGM

Check the operation mode
and then input as follows:

CLR MON
46

Buzzer
ON/OFF

RUN or
PRGM

Input as follows after
changing the mode:

1SHIFT
47

Data Clear PRGM
only

Deletes the contents of user program memory. Press CNT and/or DR to preserve the
contents of these areas. Specify an address to delete from that address to the end of
user memory. User memory in both the PC and the Programming Console are delete
simultaneously (including EEPROM).

Address
CLR FUN 6 0

CNT

DR

ENT

47

Address
Designation

RUN or
PRGM

Jumps to the designated address.
CLR Address

49

Program
Input

PRGM
only

Used to input programs into
user program memory.

Address Designation

SV

Instruction Operand

Program Read ENT ENT

50

Program
Read

RUN or
PRGM

Used to read the contents of user
program memory. If executed in RUN
mode, I/O bit status will be displayed.

Moves to next
address.
Moves to
preceding address.

Address Designation

Program Read

49

Binary
Monitor

RUN or
PRGM

Used to monitor up to 4 memory words in binary.

Scroll address.

Shifts to Bit/Word
or Multibit/Word
Monitor.

Cancels
monitoring
completely.

Word addressCLR SHIFT

LR

DR

SHIFT MON CLR

SHIFT CLR

Bit/Word Monitor
Multibit/Word Monitor

CH

*

119

Force
Set/Reset

RUN or
PRGM

Used to control I/O status in RUN mode on
bit displays. I/O bit status is refreshed each
scan at which time forced status will be
canceled.

CHG ENTBit/Word Monitor

Multibit/Word Monitor

117

HEX/BCD
Data
Change

RUN or
PRGM

Used to change memory contents
in either hexadecimal or BCD.

New value ENTCHGBit/Word Monitor

Multibit/Word Monitor

118

Binary Data
Change

RUN or
PRGM

Used to change memory contents
in binary. Use arrow keys to select
bit, the 1 key to turn it ON, and the
0 key to turn it OFF.

Word Monitor

0

1

ENTCHG

120

Error
Message
Read

RUN or
PRGM

Used to read out and clear current
error messages. The PC must be in
PROGRAM mode to clear errors. Error cleared and next error read.Error read.

CLR 1FUN 6 MON MON
103

Bit Search RUN or
PRGM

Used to search the program for
I/O bits, work bits, DR bits, HR
bits and Timer/counter bits.

55

Programming Console Operations Appendix D

146

Name PageBasic key sequencesModes

Cycle Time
Read

RUN
only

Used to display the maximum scan time of
the program that is being executed. MONCLR FUN 37 MON

End with CLR.CLR

31

Program
Check

PRGM
only

Used to confirm that user memory
contents are intact and that there is
an END instruction.

Press until END(01) is
reached.

End with CLR.

CLR FUN 7 MON MON1

CLR

52

Card
Format

PRGM
only

Used to initialize memory cards.
CLR FUN 7 2 ENT ENT

119

Program
Transfer/
Delete

PRGM
only

Used to transfer
programs between the
Programming Console,
PCs, and memory cards
and to delete program
files. “UM” includes the
filter values.

File deleted.

File name

Program
transferred.

CLR FUN 26 1 ENT

2

1 ENT

2 ENT

2

1 ENT ENT

DEL

ENT

ENT

To/from
PC

To/from
Memory
Card

1: UM only
2: UM and DR

1: UM only
2: UM and DR

To card

From card

To PC

From PC

ENT

CLR

CLR

CLR

52

DR Area
Transfer

PRGM
only

Used to transfer DR area contents to EEPROM.
Whenever this operation is executed, the contents of
the DR area in RAM is transferred to EEPROM. Data
backed up in EEPROM will then be automatically
transferred back to RAM whenever power is turned on to the CPU.
This feature can be used to ensure that the same data is set in the DR area each time
power is turned on or to save DR area contents when CPU power is not turned on for
an extended period of time.
If the DR area is being used for other purposes, such as for holding data during power
interruptions, the DR area contents of EEPROM must be cleared with the Data Clear
operation to prevent RAM DR area contents from being overwritten when CPU power
is turned on.

CLR FUN 6 3 ENT
-

Program
Compare

PRGM
only

Used to compare the programs in the
PC and in the Programming Console. CLR FUN 6 MON4

-

Filter Value
Designation

PRGM
only

Used to adjust the input read filter time.
Each group can be set to 0 ms, 1 ms,
5 ms, or 10 ms. Set all three groups at
the same time.
Factory settings are 10 ms.

Group 1

CLR FUN

1

2

3

ENT6 05

1

2

3

ENT0

(0ms) (0ms)

Group 2

(1ms)

(5ms)

(10ms)

(1ms)

(5ms)

(10ms)

SK20 0 to 2 3 to 5 None

Group 1 Group 2 Group 3PC

1

2

3

ENT0

(0ms)

Group 3

(1ms)

(5ms)

(10ms)

19

Filter Value
Read

RUN or
PRGM

Used to read the filter time. When performed
with the SK20, both the PC and Programming
Console settings are displayed.

CLR FUN 6 6 MON
20

Instruction
Insert

PRGM
only

Used to insert an instruction at the
address currently being displayed.

Address Designation

Program Read

Instruction INS
55

Instruction
Delete

PRGM
only

Used to delete the instruction being displayed. Address Designation

Program Read

DEL
55

Appendix DProgramming Console Operations

147

Name PageBasic key sequencesModes

Status
Monitor

RUN
only

Used to monitor status in
RUN mode.

Address Designation 48

Bit/Word
Monitor

RUN or
PRGM

Used to monitor I/O
bits, other bit status,
word status, or TC PV.

Cancels
monitoring.

TIM

CNT

CLR MONSHIFT

SHIFT LD

DR CLR

SHIFT MON
LD

OUT

CONT
#

CH

*

Program Read
Bit
address

Scroll the
address being
monitored.

Word monitor

114

Multibit/
Word
Monitor

RUN or
PRGM

Used to expand Bit/Word
Monitor to up to three bits,
words, and/or TC PV.

Scrolls the display.

Scroll the
address being
monitored.

Cancels one bit.

Cancels all monitoring.

TIM

CNT

CLR MONSHIFT

SHIFT CH
*

LD

DR

CLR

MON

CLR

SHIFT

CONT
#

Bit/Word Monitor
Bit
address

114

149

Appendix E
Error and Arithmetic Flag Operation

The following table shows the instructions that affect the ER, CY, GT, LT and EQ flags. In general, ER indi-
cates that operand data is not within requirements. CY indicates arithmetic or data shift results. GT indicates
that a compared value is larger than some standard, LT that it is smaller, and EQ, that it is the same. EQ also
indicates a result of zero for arithmetic operations. Refer to Section 3 Programming for details.

Vertical arrows in the table indicate the flags that are turned ON and OFF according to the result of the in-
struction.

Although timer and counter instructions are executed when ER is ON, instructions with a vertical arrow under
the ER column are not executed if ER is ON. All of the other flags in the following table will also not operate
when ER is ON.

Instructions 0311 (ER) 0312 (CY) 0313 (LT) 0314 (EQ) 0315 (GT)

TIM Unaffected Unaffected Unaffected Unaffected Unaffected

CNT Unaffected Unaffected Unaffected Unaffected Unaffected

END(01) OFF OFF OFF OFF OFF

STEP(04) Unaffected Unaffected Unaffected Unaffected

SNXT(05) Unaffected Unaffected Unaffected Unaffected

TIMM(20) Unaffected Unaffected Unaffected Unaffected

TIMH(21) Unaffected Unaffected Unaffected Unaffected

ATIM(22) Unaffected Unaffected Unaffected Unaffected Unaffected

RDM(23) Unaffected Unaffected Unaffected Unaffected

CNTH(24) Unaffected Unaffected Unaffected Unaffected

ATM1(25) Unaffected Unaffected Unaffected Unaffected Unaffected

ATM2(26) Unaffected Unaffected Unaffected Unaffected Unaffected

MOV(30) Unaffected Unaffected Unaffected

MVN(31) Unaffected Unaffected Unaffected

CMP(32) Unaffected

SFT(33) Unaffected Unaffected Unaffected Unaffected

BCMP(34) Unaffected Unaffected Unaffected Unaffected

ADD(40) Unaffected Unaffected

SUB(41) Unaffected Unaffected

ANDW(42) Unaffected Unaffected Unaffected

ORW(43) Unaffected Unaffected Unaffected

CLC(44) Unaffected OFF Unaffected Unaffected Unaffected

151

Appendix F
I/O Assignment Sheets

This appendix contains sheets that can be copied by the programmer to record I/O bit allocations and terminal
assignments, as well as details of work bits, data storage areas, timers, and counters.

Some bits appear as both I/O bits and work bits so that the I/O assignment sheets can be used for
any of the SK20s. Be sure that you do not assign a bit as a work bit if it is already being used as an
I/O bit and that you do not assign more I/O bits than are supported by your PC.

Note

I/O Assignment Sheets Appendix F

152

No.: System:

Program: Programmer: Date:

Unit #0
Inputs

Bit Field device Notes

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010

0011

Outputs

Bit Field device Notes

0100

0101

0102

0103

0104

0105

0106

0107

Unit #1
Inputs

Bit Field device Notes

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010

0011

Outputs

Bit Field device Notes

0100

0101

0102

0103

0104

0105

0106

0107

I/O Bits

Appendix FI/O Assignment Records Sheets

153

No.: System:

Program: Programmer: Date:

Unit #2
Inputs

Bit Field device Notes

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010

0011

Outputs

Bit Field device Notes

0100

0101

0102

0103

0104

0105

0106

0107

Unit #3
Inputs

Bit Field device Notes

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010

0011

Outputs

Bit Field device Notes

0100

0101

0102

0103

0104

0105

0106

0107

I/O Bits

I/O Assignment Sheets Appendix F

154

No.: System:

Programmer: Program: Date: Unit #:

Timers and Counters

Address T or C Set value Notes

00

01

01

03

04

05

06

07

08

09

10

11

12

13

14

15

Word 00

Bit Usage Notes

0008

0009

0010

0011

0012

0013

0014

0015

Word 01

Bit Usage Notes

0104

0105

0106

0107

0108

0109

0110

0111

0112

0113

0114

0115

Word 02

Bit Usage Notes

0200

0201

0202

0203

0204

0205

0206

0207

0208

0209

0210

0211

0212

0213

0214

0215

TC Area and Work Bits

Appendix FI/O Assignment Records Sheets

155

Word:

Bit Usage Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Word:

Bit Usage Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Word:

Bit Usage Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Word:

Bit Usage Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

TC Area and Work Bits

I/O Assignment Sheets Appendix F

156

No.: System:

Programmer: Program: Date: Unit #:

Word Contents Notes Word Contents Notes

Data Storage

157

Appendix G
Program Coding Sheets

The following pages can be copied for use in coding ladder diagram programs.

When coding programs, be sure to specify all function codes for instructions and data areas (or # for constant)
for operands. These will be necessary when inputting programs though a Programming Console or other Pe-
ripheral Device.

Program Coding Sheets Appendix G

158

No.: System: Page 1

Program: Programmer: Date:

Address Instruction Operand(s)

000

001
002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

Address Instruction Operand(s)

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

Appendix GProgram Coding Sheets

159

No.: System: Page 2

Program: Programmer: Date:

Address Instruction Operand(s)

076

077
078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

Address Instruction Operand(s)

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

Program Coding Sheets Appendix G

160

No.: System: Page 3

Program: Programmer: Date:

Address Instruction Operand(s)

152

153
154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

Address Instruction Operand(s)

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

Appendix GProgram Coding Sheets

161

No.: System: Page 4

Program: Programmer: Date:

Address Instruction Operand(s)

228

229
230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

Address Instruction Operand(s)

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

Program Coding Sheets Appendix G

162

No.: System: Page 5

Program: Programmer: Date:

Address Instruction Operand(s)

304

305
306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

Address Instruction Operand(s)

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

163

Glossary

address The location in memory where data is stored. For data areas, an address
consists of a two-letter data area designation and a number that designates
the word and/or bit location. For the UM area, an address designates the
instruction location (UM area).

allocation The process by which the PC assigns certain bits or words in memory for
various functions. This includes pairing I/O bits to I/O points.

AND A logic operation whereby the result is true if and only if both premises are
true. In ladder-diagram programming the premises are usually ON/OFF
states of bits or the logical combination of such states called execution condi-
tions.

BCD Short for binary-coded decimal.

BCD calculation An arithmetic calculation that uses numbers expressed in binary-coded deci-
mal.

binary A number system where all numbers are expressed to the base 2, i.e., any
number can be written using only 1’s or 2’s. Each group of four binary bits is
equivalent to one hexadecimal digit.

binary calculation An arithmetic calculation that uses numbers expressed in binary.

binary-coded decimal A system used to represent numbers so that each group of four binary bits is
numerically equivalent to one decimal digit.

bit A binary digit; hence a unit of data in binary notation. The smallest unit of
information that can be electronically stored in a PC. The status of a bit is
either ON or OFF. Different bits at particular addresses are allocated to spe-
cial purposes, such as holding the status input from external devices, while
other bits are available for general use in programming.

bit address The location in memory where a bit of data is stored. A bit address must
specify (sometimes by default) the data area and word that is being ad-
dressed, as well as the number of the bit.

bit number A number that indicates the location of a bit within a word. Bit 00 is the right-
most (least-significant) bit; bit 15 is the leftmost (most-significant) bit.

bus bar The line leading down the left and sometimes right side of a ladder diagram.
Instruction execution proceeds down the bus bar, which is the starting point
for all instruction lines.

carry flag A flag that is used with arithmetic operations to hold a carry from an addition
or multiplication operation, or to indicate that the result is negative in a sub-
traction operation. The carry flag is also used with certain types of shift op-
erations.

clock pulse A pulse available at a certain bit in memory for use in timing operations. Vari-
ous clock pulses are available with different pulse widths.

Glossary

164

clock pulse bit A bit in memory that supplies a pulse that can be used to time operations.
Various clock pulse bits are available with different pulse widths, and there-
fore different frequencies.

common data Data that is stored in the DR Area of a PC and which is shared by other PCs
in the same the same system. Each PC has a specified section of the DR
Area allocated to it. This allocation is the same in each DR Area of each PC.

condition An message placed in an instruction line to direct the way in which the termi-
nal instructions, on the right side, are to be executed. Each condition is as-
signed to a bit in memory that determines its status. The status of the bit as-
signed to each condition determines, in turn, the execution condition for each
instruction up to a terminal instruction on the right side of the ladder diagram.

constant An operand for which the actual numeric value is specified by the user, and
which is then stored in a particular address in the data memory.

control bit A bit in a memory area that is set either through the program or via a Pro-
gramming Device to achieve a specific purpose, e.g., a Restart bit is turned
ON and OFF to restart a Unit.

Control System All of the hardware and software components used to control other devices.
A Control System includes the PC System, the PC programs, and all I/O de-
vices that are used to control or obtain feedback from the controlled system.

controlled system The devices that are being controlled by a PC System.

control signal A signal sent from the PC to effect the operation of the controlled system.

counter A dedicated group of digits or words in memory used to count the number of
times a specific process has occurred, or a location in memory accessed
through a TC bit and used to count the number of times the status of a bit or
an execution condition has changed from OFF to ON.

CPU An acronym for central processing unit. In a PC System, the CPU executes
the program, processes I/O signals, communicates with external devices,
etc.

cycle The process used to execute a ladder-diagram program. The program is ex-
amined sequentially from start to finish and each instruction is executed in
turn based on execution conditions. Also referred to in this manual as scan.

cycle time The time required for a single cycle of the ladder-diagram program. Also re-
ferred to in this manual as scan time.

data area An area in the PC’s memory that is designed to hold a specific type of data,
e.g., the DR area is designed to hold common data in a PC Link System.
Memory areas that hold programs are not considered data areas.

data area boundary The highest address available within a data area. When designating an oper-
and that requires multiple words, it is necessary to ensure that the highest
address in the data area is not exceeded.

data sharing An aspect of Data Links created through Link Adapters in which common
data areas or common data words are created between two or more PCs.

Glossary

165

debug A process by which a draft program is corrected until it operates as intended.
Debugging includes both the removal of syntax errors, as well as the fine-
tuning of timing and coordination of control operations.

decimal A number system where all numbers are expressed to the base 10. In a PC
all data is ultimately stored in binary form, four binary bits are often used to
represent one decimal digit, via a system called binary-coded decimal.

decrement Decreasing a numeric value.

default A value automatically set by the PC when the user omits to set a specific val-
ue. Many devices will assume such default conditions upon the application of
power.

delay In tracing, a value that specifies where tracing is to begin in relationship to
the trigger. A delay can be either positive or negative, i.e., can designate an
offset on either side of the trigger.

destination The location where an instruction is to place the data on which it is operating,
as opposed to the location from which data is taken for use in the instruction.
The location from which data is taken is called the source.

differentiated instruction An instruction used to ensure that the operand bit is never turned ON for
more than one scan after the execution condition goes either from OFF to
ON for a Differentiate Up instruction or from ON to OFF for a Differentiate
Down instruction.

digit A unit of storage in memory that consists of four bits.

distributed control An automation concept in which control of each portion of an automated sys-
tem is located near the devices actually being controlled, i.e., control is de-
centralized and ‘distributed’ over the system. Distributed control is one of the
fundamental concepts of PC Systems.

download The process of transferring a program or data from a higher-level computer
to a lower-level computer or PC or between peripheral devices and the PC.

electrical noise Random variations of one or more electrical characteristics such as voltage,
current, and data, which might interfere with the normal operation of a de-
vice.

execution condition The ON or OFF status under which an instruction is executed. The execution
condition is determined by the logical combination of conditions on the same
instruction line and up to the instruction currently being executed.

execution time The time required for the CPU to execute either an individual instruction or
an entire program.

extended counter A counter created in a program by using two or more count instructions in
succession. Such a counter is capable of counting higher than any of the
standard counters provided by the individual instructions.

extended timer A timer created in a program by using two or more timers in succession.
Such a timer is capable of timing longer than any of the standard timers pro-
vided by the individual instructions.

Glossary

166

fatal error An error that stops PC operation and requires correction before operation
can continue.

flag A dedicated bit in memory that is set by the system to indicate some type of
operating status. Some flags, such as the carry flag, can also be set by the
operator or via the program.

flicker bit A bit that is programmed to turn ON and OFF at a specific frequency.

force reset The process of forcibly turning OFF a bit via a programming device. Bits are
usually turned OFF as a result of program execution.

force set The process of forcibly turning ON a bit via a programming device. Bits are
usually turned ON as a result of program execution.

function code A two-digit number used to input an instruction into the PC.

hardware error An error originating in the hardware structure (electronic components) of the
PC, as opposed to a software error, which originates in software (i.e., pro-
grams).

hexadecimal A number system where all numbers are expressed to the base 16. In a PC
all data is ultimately stored in binary form, however, displays and inputs on
Programming Devices are often expressed in hexadecimal to simplify opera-
tion. Each group of four binary bits is numerically equivalent to one hexadeci-
mal digit.

increment Increasing a numeric value.

indirect address An address whose contents indicates another address. The contents of the
second address will be used as the operand. Indirect addressing is possible
in the DR area only .

initialize Part of the startup process whereby some memory areas are cleared, system
setup is checked, and default values are set.

input The signal coming from an external device into the PC. The term input is
often used abstractly or collectively to refer to incoming signals.

input bit A bit that is allocated to hold the status of an input.

input device An external device that sends signals into the PC System.

input point The point at which an input enters the PC System. Input points correspond
physically to terminals or connector pins.

input signal A change in the status of a connection entering the PC. Generally an input
signal is said to exist when, for example, a connection point goes from low to
high voltage or from a nonconductive to a conductive state.

instruction A direction given in the program that tells the PC of an action to be carried
out, and which data is to be used in carrying out the action. Instructions can
be used to simply turn a bit ON or OFF, or they can perform much more com-
plex actions, such as converting and/or transferring large blocks of data.

Glossary

167

instruction block A group of instructions that is logically related in a ladder-diagram program.
Although any logically related group of instructions could be called an instruc-
tion block, the term is generally used to refer to blocks of instructions called
logic blocks that require logic block instructions to relate them to other
instructions or logic blocks.

instruction execution time The time required to execute an instruction. The execution time for any one
instruction can vary with the execution conditions for the instruction and the
operands used within it.

instruction line A group of conditions that lie together on the same horizontal line of a ladder
diagram. Instruction lines can branch apart or join together to form instruction
blocks.

interlock A programming method used to treat a number of instructions as a group so
that the entire group can be reset together when individual execution is not
required. An interlocked program section is executed normally for an ON
execution condition and partially reset for an OFF execution condition.

I/O capacity The number of inputs and outputs that a PC is able to handle. This number
ranges from around 10 for smaller PCs to two thousand for the largest ones.

I/O devices The devices to which terminals on I/O Units or Special I/O Units, or other
Units are connected. I/O devices may be either part of the Control System, if
they function to help control other devices, or they may be part of the con-
trolled system.

I/O point The place at which an input signal enters the PC System, or at which an out-
put signal leaves the PC System. In physical terms, I/O points correspond to
terminals or connector pins on a Unit; in terms of programming, an I/O points
correspond to I/O bits in memory.

I/O response time The time required for an output signal to be sent from the PC in response to
an input signal received from an external device.

JIS Acronym for Japanese Industrial Standards.

ladder diagram (program) A form of program arising out of relay-based control systems that uses cir-
cuit-type diagrams to represent the logic flow of programming instructions.
The appearance of the program is similar to a ladder, and thus the name.

ladder diagram symbol A symbol used in a ladder-diagram program.

ladder instruction An instruction that represents the ‘rung’ portion of a ladder-diagram program.
The other instructions in a ladder diagram fall along the right side of the dia-
gram and are called terminal instructions.

leftmost (bit/word) The highest numbered bits of a group of bits, generally of an entire word, or
the highest numbered words of a group of words. These bits/words are often
called most-significant bits/words.

logic block A group of instructions that is logically related in a ladder-diagram program
and that requires logic block instructions to relate it to other instructions or
logic blocks.

Glossary

168

logic block instruction An instruction used to locally combine the execution condition resulting from
a logic block with a current execution condition. The current execution condi-
tion could be the result of a single condition, or of another logic block. AND
Load and OR Load are the two logic block instructions.

logic instruction Instructions used to logically combine the content of two words and output
the logical results to a specified result word. The logic instructions combine
all the same-numbered bits in the two words and output the result to the bit of
the same number in the specified result word.

memory area Any of the areas in the PC used to hold data or programs.

mnemonic code A form of a ladder-diagram program that consists of a sequential list of the
instructions without using a ladder diagram. Mnemonic code is required to
input a program into a PC when using a Programming Console.

most-significant (bit/word) See leftmost (bit/word).

NC input An input that is normally closed, i.e., the input signal is considered to be
present when the circuit connected to the input opens.

NO input An input that is normally open, i.e., the input signal is considered to be pres-
ent when the circuit connected to the input closes.

noise interference Disturbances in signals caused by electrical noise.

nonfatal error A hardware or software error that produces a warning but does not stop the
PC from operating.

normally closed condition A condition that produces an ON execution condition when the bit assigned
to it is OFF, and an OFF execution condition when the bit assigned to it is
ON.

normally closed condition A condition that produces an ON execution condition when the bit assigned
to it is ON, and an OFF execution condition when the bit assigned to it is
OFF.

NOT A logic operation which inverts the status of the operand. For example, AND
NOT indicates an AND operation with the opposite of the actual status of the
operand bit.

OFF The status of an input or output when a signal is said not to be present. The
OFF state is generally represented by a low voltage or by non-conductivity,
but can be defined as the opposite of either.

OFF delay The delay between the time when a signal is switched OFF (e.g., by an input
device or PC) and the time when the signal reaches a state readable as an
OFF signal (i.e., as no signal) by a receiving party (e.g., output device or
PC).

ON The status of an input or output when a signal is said to be present. The ON
state is generally represented by a high voltage or by conductivity, but can be
defined as the opposite of either.

ON delay The delay between the time when an ON signal is initiated (e.g., by an input
device or PC) and the time when the signal reaches a state readable as an
ON signal by a receiving party (e.g., output device or PC).

Glossary

169

one-shot bit A bit that is turned ON or OFF for a specified interval of time which is longer
than one scan.

operand Bit(s) or word(s) designated as the data to be used for an instruction. An op-
erand can be input as a constant expressing the actual numeric value to be
used or as an address to express the location in memory of the data to be
used.

operand bit A bit designated as an operand for an instruction.

operand word A word designated as an operand for an instruction.

operating error An error that occurs during actual PC operation as opposed to an initializa-
tion error, which occurs before actual operations can begin.

OR A logic operation whereby the result is true if either of two premises is true, or
if both are true. In ladder-diagram programming the premises are usually ON/
OFF states of bits or the logical combination of such states called execution
conditions.

output The signal sent from the PC to an external device. The term output is often
used abstractly or collectively to refer to outgoing signals.

output bit A bit in memory that is allocated to hold the status to be sent to an output
device.

output device An external device that receives signals from the PC System.

output point The point at which an output leaves the PC System. Output points corre-
spond physically to terminals or connector pins.

output signal A signal being sent to an external device. Generally an output signal is said
to exist when, for example, a connection point goes from low to high voltage
or from a nonconductive to a conductive state.

overseeing Part of the processing performed by the CPU that includes general tasks re-
quired to operate the PC.

overwrite Changing the content of a memory location so that the previous content is
lost.

PC An acronym for Programmable Controller.

PC configuration The arrangement and interconnections of the Units that are put together to
form a functional PC.

peripheral device Devices connected to a PC System to aid in system operation. Peripheral
devices include printers, programming devices, external storage media, etc.

port A connector on a PC or computer that serves as a connection to an external
device.

present value The current value registered in a device at any instant during its operation.
Present value is abbreviated as PV.

Glossary

170

printed circuit board A board onto which electrical circuits are printed for mounting into a comput-
er or electrical device.

program The list of instructions that tells the PC the sequence of control actions to be
carried out.

Programmable Controller A computerized device that can accept inputs from external devices and gen-
erate outputs to external devices according to a program held in memory.
Programmable Controllers are used to automate control of external devices.
Although single-component Programmable Controllers are available, build-
ing-block Programmable Controllers are constructed from separate compo-
nents. Such building-block Programmable Controllers are formed only when
enough of these separate components are assembled to form a functional
assembly, i.e., no one individual Unit is called a PC.

programmed alarm An alarm given as a result of execution of an instruction designed to gener-
ate the alarm in the program, as opposed to one generated by the system.

programmed error An error arising as a result of the execution of an instruction designed to gen-
erate the error in the program, as opposed to one generated by the system.

programmed message A message generated as a result of execution of an instruction designed to
generate the message in the program, as opposed to one generated by the
system.

Programming Console The simplest form or programming device available for a PC. Programming
Consoles are available both as hand-held models and, for larger PCs, as
CPU-mounting models.

PROGRAM mode A mode of operation that allows inputting and debugging of programs to be
carried out, but that does not permit normal execution of the program.

PV Acronym for present value.

refresh The process of updating output status sent to external devices so that it
agrees with the status of output bits held in memory and of updating input
bits in memory so that they agree with the status of inputs from external de-
vices.

relay-based control The forerunner of PCs. In relay-based control, groups of relays are intercon-
nected to form control circuits. In a PC, these are replaced by programmable
circuits.

reset The process of turning a bit or signal OFF or of changing the present value of
a timer or counter to its set value or to zero.

return The process by which instruction execution shifts from a subroutine back to
the main program (usually the point from which the subroutine was called).

reversible counter A counter that can be both incremented and decremented depending on the
specified conditions.

right-hand instruction Another term for terminal instruction.

rightmost (bit/word) The lowest numbered bits of a group of bits, generally of an entire word, or
the lowest numbered words of a group of words. These bits/words are often
called least-significant bits/words.

Glossary

171

RUN mode The operating mode used by the PC for normal control operations.

scan See cycle.

scan time See cycle time.

self diagnosis A process whereby the system checks its own operation and generates a
warning or error if an abnormality is discovered.

self-maintaining bit A bit that is programmed to maintain either an OFF or ON status until set or
reset by specified conditions.

set The process of turning a bit or signal ON.

set value The value from which a decrementing counter starts counting down or to
which an incrementing counter counts up (i.e., the maximum count), or the
time from which or for which a timer starts timing. Set value is abbreviated
SV.

shift register One or more words in which data is shifted a specified number of units to the
right or left in bit, digit, or word units. In a rotate register, data shifted out one
end is shifted back into the other end. In other shift registers, new data (ei-
ther specified data, zero(s) or one(s)) is shifted into one end and the data
shifted out at the other end is lost.

slot A position on a Rack (Backplane) to which a Unit can be mounted.

software error An error that originates in a software program.

source The location from which data is taken for use in an instruction, as opposed to
the location to which the result of an instruction is to be written. The latter is
called the destination.

SV Abbreviation for set value.

switching capacity The maximum voltage/current that a relay can safely switch on and off.

syntax error An error in the way in which a program is written. Syntax errors can include
‘spelling’ mistakes (i.e., a function code that does not exist), mistakes in
specifying operands within acceptable parameters (e.g., specifying reserved
SR bits as a destination), and mistakes in actual application of instructions
(e.g., a call to a subroutine that does not exist).

system configuration The arrangement in which Units in a system are connected.

system error An error generated by the system, as opposed to one resulting from execu-
tion of an instruction designed to generate an error.

system error message An error message generated by the system, as opposed to one resulting
from execution of an instruction designed to generate a message.

TC area A data area that can be used only for timers and counters. Each bit in the TC
area serves as the access point for the SV, PV, and Completion Flag for the
timer or counter defined with that bit.

Glossary

172

TC number A definer that corresponds to a bit in the TC area and used to define the bit
as either a timer or a counter.

terminal instruction An instruction placed on the right side of a ladder diagram that uses the final
execution conditions of an instruction line.

timer A location in memory accessed through a TC bit and used to time down from
the timer’s set value. Timers are turned ON and reset according to their
execution conditions.

transfer The process of moving data from one location to another within the PC, or
between the PC and external devices. When data is transferred, generally a
copy of the data is sent to the destination, i.e., the content of the source of
the transfer is not changed.

UM area The memory area used to hold the active program, i.e., the program that is
being currently executed.

watchdog timer A timer within the system that ensures that the scan time stays within speci-
fied limits. When limits are reached, either warnings are given or PC opera-
tion is stopped depending on the particular limit that is reached.

word A unit of data storage in memory that consists of 16 bits. All data areas con-
sists of words. Some data areas can be accessed only by words; others, by
either words or bits.

word address The location in memory where a word of data is stored. A word address must
specify (sometimes by default) the data area and the number of the word that
is being addressed.

work bit A bit that can be used for data calculation or other manipulation in program-
ming, i.e., a ‘work space’ in memory.

173

Index

�

addressing, nomenclature, 26

analog timers, set value, 31

arithmetic flags, 66

�

backup, program and data, 52–64

BCD
converting, 26
definition, 26

binary, definition, 26

bits
forced setting/resetting, 121
monitoring, 118

�

channel. See word

constants, operands, 66

control bits, DR Data Transfer Enable Bit, 30

Control System, definition, 4

controlled system, definition, 4

counters, 76
bits in TC area, 31
conditions when reset, 84
creating extended timers, 86
extended, 86
inputting SV, 50

CPUs
dimensions, 12
I/O wiring, 17
operational flow, 108
power supply wiring, 17

Current Scan Time Area, 31

�

data
converting, 27
modifying, 118

binary, 124
hex/BCD, 122

data areas
special relay area

arithmetic flags, operation, 149
error flag, operation, 149

structure, 26

data retention
in DR area, 31
in TC area, 31

debugging, 106–107

decimal point, 27

dedicated bit, definition, 28

definers, definition, 65

digit numbers, 26

dimensions
DIN Track, 13
for mounting, 13
PC, 12
Programming Console, 12

DIN Track
connecting Units, 15
dimensions, 13

DR area, 31

�

environment
ambient temperature, 14
humidity, 14
installation, 14
noise, 15

errors
clearing messages, 48
dedicated bit area flags, 134
during program input, 131
fatal errors, 132
memory card initialization, 127
message tables, 130–132
messages when inputting programs, 51
PC indicators, 130
reading and clearing messages, 106, 130

execution condition, definition, 35

�

filters, 19

flags
Always ON/OFF, 30
arithmetic, 30

CY, 30
EQ, 30
GR, 30
LE, 30
programming example, 95

CY, clearing, 98
dedicated bit area errors, 134
Error, 30
First Scan, 30
Step, 30

Index

174

forced setting/resetting, 121

function codes, 65

��	

hexadecimal, definition, 26

I/O bit, definition, 28

I/O response times, 109

I/O wiring diagrams, 17

indirect addressing, 27, 66

input bit, definition, 3

input device, definition, 3

input devices, 17

input point, definition, 3

input signal
definition, 3
filtering, 19

instruction execution times, 143

instruction set
ADD(40), 98
AND, 37, 68

combining with OR, 38
AND LD, 39, 69

combining with OR LD, 41
use in logic blocks, 40

AND NOT, 37, 68
ANDW(42), 101
ATIM(22), 82
ATM1(25), 83
ATM2(26), 83
BCMP(34), 96
CLC(44), 98
CMP(32), 94
CNT, 84
CNTH(24), 89
DIFD(11), 60, 70–72

using in interlocks, 74
DIFU(10), 60, 70–72

using in interlocks, 74
END(01), 39, 68, 76
IL(02), 58, 74–106
ILC(03), 58, 74–106
KEEP(12), 72

in controlling bit status, 60
LD, 36, 68
LD NOT, 36, 68
MOV(30), 93
MVN(31), 94
NOP(00), 76
NOT, 35
OR, 37, 68

combining with AND, 38
OR LD, 40, 69

combining with AND LD, 41
use in logic blocks, 41

OR NOT, 37, 68
ORW(43), 101
OUT, 38, 70

OUT NOT, 38, 70
RDM(23), 88
SFT(33), 91
STEP(04), 102
SUB(41), 99
SVXT(05), 102
TIM, 77
TIMH(21), 82
TIMM(20), 81

instructions
designation function codes, 50
table, 139
terminology, 34

interlocks, 74–106
converting to mnemonic code, 75
using self-maintaining bits, 61

ladder diagram
branching, 58

IL(02) and ILC(03), 58
controlling bit status

using DIFU(10) and DIFD(11), 60, 70–72
using KEEP(12), 72–74
using OUT and OUT NOT, 38

converting to mnemonic code, 35–45
instructions

combining, AND LD and OR LD, 41
controlling bit status

using KEEP(12), 60
using OUT and OUT NOT, 70

format, 65
notation, 65
using logic blocks, 39

ladder instructions, 36

leftmost, definition, 26

logic block instructions, converting to mnemonic code, 39–45

logic blocks. See ladder diagram

�

Maximum Scan Time Area, 31

memory areas
clearing, 47
partial clear, 47

Memory Card, 7
battery replacement, 7
initialization, 125

mnemonic code, converting, 35–45

model numbers, 135

modifying data
binary, 124
bit forced set/reset, 121
general, 118
hex/BCD, 122

monitoring

Index

175

binary, 123
bits, 118–121
general, 118
multiple addresses, 118, 121
words, 118–121

mounting
DIN Track, 15
surface, 13

�

normally closed condition, definition, 35

NOT, definition, 35

operand bit, 35

operands, 34, 65
allowable designations, 65
requirements, 65

operating modes, 33

output bit
controlling ON/OFF time, 70
controlling status, 60, 61
definition, 3

output device, definition, 3

output point, definition, 3

output signal, definition, 3

�

password, entering on Programming Console, 46

PC, 5
configuration, 8
indicators, 6

peripheral devices, Programming Console, 7, 19, 32–34

power supply, wiring, 17

present value. See PV

products, 135

Program Memory
setting address and reading content, 48–49
structure, 35

program transfer, 52

programming
backup onto Memory Cards, 52–57
checks for syntax, 51–52
displaying and clearing error messages, 106
entering and editing, 49
example, using shift register, 92
inserting and deleting instructions, 55–58
precautions, 63
program transfer to PC, 52
reading scan time, 107
searching, 55
setting and reading from memory address, 48
simplification with differentiated instructions, 72
using work bits, 61
writing, 25

Programming Console, 7, 32–34
See also peripheral devices
dimensions, 12

programming console operations, table, 145

PV, accessing via PC area, 32

�

Relay Contact Output Model, 16

response times, I/O, 109–112

rightmost, definition, 26

�

scan time, 108–109
current, 31
maximum, 31
reading, 107

self-maintaining bits, using KEEP(12), 73

set value. See SV

specifications, 137

SV, accessing via TC area, 32

�

TC area, 31–32

TC numbers, 31, 76

timers, 76
analog timer 1, set value, 31
analog timer 2, set value, 31
bits in TC area, 31
conditions when reset, 78, 81, 82, 83, 84
example using CMP(32), 96
extended, 79
flicker bits, 80
inputting SV, 50
ON/OFF delays, 79
one-shot bits, 80

Transistor Output Model, 16

�

watchdog timer, 109

word bit, definition, 28

177

Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

Cat. No. W239-E1-2

Revision code

The following table outlines the changes made to the manual during each revision. Page numbers refer to the
previous version.

Revision code Date Revised content

1 March 1993 Original production

2 July 1994 Page 6: Changes to the Switches and Terminal Block diagrams.

Page 8: Model numbers added to Basic Configuration text.

Page 10: Note clarified.

Page 12: Information added to CPU dimensions.

Page 13: Information added to surface mounting dimensions.

Page 16: Wiring diagram replaced with new diagrams.

Page 18: PNP Current Outputs diagram corrected.

Page 24: Work bits and dedicated bits information changed or corrected in the
table. Model numbers added to note.

Page 28: Information on bit 0515 clarified.

Page 30: ATM12Set Value Area corrected to ATM2 Set Value Area.

Page 50: Information added to the bottom of the page.

Page 51: Note added.

Pages 61, 69: Minor change to ladder diagram at the top of the page.

Page 70: Precautions rewritten.

Pages 77, 78, 79: Timer accuracy added to Limitations.

Page 82: Additional paragraphs at the top of the page. Example 2 rewritten.

Pages 85, 86: Description rewritten.

Page 88: Information added to Description.

Page 92: Limitations rewritten.

Page 98: Information added to Description.

Page 99: Programming examples added.

Page 105: Maximum Response Time diagram.

Page 106: Note at the top of the page clarified and Maximum Response Time
diagram corrected.

Page 107: Minimum and Maximum Response Time diagrams corrected and
notes added.

Page 108: Minor change in the text at the top of the page. Minimum Response
Time diagram corrected and note added.

Page 109: Changes and corrections made throughout the page.

Page 129: Standard Models changed.

Pages 131, 132: Specifications changed. Block diagrams added.

OMRON Corporation
FA Systems Division H.Q.
14F Nissei Bldg.
1-6-3, Osaki, Shinagawa-ku,
Tokyo 141 Japan
Tel: (03)3779-9038/Fax: (03)3779-9041

Regional Headquarters

OMRON ELECTRONICS EUROPE B.V.
Wegalaan 69, NL-2132 JD Hoofddorp
The Netherlands
Tel: (31)2503-81-300/Fax: (31)2503-81-388

OMRON ELECTRONICS, INC.
1 East Commerce Drive, Schaumburg, IL 60173
U.S.A.
Tel: (708)843-7900/Fax: (708)843-8568

OMRON MANAGEMENT CENTRE OF ASIAPACIFIC PTE LTD.
510 Thomson Road #13-03
SLF Bldg.
1129 Singapore
Tel: (65)353-2611/Fax: (65)353-5391

Cat. No. W239-E1-2 Note: Specifications subject to change without notice. Printed in Japan
0794-3M

Authorized Distributor:

