W25 E1

C20HB-TS

Actuator Controller

INSTRUCTION MANUAL

OMRON

C20HB-TS Actuator Controller

Instruction Manual
Produced November 1994

Notice:

OMRON products are manufactured for use according to proper procedures by a qualified operator
and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this manual. Always heed
the information provided with them. Failure to heed precautions can result in injury to people or dam-
age to the product.

/\ DANGER! Indicates information that, if not heeded, is likely to resultin loss of life or serious
injury.

/N\WARNING Indicates information that, if not heeded, could possibly result in loss of life or
serious injury.

ACaution Indicates information that, if not heeded, could result in relatively serious or mi-
nor injury, damage o the product, or faulty operation.

OMRON Product References

All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers
to an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation “Ch,” which appears in some disptays and on some OMRON products, often means
“word” and is abbreviated “Wd” in documentation in this sense.

The abbreviation “PC" means Programmable Controller and is not used as an abbreviation for any-
thing else.

Visual Aids

The following headings appear in the left column of the manual to help you locate different types of
information.

Note Indicates information of particular interest for efficient and convenient operation
of the product.

1,2,3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

© OMRON, 1994

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permis-
sion of OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is
constantly striving to improve its high-quality products, the information contained in this manual is subject to change
without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no
responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the informa-
tion contained in this publication.

TABLE OF CONTENTS

SECTION 1

Introductioncccoeeeoesscocossscssccocssccos 1
1-1 Features of the C20H BT ..ottt it ettt raanan e 2
1)7 o7, P 3
1-3 The Origins of PCLOZIC ..vvueeunei ittt ittt 3
1-4 PO Terminology «.ovvverrvin it iiiin i iie i iiitenansanaaasesanronneens 4
1-5 OMRON Product Terminology . ..ovv v ere et ieciieriiii it ien e ansanaranaennns 4
1-6 Overview Of PCOPETation oi vttt ettt iis i etn e eanentonnaananns 4

SECTION 2

Hardware Considerationsccoeeeeeeoccecsceass 7
2-1 PCCOMPOMENLS .. \teieee et iieens s inenanesanscesenassneenanennseeesnanns 8
7 = O /o) 1771431+ o + RN 10
2-3 SPECIfICALONS . . ov v ettt ittt ittt it 12
2-4 Installation ERvITONMENLottt it ittt aae i eatar e aasesanannanns 20
T v 1V 22

SECTION 3 |

MemOry ATeas . ocovveeeoreososcessscsascascasasns 29
1075 QR 115 (o o £ ot o 1 N 30
3.2 IR(Internal Relay) ATeaoutiieen it ittt iiiiiisiaeenaeiianaeaannannas 31
3-3 SR (Special Relay) AT€avuuiuniiiniiiii it iinareeecatanannnnaes 31
34 AR (Auxiiary Relay) AT€aoivueiinetrtiiiiiiiiiiaansanraanianeaans 33
3-5 DM (Data Memory) ATCavve ettt et ieiniie e itaneeiiaseennianaanasoanns 37
3-6 HR (Holding Relay) ATeauuieriiiiein it iiiiiaenanennenianerinnanaans 42
3-7 TC (TImMer/COUNEr) ATA . .\ ou vttt i eeenee s i iinnsasasaannnanssacananns 42
3-8 LREINKRElay) Areavvniiit ittt i iiiie i eieraiananenaas 42
3.9 TR (Temporary Relay) Area ...ttt aniaeean, 43

SECTION 4

Writing and Entering Programsccc0veeeens 45
4-1 BasiCProcedurecoviiiiiii i e i e e e i i e, 46
4-2 InsStruction Terminology . ..o vvt e ire e et e ettt iiian e 46
4.3 Ladder DIagramscontiiniiit it e it e e 47
4-4 The Programming CONSOIEiiiiiiiiiniiiiiiii i iiiianrreaereaanenas 50
4-5 Preparation for OPerationt tin e iie e iiiiiie e taa e 54
4-6 Inputting, Modifying, and Checking the Programcoiiiiieninein.., 58
4-7 Controlling Bit Statls . ..ottt e e e 76
4-8 WorkBits (Internal Relays)ccoon it i i i 77
4-9 Programming Precaittionsttt e i e e 79
4-10 Program EXECHEOM . ..o vuvtttte ettt ittt ineeaaniaeeaasaantaeenneenns 81

SECTION 5

Instruction Setc.civeieeeetresrscsncesasonnons 83
o N 07 11 o) + W POt 84
5-2 INSEFUCHOM FOTINAL .+ vvttit ettt in et e iene e iaerensansensenenasesarsennns 84
5-3 Data Areas, Definer Values,and Flags oi ittt 84
5-4 Differentiated INSIUCHONS - .« vt ettt e et e et et e eaee e eaeeanenenans 86
5-5 C20HB-TS INStruCtOm Sl ..ottt it ittt e ettt e it et ea e caararseiaannnaans 87
5-6 Ladder Diagram INSITUCHONSttt it ie e iiiaa e iie e esunns 94
5-7 Bit Control INStUCHOMS L\ttt ie et i et e e e e ie i te i enacn s atnanennns 97
5-8 Timer and Counter INSITUCHONS ... oot it et i i cie e eiiae e ianaans 101

vii

TABLE OF CONTENTS

SECTION 6
Program Execution Timingcc000c00eeeeee. 113

L S 4 /o1 L I 1T 114
6-2 Instruction Execution TIMeSueiiireriiiiiieertiinneeennninnonnnnn 117
6-3 T/OResponse TiME .. .uv ittt ittt et et e iieaans 121
6-4 HostLinkResponse TIMEcoinniriiiiii ettt iiie e ereeaeeeaernnnnn 122
SECTION 7
Program Debugging and Execution................... 125
. 7-1 Displaying and Clearing Ertor Messageso.vvvreriie e tvernnnnerneennnnnns 126
7-2 Monitoring Operation and Modifying Datacoiiiirinninvninnnnnnnn. 127
7-3 C250HL-PRO31-TS PROM Writer Operationsvuienerennernnnennnnnnenns 144

SECTIONS
RS-485Interfacecovveevevecconssscnsnssseass 151

8-1 RS-485 System Configuration and Settingsvtttiriine i eieeiinnnenn 152
8-2 Connection to a Host Computer’sRS-232CPortcovvvv i iieneens 154
8-3 RS-485 Interface Flagsand Control Bitsviiiiiiiiiiiininnn.., 154
8-4 RS-485 Communications Protocolcuiitiii ettt 155
8-5 HostLink Commands and Responsescvveriiiiinnriiiinenranennnn. 159
8-6 CommandLevelsoouuiirinit i i e e 176

SECTION 9
Troubleshootingc.civiiviiviecnnecnneees 177

9-1 Alarm INAICAIOTS ottt ittt et i et e e 178
9-2 Programmed Alarms and Exror Messagesoovrrtiniiiieriie e iiee i, 178
9-3 Reading and Clearing Errors and Messageso vivrriieerrerenneneneeereeennns 178
L B) o (0’ g (1N LSO 179
9-5 Error History FUNCHONttt ittt e et eiiae e 181
9-6 Host Link Error ProCessIngvttttit ettt iiieiie ettt ee e 181
Appendicesiviiiiiiiiiiitiiiiiieienccaccaceea. 183
A. Ermor and Arithmetic Flag Operationoviiit it iiiiiiieeineennnn. 183
B. Word AssignmentRecording Sheetsooviiiniiiiiiiiiiiiiiiineie e, 185
C. Program Coding Sheetttt et 191
D. DataConversionTableottt ittt 193
E. Parameter Area Coding ChartSt itttttit ittt eii et e iie e eianss 195

Revision HiStoryccvviievvrecncncsccncaees 197

viii

About this Manual:

This manual describes the installation and operation of the C20HB-TS Actuator Controller and includes
the sections described below. The OMRON C20HB-TS offers a simple but effective way to automate
processing. Manufacturing, assembly, packaging, and many other processes can be automated to save
time and money.

Please read this manual carefully and be sure you understand the information provided before attempting
to install and operate the C20HB-TS.

Section 1 Introduction compares the C20HB-TS to the Mini H-type PCs and explains the background
and some of the basic terms used in ladder-diagram programming. It also provides an overview of the
process of programming and operating a PC and explains basic terminology used with OMRON PCs.

Section 2 Hardware Considerations explains basic aspects of the overall PC configuration and de-
scribes the components that are referred to in other sections of this manual. A complete set of specifica-
tions and instructions for installing and wiring the PC are also provided.

Section 3 Memory Areas takes alook at the way memory is divided and allocated and explains the infor-
mation provided there to aid in programming. It also provides information on System DM, aspecial areain
the C20HB-TS that provides the user with flexible control of PC operating parameters.

Section 4 Writing and Entering Programs explains the basics of ladder-diagram programming, looking
at the elements that make up the parts of a ladder-diagram program and explaining how execution of this
program is controlled. It also explains how to convert ladder diagrams into mnemonic code so that the
programs can be entered using a Programming Console.

Section 5 Instruction Set describes all of the instructions used in programming.

Section 6 Program Execution Timing explains the cycling process used to execute the program and
tells how to coordinate inputs and outputs so that they occur at the proper times.

Section 7 Program Debugging and Execution explains the Programming Console procedures used to
“input and debug the program and to monitor and control operation. :

Section 8 RS-485 Interface describes the modes, settings, and procedures essential for making use of
the built-in RS-485 interface. It also lists all of the commands that can be downloaded from a host comput-
er connected to the RS-485 interface.

Section 9 Troubleshooting provides information on error indications and other means of reducing
down-time. Information in this section is also useful when debugging programs.

The Appendices provide coding sheets to help in programming and parameter input, and other infor-
mation helpful in PC operation.

&WARNING Failure to read and understand the information provided in this manual may result in
personal injury or death, damage to the product, or product failure. Please read each
section in its entirety and be sure you understand the information provided in the section
and related sections before attempting any of the procedures or operations given.

ix

SECTION 1
Introduction

This section gives an introduction to the C20HB-TS, a brief overview of the history of Programmable Controllers, and
explains terms commonly used in ladder-diagram programming. It also provides an overview of the process of program-
ming and operating a PC and explains basic terminology used with OMRON PCs.

1-1 Features of the C20HB-TSt iiirt it ittt et ciii e iieia e nanan 2
A 1 o 1 1< 3
1-:3 The Origins Of PCLOZIC ...cviinniiriii i i it it ie et 3
| O Uy w1 V11T) o420 O 4
1-5 OMRON Product TerminolOZycvveittruiiitinerienenersesonioeniieanesons 4
1-6 Overview of PC OPeIationcoivt ittt ittt iesinenasenanenerennns 4

Features of the C20HB-TS

Section 1-1

1-1

Instruction Set

Peripheral Devices

Features of the C20HB-TS

The C20HB-SC001-TS PC (hereafter referred to as the C20HB-TS) is based
on the Mini H-type PCs and has many or the same features.

in most cases, programs written for Mini H-type and C200H PCs can be used
in the C20HB-TS with minor modifications. The instruction set of the C20HB-
TS is smaller than those of the Mini H-type and C200H PCs, so instructions
that aren’t supported by the C20HB-TS will not be executed in programs im-
ported from Mini H-type and C200H PCs. Refer to Section 5 Instruction Set
for a complete list of the C20HB-TS instruction set.

Instructions are executed at the same high-speed as they are in Mini H-type
PCs. Basic ladder diagram instructions are executed in as little as 0.75 ps.

The following peripheral devices can be used in programming, either to input/
debug/monitor the PC program or to interface the PC to external devices to
output the program or memory area data.

Peripheral Device

Features

Programming Console
(C200H-PRO27-E)

The simplest form of programming device for OMRON PCs. It is connected directly to
the CPU without requiring a separate interface.

Programming Console
(C250HL-PRO31-TS-E)

Has the same programming and monitoring functions as the C200H-PRO27-E and is
also equipped with a built-in PROM Writer.

Data Access Console
(C200H-DACO1-E)

The DAC can be used to monitor or change data in the TC, IR and SR areas.

Factory Intelligent Terminal

The FIT is an OMRON computer with specially designed software that allows you to

(C500-SF[110-V4)

(FIT10/FIT20) perform alf of the operations that are available with LSS.
Programs can also be output directly to an EPROM chip, floppy disk drive, or printing
device without any additional interface.

Ladder Support Software LSS is designed to run on IBM AT/XT compatibles to enable all of the operations of the

Programming Console as well as many additional ones. PC programs can be written
on-screen in ladder-diagram form as well as in mnemonic form.

As the program is written, it is displayed on screen, making confirmation and modifica-
tion quick and easy. Syntax checks may also be performed on the programs before they
are downloaded to the PC.

Comparing the C20HB-TS
and Mini H-type PCs

The following table compares the capabilities of the C20HB-TS with those of

the Mini H-type PCs.

unit numbers

Function C20HB-TS Mini H-type
User Memory Size 8K (6974 words for the program) | 4K (2878 words for the program)
IC type EEPROM RAM, EEPROM, or EPROM
Serial Interface Type RS-485 RS-232C
Baud rate 300 to 19,200 baud Baud rate: 300 to 9,600 baud
Modes Host Link only Host Link, Downioad/Upload, or ASCH 11O
Host Link 00 to 15 (set by DIP switch) 00 to 31 (set in System DM)

IO points 1281 2010 240
High-speed timers (Interrupt-type) | 16 permitted 4 permitted
Instruction set 78 instructions 142 instructions
High-speed counters None One permitted
Battery backup None? Built-in2

Programming Console languages

English or Japanese

English, Japanese, French, German, ltalian, or
Spanish

C250HL-PRO31-TS-E Supported (Built-in PROM Writer.) | Not supported
Programming Console
C200H Special I/O Units Not supported Most supported

Note

1. The 128 I/O points include: 48 24-VDC Inputs, 48 Transistor Outputs, and

32 Relay Outputs.

The Origins of PC Logic Section 1-3

2. The C20HB-TS has a capacitor backup that maintains counters, DM, HR,
and AR data for 5 minutes. Mini H-type PCs have a battery backup that
maintains counters, DM, HR, and AR data for up to 5 years at 25°C.

1-2 Overview

A PC (Programmable Controller) is basically a CPU (Central Processing Unit)
containing a program and connected to input and output (I/O) devices. The
program controls the PC so that when an input signal from an input device
turns ON, the appropriate response is made. The response normally involves
turning ON an output signal to an output device. The input devices could be
photoelectric sensors, pushbuttons on control panels, limit switches, or any
other device that can produce a signal that can be input into the PC. The out-
put devices could be solenoids, switches activating indicator lamps, relays
turning on motors, or any other devices that can be activated by signals out-
put from the PC.

For example, a sensor detecting a passing product turns ON an input 1o the
PC. The PC responds by turning ON an output that activates a pusher that
pushes the product onto another conveyor for further processing. Another
sensor, positioned higher than the first, turns ON a different input to indicate
that the product is too tall. The PC responds by turning on another pusher
positioned before the pusher mentioned above o push the too-tall product
into a rejection box.

Although this example involves only two inputs and two outputs, it is typical of
the type of control operation that PCs can achieve. Actually even this exam-
ple is much more complex than it may at first appear because of the timing
that would be required, i.e., “How does the PC know when to activate each
pusher?” Much more complicated operations, however, are also possible.
The problem is how to get the desired control signals from available inputs at
appropriate times.

To achieve proper controi, the C20HB-TS, like the other C-series PCs, uses a
form of PC logic called ladder-diagram programming. This manual is written
to explain ladder-diagram programming and to prepare the reader to program
and operate the C20HB-TS. '

1-3 The Origins of PC Logic

PCs historically originate in relay-based control systems. Although the inte-
grated circuits and internal logic of the PC have taken the place of the dis-
crete relays, timers, counters, and other such devices, actual PC operation
proceeds as if those discrete devices were still in place. PC control, however,
also provides computer capabilities and accuracy to achieve a great deal
more flexibility and reliability than is possible with relays.

The symbols and other control concepts used to describe PC operation also
come from relay-based control and form the basis of the ladder-diagram pro-
gramming method. Most of the terms used to describe these symbols and
concepts, however, have come in from computer terminology.

Overview of PC Operation Section 1-6

1-4 PC Terminology

Although also provided in the Glossary at the back of this manual, the follow-
ing terms are crucial to understanding PC operation and are thus explained
here.

Inputs and Outputs A device connected to the PC that sends a signal to the PC is called an input
device; the signal it sends is called an input signal. A signal enters the PC
through terminals or through pins on a connector on a Unit. The place where
a signal enters the PC is called an input point. This input point is allocated a
location in memory that reflects its status, i.e., either ON or OFF. This mem-
ory location is called an input bit. The CPU, in its normal processing cycle,
monitors the status of all input points and turns ON or OFF corresponding
input bits accordingly.

There are also output bits in memory that are allocated to output points on
Units through which output signals are sent to output devices, i.e., an output
bit is turned ON to send a signal to an output device through an output point.
The CPU periodically turns output points ON or OFF according to the status
of the output bits.

These terms are used when describing different aspects of PC operation.
When programming, one is concerned with what information is held in mem-
ory, and so l/O bits are referred to. When talking about the Units that connect
the PC to the controlled system and the places on these Units where signal
enter and leave the PC, I/O points are referred to. When wiring these /O
points, the physical counterparts of the /O points, either terminals or connec-
tor pins, are referred to. When talking about the signals that enter or leave
the PC, one refers to input signals and output signals, or sometimes just in-
puts and outputs. It all depends on what aspect of PC operation is being
talked about.

Controlled System and The Controf System includes the PC and all I/O devices it uses to control an

Control System external system. A sensor that provides information to achieve control is an
input device that is clearly part of the Control System. The controlled system
is the external system that is being controlled by the PC program through
these /O devices. I/O devices can sometimes be considered part of the con-
trolled system, e.g., a motor used to drive a conveyor belt.

1-5 OMRON Product Terminology

OMRON products are divided into several functional groups that have gener-
ic names. The term Unit is used to refer {o all of the OMRON PC products.

Product groups include Programming Devices and Peripheral Devices.

1-6 Overview of PC Operation

The following are the basic steps involved in programming and operating a
C20H-type PC. Assuming you have already purchased one or more of these
PCs, you would be familiar with steps one and two, which are discussed
briefly below. This manual is written to explain steps three through six, eight,
and nine. The relevant sections of this manual that provide more information
are listed with each of these steps.

1,2,3... 1. Determine what the controlled system must do, in what order, and at
what times.

2. On paper, assign all input and outy::t devices to /O points on the PC and
determine which I/O bits will be allocated to each.

Overview of PC Operation

Section 1-6

Control System Design

Input/Output Requirements

Sequence, Timing, and
Relationships

3. Using relay ladder symbols, write a program that represents the se-
guence of required operations and their inter-relationships. Be sure to
also program appropriate responses for all possible emergency situ-
ations. (Refer to Section 4 Writing and Entering Programs, Section 5 In-
struction Set, and Section 6 Program Execution Timing)

4. Input the program and all required operating parameters into the PC.
(Refer to Section 7 Program Debugging and Execution)

5. Debug the program, first to eliminate any syntax errors, and then to find
execution errors. (Refer to Section 7 Program Debugging and Execution
and Section 9 Troubleshooting)

6. Wire the PC to the controlled system. This step can actually be started
as soon as step 3 has been completed. '

7. Test the program in an actual control situation and carry out fine tuning
as required. (Refer to Section 7 Program Debugging and Execution and
Section 9 Troubleshooting)

Designing the Control System is the first step in automating any process. A
PC can be programmed and operated only after the overall Control System is
fully understood. Designing the Control System requires, first of all, a thor-
ough understanding of the system that is to be controlied. The first step in
designing a Control System is thus determining the requirements of the con-
trolled system.

The first thing that must be assessed is the number of input and output points
that the controlled system will require. This is done by identifying each device
that is to send an input signal to the PC or which is 10 receive an output sig-
nal from the PC. Refer to 3-2 IR Area for details on I/O capacity and the allo-
cation of /O bits to 10 points.

Next, determine the sequence in which contro! operations are to occur and
the relative timing of the operations. Identify the physical relationships be-
tween the I/O devices as well as the kinds of responses that should occur
between them.

For instance, a photoelectric switch might be functionally tied to a motor by
way of a counter within the PC. When the PC receives an input from a start
switch, it could start the motor. The PC could then stop the motor when the
counter has received a specified number of input signals from the photoelec-
tric switch.

Each of the related tasks must be similarly determined, from the beginning of
the control operation to the end.

SECTION 2
Hardware Considerations

This section provides information on hardware aspects of the C20HB-TS, including PC components, PC configuration,
and specifications.

2-1 PCCOMPONEHLS . .vvraennnnen et aneeanoetntonaseetsasessssesessssaenanenans 8
2-1-1 CPUINAICAIONS . .o v ot vt e e in e iie e tricanonssnnnerssannnoansnans 8
755 Wy N V10 T8 1T o7 1o ¢- N PN 9
2-1-3 SWItCh SeltingS . ..ot ivn et ittt it ittt e e 9
2-2 PCCONfIGUIALON ...t v e et it teiaiinnanneianarsernatranoeaeanneaananns 10
2-3 SPECIfICALIONS ... v vttt it ittt et e 12
2-3-1 General RAUAEZS ..ot et ceiee i cae i iia et eiaannnrtensanns 12
2-3-2 CPUSPecificationsc.iuiiiuiiiniiiiierenrerenrsaainneeerenns 13
2-3-3 DCInput SpecifiCaions .. oo v v vviventiiii e iiiiei i 14
2-3-4 PNP Transistor Qutput Specifications ...ttt i, 15
2-3-5 NPN Transistor Output Specificationsoovveviiiiiiiiiiiiiiiiiann, 16
2-3-6 Relay Output Specifications (8-point Commons)c.covvviiinanienns 17
2-3-7 Relay Output Specifications (Independent Commons) 18
2-3-8 RS-485Interface Specificationsc.iiiiiiiiiiiiiiiiieeiana. 19
2-4 Installation ENVITONMENEo v et ennrenonetnranrneeonsniessnansneosss 20
2-4-1 PCLOCAHON . o.utt et ettt ins ettt iisentnseonnnensennennanenss 20
2-4-2 PCDIMENSIONS . .vovvntaeninnerennoenenneseansonnseensssnssinnanss 21
T T 22
2-5-1 General Wiring Precautionsc.oritiiiiiiirin ittt irnenaneenes 22
2-5-2 Input Winng Precautionscovvviiriiiiiiiieniiiieenanaennns 23
2-5-3 Qutput Wiring Precautions e e e 24

PC Components

Section 2-1

2-1 PC Components

The following diagram shows the components on the front of the C20HB-TS.

Independent Common Output Connector
(IL-AM-29P-D3L2)

AN
' " N
Relay Qutput Indicators
O \ y ol 8-point Common Output Connector \ O
Relay Output lzu N | (HIF4-26P-3.18DS) X
Board ™ 200 N It] \
\ s % I
Transistor Trapsistor Sutput indicators ~ NPN Output Connector PNP Qutput Connector "
Output T~ P -40PA-2 54DS) | - =
Board ™| 4 N A |
N
o 1T 1 11 Input Connector (HIF3BA-80PA-2.54DS)
DC input o T 1] ¥
Board TP~ .
[Ulf 2T T .
CPU Board ——
oard _] 7 .
Ty~ L [P nput ndicators Wl [7] o] v | o
L I 1 — [|)
P S o]
POWER Indicator (refer —— L Baraiy Y Comestors

to 2-1-1 CPU Indicators)

RUN Indicator (refer to
2-1-1 CPU Indicators)

ERR/ALM Indicator (refer
to 2-1-1 CPU Indicators)

2.1-1 CPU Indicators

L DIP switch
— 8D indicator (refer to 2-1-1 CPU Indicators)

L—— RD indicator (refer to 2-1-1 CPU Indicators)

L RS-485 Interface Connectors
(IL-5P-S3FP2-1)

. . RS-485 Terminator Switch

Peripheral Device Connector

CPU indicators provide visual information on the general operation of the PC.
Although not substitutes for proper error programming using the flags and
other error indicators provided in the data areas of memory, these indicators
provide ready confirmation of proper operation.

Indicator | Color Function

POWER |Green | Lights when power (5 VDC) is supplied to the CPU.

RUN Green Lights when the CPU is operating normally.

ERR/ALM | Red ALARM: Flashes when a non-fatal error is discovered in
error diagnosis operations. PC operation will continue.
ERROR: Lights when a fatal error is discovered in error
diagnosis operations. CPU operation will be stopped.

sD Orange | Lights when transmitting data through the RS-485 interface.

RD Orange | Lights when receiving data through the RS-485 interface.

PC Components Section 2-1

2-1-2 /O Indicators

I/O indicators reflect the ON/OFF status of /O points. The following diagram
shows the location of the indicators in detail.

goOoopD|oono|ooono) §---- Wordo21) _
3332 DOOO|0000]0000] |--- - Wordogo | "o Ouiput Board Indicators
Wd 0123 4567 891011 12131415
fflooonjoooolooonlooonf|----Wwodot2)
pooolooon| |----Wordoti

% g?gg 2?:? g 91011 12131415 o Transistor Output Board indicators
Jloooojonoo(oooojo0Bd)]|---- Wrdoio)

gooolpoonjooonloooul {---- wordoo2)
wd 0123 4567 8 91011 12131415)
W |0000]0000]0000{0000] |---- Wordoopy | ¢ "PutBoard Indicators
ioooo|oooojoonojoonn) |---- Wordooo

2-1-3 Switch Settings

There are two switches on the front of the C20HB-TS, the DIP switch and the
RS-485 terminator switch. ’

DIP Switch Pins 1 through 4 of the DIP switch are used to set the Host Link unit number and
pin 5 is the UM write-enable switch.

-

4 5

Bé OFF

ON

ks

UM write-enable switch
ON: UM write-enabled

” % OFF: UM write-protected
20 4 21 4 22 4 23 =Host Link unit number settings

(1) @ @) @®)

The unit number is set in binary on pins 1 to 4.

Pin Value
Qor1 (29
Oor2(21)
0 or 4 (22)
0or8 (23

Al —

RS-485 Terminator Switch Turn this switch on to connect the termination resistance. This should be done
only on the last PC from the host computer.

Power Supply Connector The B3PS-VH power supply connector requires a connector with a
VHR-3N/VHR-3M housing and SVH-21T-P1.1 connector. The power supply is
5 VDC with a ground. ,

Pin Connection Location
1 5VDC 123
—
0 VDC
e @ o
FG

PC Configuration Section 2-2

2-2 PC Configuration

Peripheral Devices The following diagram shows the Peripheral Devices which can be connected to
the C20HB-TS and the location of their connectors.

C20HB-SC001-TS

|) . | i1
1) S I i
) {
Host computer with
E:l LSS (C500-SF110-V4)
RS-485 or
FIT10-CPUC1/FIT20-CPUO1
-§ C200H-CN222 Factory Intelligent Terminal
Connecting Cable

l:j C250HL-PRO31-TS-E or C200H-PRO27-E
Programming Console

10

PC Configuration Section 2-2

Host Link System You can use the RS-485 interface to connect a host computer to up to 16
C20HB-TS PCs, as shown in the following diagram. The total cable length can
be up {0 500 m.

Host computer
C20HB-SC001-TS

RS-485

C20HB-SC001-TS

[1.f
| A —
S E——
1

C20HB-SC001-TS

i § R DU |
| - | S 5

5 I
| e S e s

11

Specifications

Section 2-3

2-3 . Specifications

This section provides general specifications and specifications for each PC
component.

2-3-1 General Ratings

Item Rating
Supply voltage 5 VDC 5%, 2A. Ripple must be less than 100 mVp_p. (See note.)
Power consumption 10 W max. (5 VDC, 2A)
Insulation resistance 20 MQ min. (at 500 VDC) between /O and FG terminals
Dialectic strength 2,000 VAC for 1 minute between AC and FG terminals (leakage current 10 mA max.)
1,000 VAC for 1 minute between DC and FG terminals (leakage current 10 mA max.)
Noise Power | 20E (100 Vp_p) in normal mode, 1000 Vp_p in common mode
immunity supply | Pulse width: 100 ns to 1 ps, rise time 1 ns
/0 20E (480 Vp_p) in normal mode, 1000 Vp_p in common mode
Pulse width: 100 ns to 1 s, rise time 1 ns
Vibration 10 to 35 Hz, 1 mm double amplitude, in X, Y, and Z directions: 2 hours each.
Shock 10 G (about 98 m/s2) in X, Y, and Z directions, 3 times each
Ambient temperature Operating 0° to 55°C
Storage —20° to 65°C
Humidity 35% to 85% (non-condensing)
Atmosphere No corrosive gases
Grounding Less than 100Q
Construction Conforms to IEC IP-30 (when panel-mounted)
Dimensions 235 x 80 x 150 mm {W x H x D)

12

Note Supply power to the C20HB-TS as shown in the following diagram.

5VDC

5 VDC Power oV
Supply

/— Power supplied to the power supply
connector must conform to the ratings
given in the table above.

C20HB-TS

Specifications

Section 2-3

2-3-2 CPU Specifications

Item

Specification

Control Method

Stored program

1/0 Control Method

Cyclical scan with interrupt processing

Programming method

Ladder diagram

Instruction length

1 address/instruction, 1 to 4 words/instruction

Number of instructions

78 (12 basic instructions, 66 special instructions

Execution time

Basic instructions 0.75 to 2.25 us

Memory Capacity 6,974 words (EEPROM)
/O bits 128
IR bits 3,824
SR bits 136 (Normally ON, normally OFF, first scan, 0.1 s clock, 0.2 s clock, 1.0 s clock, etc.)
HR bits 1,600 (HR 0000 through 9915)
TR bits 8 (TR 0 through 7)
AR bits 448 (AR 0000 through 2715)
LR bits 1,024 (LR 0000 through 6315)
Timers/Counters 512 (TIM/CNT 000 through 511)
TiMs 0 through 999.9 s
TiMHs 0 through 99.99 s
CNT 0 through 9999 counts
DM words Read/write 1000 words (DM 0000 through DM 0939)
Read only 1000 words (DM 1000 through DM 1999)

Words DM 0900 through DM 0999 and DM 1900 through DM 1999 are allocated as the
system setting area.

Memory protection

The data in HR, AR, CNT, and DM areas has a capacitor backup which will maintain the
data for 5 minutes at 25°C.

Self diagnostic features

CPU failure (watchdog timer)
I/O bus failure

Host Link error

Memory error, etc.

Program check

Program checked (at the start of program execution)

No END(01) instruction, Instruction errors

The program can also be checked with a Programming Console. The program can be
checked at three levels.

13

Specifications

Section 2-3

2-3-3 DC Input Specifications

item Specification
Input voltage 24 VDC +10%/_y 50,
input impedance 3.3kQ
Input current 7 mA typical at 24 VDC
ON voltage 16 VDC min.
OFF voltage 5 VDC max.
ON delay time 2.5 ms max.
OFF delay time 2.5 ms max.

Number of circuits

48 (3 circuits with 16-point commons)

Input indicators

LED indicators (orange)

External connectors

Board mounting plug: HIF3BA-60PA-2.54DS (Hirose)
Connector socket: HIF3BA-60D-2.54R (Hirose)
Wire: AWG#28

(The external connector socket, wire, and assembly tools are not inciuded.)

Circuit configuration

COMO : 17,18

&
i

o
A
L
1
'

Internal circuitry

!

COM2

24VDC

e R L L T Ny N N N R N R

& 57,58

RO PCANVTIP T FTVDARNITDRWE @D B

The polarity of the power supply for sensors
or switches can be in either direction.

Refer to page 27 for details on the number of 1/0
points that can be on at the same time.

NCi#G2: 14 12 10 08 06 04 02 00 NCif¥ 10 08 06 04 02 00 NCi#E0:i14 12 10 08 06 04 02 00

59|57 (55|53)51149|47|45|43|41({39137]35|33({31|20(|27]|25(23|21{19 151183(111 9§17 15|31

60158!56154{52150|48(46144|42|40(38136(34|32{30]/28|26/24|22|20 161141211018 | 61 4| 2

#2515 13 11 09 07 05 03 01 NC 11 09 07 05 03 01 NCigt: 13 11 09 07 05 03 01

\ / / /
Word 02 Word 01 Word 00

14

Specifications

Section 2-3

2-3-4 PNP Transistor Output Specifications

ltem Specification
Max. switching capacity | 16 mA/4.5 VDG to 100 mA/26.4 VDC (800 mA/common)
Leakage current 0.1 mA max.
Residual voltage 1.5 mV max.
ON delay time 0.2 ms max.
OFF delay time 0.6 ms max.

Number of circuits

24 points (3 circuits with 8-point commons)

External power supply

5 to 26.4 VDC, 80 mA min. (3.2 mA x number of ON outputs)

Output indicators

LED indicators (orange)

Fuses

1 fuse/common (125 V, 1.5 A)

External connectors

Board mounting plug: XG4A-3434 (OMRON) or HIF3BA-34PA-2.54DS (Hirose)
Connector socket: XG4M-3430+XG4T-3404 (OMRON) or HIF3BA-34D-2.54R (Hirose)
Wire: XY3A-34000 (OMRON) or equivalent (AWG#28)

(The external connector socket, wire, and assembly tools are not included.)

Circuit configuration

-i1,2
&
~ 01000 } 3 4
© &
: P
5 01007 ; ' "
© - 10
-+ COMO ¥ 11,12
i < Pt
510 24 VDC 1,64
1 ' |
3 E
§ 1
‘01100
O —) 2
i 1 t
1 ' t
: o1107:¢
(B3 © 30
-+ coM2
t— & 31,32
5t024 VDC

Internal circuitry

17115

13

7

5

3

18116

14

8

6

4

LSIE

01
/

13 11 09#68: 07 05 03 Ot

Word 11

Word 10

Refer to page 27 for details on the number of outputs
that can be on at the same time.

15

Specifications

Section 2-3

2-3-5 NPN Transistor Output Specifications

ltem Specification
Max. switching capacity | 16 mA/4.5 VDC to 100 mA/26.4 VDC (400 mA/common)
Leakage current 0.1 mA max.
Residual voltage 1.5 mV max.
ON delay time 0.2 ms max.
OFF delay time 0.6 ms max.
Number of circuits 24 points (6 circuits with 4-point commons)

External power supply

5 10 26.4 VDC, 80 mA min. (3.2 mA x number of ON outputs)

Output indicators

LED indicators (orange)

Fuses

1 fuse/common (125 V, 1.5 A)

External connectors

Board mounting plug: XG4A-4034 (OMRON) or HIF3BA-40PA-2.54DS (Hirose)
Connector socket: XG4M-4030+XG4T-3404 (OMRON) or HIF3BA-40D-2.54R (Hirose)
Wire: XY3A-4003 (OMRON) or equivalent (AWG#28)

(The external connector socket, wire, and assembly tools are not inciuded.)

Circuit configuration

+:1L,2 . H

< n ! :

1 01108 % ﬂ—w}\gﬁ £ :

: oL ;

L Comine ¥ i

5t0 24 VDG i 1.54 R

: : L 5 |

' @ o ¥

' ' & |

: : = B

! ' :
4O 33 :
—D———0) 36 ‘

+ COM5 :

5 10 24 VDG ;
39]37[35]33]31 1
40|38 36|34 |32 2

Refer to page 27 for details on the number of cutputs
that can be on at the same time.

16

Specifications

Section 2-3

2-3-6 Relay Output Specifications (8-point Commons)

ltem

Specification

Max. switching capacity

132 VAC/0.2 A, 24 VDC/0.2 A

Min. switching capacity |5 mA/24 VDC
ON delay time 15 ms max.
OFF delay time 15 ms max.

Number of circuits

20 points (2 circuits with 8-point commons, 1 circuit with a 4-point common)

External power supply

24 VDC £10%, 200 mA min. (10 mA x number of ON outputs)
(Power is supplied from the connector for the independent common relay outputs.)

Output indicators

LED indicators (orange)

Fuses

None

Relay life

Resistive load: 100,000 times electrical, 1,000,000 times mechanical

External connectors

Board mounting plug: HIF4-26P-3.18DS (Hirose)
Connector socket; HIF4-26P-3.18R (Hirose)
Wire: AWG#28

(The external connector socket, wire, and assembly tools are not included.)

Circuit configuration

The polarity of the

24 VDC, 132 VAC

N 1

02000 1 E

s s '

R :

! .

[T 1

2> > |

£ =f | £

3 s |

s s 1

11 £ € |1

g g |

= = '

18 ;

1

1

'

18,20 !

[]

1

21 :

1

o .

7\ ;

From the connector ‘

25,28 for the independent :

J common relay :

' outputs !

|]
power supply for the

load can be in either direction.

14 12 Qi 06 04 02 00
17]16113/11|97/5]|3}1 Refer to page 27 for details on the number of outputs
i8|16]14|12|10| 8 |6 | 4| 2 that can be on at the same time.

15 138 07 05 03 01

Word 21

Word 20

17

Specifications

Section 2-3

2-3-7 Relay Output Specifications (Independent Commons)

item

Specification

Max. switching capacity

132 VAC/0.2 A, 24 VDC/0.2 A

Min. switching capacity |5 mA/24 VDC
ON delay time 15 ms max.
OFF delay time 15 ms max.

Number of circuits

12 points (12 circuits with independent commons)

External power supply

24 VDC £10%, 200 mA min. {10 mA x number of ON outputs)

Output indicators

LED indicators (orange)

Fuses

None

Relay life

Resistive load: 100,000 times electrical, 1,000,000 times mechanical

External connectors

Board mounting plug: IL-AM-29P-D3L2 (JAE)
Connector socket: IL-AM-295-D3C1 (JAE)

Connector contact: IL-C1-5000 (JAE)

Wire: AWG#22 to #18, finished dimension 2.4 mm max.

(The external connector socket, wire, and assembly tools are not included.)

Circuit configuration

orPrvocsoonas waanon moonanw cuonoan aoae

The polarity of the power supply for the
load can be in either direction.

02104 1
U - Dnoszaeg = | | eceea=
[= ~
b : ‘.i-- Y ; :
i R PR
b [l] ek
: : : lowo oo ol
N COMGs 16 {
[S | il
ana < Q
24 VDC, 132 VAC ' ___E‘ ,E‘
’ =1 3
' e e
: g g
. $ kS
£ £

P PP PP I PP I NPT PN DI TN AR ITDOTOD T ED @

24VNC 15 14 13 12 11 NC 10 09 08 Q7 06 05 04

1511413121110} 9|87 16 54

3

29128|27(26]25{24123 22121120119

18

OV NCE

Word 21

1
]
)
1
)
]
L
1
L]
1
)
[}
[}
1)
1
[}
1
1
t
t
[}
]
t
1
1]
H
t
1
H
]
)
[}
[}
]
1]
1]
1
i
[}
H
1
]
t
t
3
L
1
[}
a

Refer to page 27 for details on the number of outputs
that can be on at the same time.

18

Specifications Section 2-3

2-3-8 RS-485 Interface Specifications

ltem Specification
Interface Conforms to RS-485 standards (internal circuitry and non-isolated)
Communication method Half-duplex (4-wire type)
Synchronization Start-stop method
Transmission rate 300 to 19,200 baud (300/600/1200/2400/4800/2600/19,200)
Transmission distance 500 m max.
Error detection Parity check (positive, negative, none), and FCS
Transmission coding 7-unit ASCII or 8-unit JIS
Allowed number of nodes 16 max.
Transmission indicators Two orange LED indicators: SD (sending data) and RD (receiving data)
External connectors Board mounting plug: IL-5P-S3FP2-(N)-1 (JAE)
Connector socket: IL-5S-S3L-(N) (JAE)
Connector contact: IL-C2-1-10000 (JAE)
Wire: AWG#28 to #22, wire cross-section 0.08 to 0.33 mm, outer diameter 1.010 1.7 mm
(The external connector socket, wire, and assembly tools are not included.)

Circuit configuration

P RN NN ENE O ARTV D EVD VDD A DD EDDTED R DD D

i5 3
RDAG oy :
Y :
RDBG i RA|| e |5
] ' 220Q ;
: —»j i RDB| | e |4
5 L= 3 sm[o |3
3 -—Mr-—s- :
i3 2200 o_] 1 SIB| | e |2
SDAG e 2 :
H 3 : ov & 1
SDBG> S
E 5] i
e Sov S
: i RDA{| e |5
; '\ RDB|| e |4
RDACH :
4 1 SDA [e |3
ROBG :
; ! SB|| e |2
SDAGH ;
52 : ov @ 1
SDBC :
ove— :

19

Installation Environment Section 2-4

2-4 Installation Environment

This section provides information on the necessary environment and condi-
tions for installing the PC.

2-4-1 PC Location

The boards that make up the C20HB-TS are equipped with LED indicators to
show the operating status of the PC and the ON/OFF status of I/O points. Be
sure to install the PC so that these indicators are visible.

For safety and easy maintenance, install the PC as far as possible from high-
voltage and high-power wiring.

Cooling Requirements The operating temperature range for the C20HB-TS is 0° to 55°C. There are
several factors to consider in order to ensure that the PC does not overheat.
1, 2, 3... 1. Provide enough clearance around to PC to provide enough room for /O wir-
ing and additional room to ensure that the /O wiring does not restrict cooling
airflow.

2. Do not install the PC above equipment that generates large amounts of
heat, such as heaters, transformers, or large capacitors.

3. A cooling fan is not always necessary, but may be needed if the PC is
mounted in a warm or enclosed area or over a source of heat. Although itis
best to avoid installing the PC in awarm area, use a cooling fan, as shown in
the following illustration, o maintain the ambient temperature within specifi-

cations.
Fan
@
PC
et CONMrO! Panel
Noise Prevention Avoid mounting the PC close to high-power equipment, and make sure the point

of installation is at least 200 mm away from power cables, as shown below.

Power lines

\

200 mm min.

v

PC

200 mm min.

Whenever possible, use wiring conduit to hold the /O wiring. Standard wiring
conduit should be used, and it should be long enough to completely contain
the I/O wiring and keep it separated from other cables.

20

Installation Environment

Section

2-4

2-4-2 PC Dimensions

The following diagram shows the dimensions of the C20HB-TS as well as the
location of the mounting holes required to installation.

j Tew [fl e C20HR-50001-75 b
© o ACTUATOR CONTROLLER &
o] LOT He. jam|
| |
e o) ©
3
y
& p _é_
= |
29 ¥
i |
|
2 L %
A,; ’ (225) |

@

-l

®

235

21

Wiring Section 2-5

2-5 Wiring

This section provides information about wiring power supplies, grounding,
and 1/0.

2-5-1 General Wiring Precautions

Emergency Stop Circuit To prevent a CPU breakdown or malfunction from damaging the entire system,
construct an external relay circuit so that SR bit 25313 is always ON when the
CPU is operating. If the program is set up as shown in the following diagram,
output 01000 will be ON whenever the CPU is in either RUN or MONITOR mode,
and itwill function as an output to monitor whether the CPU is operating properly.

Example

| 25313
l 01000 RUN
|1 output
Always ON Flag

The following diagram shows a wiring example for an emergency stop circuit
that turns the power to the PC OFF in the event of an emergency.

MCB1
————
e, O+ O
0—0:0 Power section
Pty
oO—0 O
o] o\r----- -
MCB2)’""): CR1 |
o/,
e —3 O '
| Ve Control section
0 O—
Tr.aﬁs-fo;n;e-r-

_,m ornoise filter
5VDC X
»—><><>< Power supply OOC C20HB-TS

Twisted
><><><><><>000 c C 24 VDC volt- —0 +
) age regulator)
RUN ~
S output , For DC input/output
1] o c

= Surge
: suppressor
- - 3 T

22

Wiring

Section 2-5

Interlock Circuits

Electrical Noise

Iz
)
S
@
fessses

Suspended Ducts

Whenthe PC controls an operation such as the clockwise and counterclockwise
operation of a motor, provide an external interlock such as the one shown below
to prevent both the forward and reverse outputs from turning ON at the same
time. Evenif the PC is programmed improperly or malfunctions, the motor is pro-
tected.

Interlock circuit

froeeecmcana

01001 : Me2 ;
[® & ' @ Motor clockwise

X '
B '
] (]
C20HB-TS ' X
! MC1 :

[01002 ' ® @ . @ Motor counterclockwise
X '
R S a

Be sure to ground the C20HB-TS independently to a ground less than 100 Q,
and separate I/O cables from power lines as shown in the following diagrams.

(1): /O Cables
(2): Power lines

(1 (2

/////////////////% % 7

Floor Ducts Conduit

§

NN

NN
X

If the I/O cables and power lines must be wired in the same duct, noise-resis-
tance can be improved by using shielded cable. In this case, ground the
cables shielding to the FG terminal on the C20HB-TS.

2-5-2 Input Wiring Precautions

Input Leakage Current

When two-wire sensors, such as photoelectric sensors, proximity sensors, or
limit switches with LEDs, are connected to the PC as input devices, the input bit
may be turned ON erroneously by leakage current. In order to prevent this, con-
nect a bleeder resistor across the input as shown below.

Input
power
supply

C20HB-TS

Sensor

23

Wiring

Section 2-5

Inductive Load Surge
Suppressors

If the leakage current is less than 1.5 mA, there should be no problem. If the
leakage current is greater than 1.5 mA, determine the value and rating for the
bleeder resistor using the following formulas.

17.15
R=3a3%] 5 k& max. | = leakage current in mA
R = Bleeder resistor kQ
W = '2ﬁ3 W min. W = Bleeder resistor Watts

When an inductive load is connected to an input, it is necessary to connect a
surge suppressor or a diode in paralle! with the load, as shown below, to ab-
sorb the counter-electromotive force produced by the load.

I 5o

Diode
C20HB-TS L e

i

__._..__(fCOM

The counter-electromotive force is a minimum of 3 times the load voltage and
the average rectifying current is 1 A.

2-5-3 Output Wiring Precautions

Reducing Surge Current

24

Listed below are a few items to keep in mind when wiring outputs.

e When connecting the output devices, use a fuse to protect the printed cir-
cuit board from a power surge.

» Do not put output wires near high-voltage power lines. Doing so0 may cause
a malfunction or may damage output devices and the Units.

e The durability of a relay depends on the amount of current passing through
it, the temperature, and the switching capacity. At higher temperatures and
higher swiiching capacities the durability is lowered by as much as 50 per-
cent.

When connecting a transistor output to a device that allows a high surge current
to flow, the current may exceed the rated current, causing damage to the transis-
tor. Use one of the circuits shown below to reduce the inrush current.

This circuit allows a slight current (about 1/3 the rated current) {o flow
through the load (i.e., the lamp), thus eliminating any initial surge of current.

' N
(M
out O
7 N +

COM

Wiring

Section 2-5

Inductive Load Surge
Suppressors

Transistor Output Residual
Voltage

Output Leakage Current

This circuit acts directly on the inrush current to fimit it, but also reduces the
voltage across the load.

N
ouT \-
Ve

COM

When an inductive load is connected to an output, it is necessary to connect
a surge suppressor or a diode in parallel with the load, as shown below, to
absorb the counter-electromotive force produced by the load.

_— ouT L
C20HB-TS < =
Diode
—_ coM

The counter-electromotive force is a minimum of 3 times the load voltage and
the average rectifying current is 1 A.

When connecting TTL circuits to transistor outputs, it is necessary to connect
a puli-up resistor and a CMOS IC between the two because of the transis-
tor’s residual voltage.

Output devices can be triggered by the leakage current. If this occurs, connect a
bleeder resistor as shown in the following diagram.

_— ouT L
l Load
C20HB-TS YV~ power
Bleeder resistor supply

Determine the value for the bleeder resistor using the following formula.

Vv Von = Load voltage when ON
R< - | = leakage current (0.1 mA)
' R = Bleeder resistor KW

25

Wiring Section 2-5

Maximum Switching Capacity As shown in the following chart, the maximum load current for transistor outputs
depends on the voltage of the power supply, which can be between 5 and 24
VDC +10%. Use this chart as a guide when selecting the power supply.

z

£

3 11 1 1] 13 1R}
T 100 |--trmefmem i gt
Q. 1

3 :

g :

5 50 |--+ --
2 !

§ 16 |--1 --
2

g 04.5 20.4 26.4

Power supply voltage (V)

& Caution The transistor output will be damaged if the switching current exceeds the maxi-
mum value given in the chart.

26

Section 2-5

iring

-

Maximum Number of ON

Outputs

The maximum number of outputs that can be ON at the same time depends
on the orientation of the PC and the ambient temperature, as shown in the

following charts.

Horizontal Installation

]]]] 1
S T . 4 M
[] [}]]]
e o ol Bl ety bl adeiled
] i] b
R L e B
lxxtl:*!tlnrlllblllL |||||
] !]
]]]]
] 1] 1
JUR SRpURpURr SRR S N SR
[]] []]
] “] "
|xx.......m.......|.|..|..+....1... 11111
?] [}]
] !] }
U SRR SPUPRPIAPIY SHYRUGN [P S
[] 1 [} [}
§])]
t]]]
o (=] (=]
0w < —t

(%) sindino NO jo sequinp

50
45 55

40
Ambient temperature (°C)

30

0 10 20

Vertical Installation

]) |] [}
- H A H H
[] t 1
U R R L T T T =y
] [t |
B LT LT TS P T Tl
S ISR RV SR (PP, R
3 ' \ t
[] [})]
]] t \
-t - PR S R Rl
|] [l 1
]]] "
] b vmnd e
||1|xxax:s|ﬂ:lx*||uJ
]] \]
]] 1)
S k.
J] [] 1
)] t 1
] } t []
< [an] (e]
jVe) ~* —

(%) sindino NO Jo Jaquinpy

45 55

Ambient temperature (°C)

Face-up installation

[]] 0]]
]] [}]
PR TR U SO - U SN
]] [}]
R R ek b L
O UG DU W [SN —
'] 1]
]]]]
]] § {
O B e L el ikl etk
t) []
] 3]]
o St SEEE SRS SRS SRR
1]] t
]]]]
[e N N
1 1 8 1
' [l []
1 '] !
[an] (=g jas]
w ~f -

{%) sindino NO jo Jaquiny

45 55

Ambient temperature (°C)

27

SECTION 3
Memory Areas

Various types of data are required to achieve effective and correct control. To facilitate managing this data, the PC is pro-
vided with various memory areas, each with a different function. The areas generally accessible by the user in program-
ming are classified as data areas. The other memory area is the Program Memory, where the user’s program is actually

stored. This section describes these areas individually and provides information that will be necessary to use them.

31
3-2
33

34

3-5

3-6
3-7

39

Introduction
IR (Internal Relay) Area ...
SR (Special Relay) Area ..

...

...

...

33-1 ForcedStatus Hold Bito oo iiii it ii it ie it ieeineeeneeecnananas

3-3-2 1/O Status Hold Bit

..

3-3-3 FAL (Failure Alarm) ATE&cvvtvevneernnennnterannersisoeensnnanan
3-3-4 Instruction Execution Error Flag, ERccciiiiiiiiin ..

AR (Auxiliary Relay) Area

...

3-4-1 SystemParameterFlagsooviiiiiiiiiiiii e,
3-4-2 SystemCommand Bits...........coiiiiiiiiiiiii i i e

DM (Data Memory) Area . .
3-5-1 Indirect Addressing

...

..

3.5-2 Parameter and Parameter Backup AT€asccvvvvviiiinniiivnnnennns
3-5-3 UserProgram Header Areacoiiiimiiiiininnniennnnnns

HR (Holding Relay) Area .
TC (Timer/Counter) Area ..
LR (Link Relay) Area

TR (Temporary Relay) Area

...

...

...

..

30
31
31
32
32
32
33
33
35
35
37
37
38
41
42
42
42
43

29

Introduction Section 3-1
3-1 Introduction
Details, including the name, acronym, range, and function of each area are
summarized in the following table. All but the last two of these areas are data
areas. Data and memory areas are normally referred to by their acronyms.
The AR, DM, HR, and TC areas are backed up by a capacitor that maintains
data for 5 minutes (at 25°C) after a power interruption. Data will not be reli-
able after power interruptions longer than 5 minutes.
Area Acronym Range Function
Internal Relay IR Words: 000 to 246 Used to control I/O points, other bits, timers, and
Bits: 0000 to 24615 counters, and to temporarily store data.
Special Relay SR Words: 247 to 255 Contains system clocks, flags, control bits, and
Bits: 24700 to 25507 status information.
Auxiliary Relay AR Words: AR 00 to AR 27 Contains flags and bits for special functions.
Bits: AR 00to AR 2715 (Capacitor backup.)
Data Memory DM Read/write: DM 0000 to DM 0999 | Used for internal data storage and manipulation.
Read only: DM 1000 to DM 1999 | (Capacitor backup. See note.)
Holding Relay HR Words: HR 00to HR 99 Used to store data and to retain the data values
Bits: HR 0000 to HR 9915 when the power to the PC is turned off.
(Capacitor backup.)
Link Relay LR Words: LR00to LR 63 Available for use as work bits.
Bits: LR 0000 to 6315
Timer/Counter TC TC000to TC 511 Used to define timers and counters, and to access
completion flags, PV, and SV. In general, when
g&p?ggﬁ;gﬁ)u sedto access used as a bit operand, a TC number accesses the
) completion flag for the timer or counter defined
using the TC number. When used as a word
operand, the TC number accesses the present
value of the timer or counter.
Timers are reset when PC operation is started, but
counter PVs are maintained through momentary
power interruptions. (Capacitor backup.)
Temporary Relay | TR TR 00 to TR 07 (bits only) Used to temporarily store and retrieve execution
conditions. These bits can only be used in the Load
and Output instructions. Storing and retrieving
execution conditions is necessary when
programming certain types of branching ladder
diagrams.

Work Bits and Words

Flags and Control Bits

30

When some bits and words in certain data areas are not being used for their
intended purpose, they can be used in programming as required to control
other bits. Words and bits available for use in this fashion are calied work
words and work bits. Most, but not all, unused bits can be used as work bits.
Those that can be used are described area-by-area in the remainder of this
section. Actual application of work bits and work words is described in Sec-
tion 4 Writing and Entering Programs.

Some data areas contain flags and/or control bits. Flags are bits that are
automatically turned ON and OFF to indicate particular operation status. Al-
though some flags can be turned ON and OFF by the user, most flags are
read only; they cannot be controlled directly.

Control bits are bits turned ON and OFF by the user to contro! specific as-
pects of operation. Any bit given a name using the word bit rather than the
word flag is a control bit, e.g., Restart bits are control bits.

SR (Special Relay) Area

Section 3-3

Data Area Acronyms

3-2

When designating a data area, the acronym for the area is always required
for all but the IR and SR areas. Although the acronyms for the IR and SR
areas are often given for clarity in text explanations, they are not required,
and not entered, when programming. Any data area desighation without an
acronym is assumed to be in either the IR or SR area. Because IR and SR
addresses run consecutively, the word or bit addresses are sufficient to differ-
entiate these two areas.

Area Word designation Bit designation
IR 000 00015 (leftmost bit in word 000)
SR 252 25200 (rightmost bit in word 252)
DM DM 1250 Not possible
TC TC 215 (designates PV) TC 215 (designates compietion flag)
LR LR 45 LR 1200

IR (Internal Relay) Area

The IR area is used both as data to control /O points, and as work bits to
manipulate and store data internally. It is accessible both by bit and by word.
The following table shows the usage of IR area in the C20HB-TS.

Word(s) Bits Function
000 to 002 | 00000 to 00215 | 24 VDC Inputs (three 16-point commons)
003 to 009 | 00300 to 00915 | Available for use as work bits in the program.
010to 012 |01000to 01107 | PNP Transistor Outputs (three 8-point commons)
0110810 01215 | NPN Transistor Outputs (six 4-point commons)
013to 019 | 0130010 01915 | Available for use as work bits in the program.
020 02000 to 02015 | Relay Outputs ({two 8-point commons)
021 02100 to 02103 | Relay Qutputs (one 4-point common)
02104 t0 02115 | Relay Outputs (twelve independent commons)
022 to 246 | 02200 to 24615 | Available for use as work bits in the program.

3-3 SR (Special Relay) Area

The SR area contains flags and control bits used for monitoring PC opera-
tion, accessing clock pulses, and signalling errors. SR area word addresses
range from 247 through 255; bit addresses, from 24700 through 25515.

The following table lists the functions of SR area flags and control biis. Bits in
the SR area which are listed as “not used” cannot be used as work bits in the
program.

Word(s) Bit(s) Function

24710251 |001to 15 | Not used.

252 00to 07 | Not used.
08 RS-485 Communications Error Flag
09 RS-485 Interface Restart Bit: Turn this bit OFF — ON — OFF to restart the interface.
10 Not used.
11 Forced Status Hold Bit (See 3-3-1 Forced Status Hold Bit for details.)
12 I/0 Status Hold Bit (See 3-3-2 //O Status Hold Bit for details.)
1310 15 | Not used.

31

SR (Special Relay) Area Section 3-3

Word(s) Bit(s) Function
253 0010 07 | FAL number output area (See 3-3-3 FAL (Failure Alarm) Area for details.)
08 Not used.
09 Cycle Time Error Flag: This flag is turned ON if the cycle time exceeds 100 ms.
10t0 12 | Not used.
13 Always ON Flag
14 Always OFF Flag
15 First Cycle Fiag:
This flag is turned ON when PC operation begins and then OFF after one cycle of the program.
It is useful in initializing counter values and other operations.
254 00 1-minute clock puise bit (30 s ON, 30 s OFF)
01 0.02-second clock pulse bit (10 ms ON, 10 ms OFF)
02 to 06 | Not used.
07 Step Flag: This flag is turned ON for one cycle when step execution is started with STEP(08).
08to 15 | Not used.
255 0o 0.1-second clock puise bit (50 ms ON, 50 ms OFF)
01 0.2-second clock pulse bit (100 ms ON, 100 ms OFF)
02 1.0-second clock pulse bit (0.5 s ON, 0.5 s OFF)
03 Instruction Execution Error (ER) Flag
(See 3-3-4 Instruction Execution Error Flag, ER for details.)
04 Carry (CY) Flag:
This flag is turned ON when there is a carry in the result of an arithmetic operation or when a
rotate or shift instruction moves a “1” into CY.
05 Greater Than (GR) Flag:
This flag is turned ON when the result of a comparison shows the first of two operands to be
greater than the second. ‘
08 Equals (EQ) Flag:
This flag is turned ON when the result of a compatrison shows two operands to be equal or
when the result of an arithmetic operation is zero.
07 Less Than (LE) Flag:

This flag is turned ON when the result of a comparison shows the first of two operands to be
less than the second.

3-3-1 Forced Status Hold Bit

SR 25211 determines whether or not the status of bits that have been force-
set or force-reset is maintained when switching between PROGRAM and
MONITOR mode to start or stop operation. If SR 25211 is on, bit status will
be maintained; if SR 25211 is off, all bits will return to default status when
operation is started or stopped.

SR 25211 is not effective when switching to RUN mode.

3-3-2 1/O Status Hold Bit

SR 25212 determines whether or not the status of IR and LR area bits is
maintained when operation is started or stopped. If SR 25212 is on, bit status
will be maintained; if SR 25212-is off, all IR and LR area bits will be reset.

3-3-3 FAL (Failure Alarm) Area

32

A 2-digit BCD FAL code is output to bits 25300 to 25307 when the FAL or
FALS inst:.iction is executed. These codes are user defined for use in error
diagnosiz, although the PC also outputs FAL codes to these bits. This area
can be reset by executing the FAL instruction with an operand of 00.

AR (Auxiliary Relay) Area Section 3-4

3-3-4 Instruction Execution Error Flag, ER

SR bit 25503 is turned ON if an attempt is made to execute an instruction
with incorrect operand data. Common causes of an instruction error are
non-BCD operand data when BCD data is required, or an indirectly ad-
dressed DM word that is non-existent. When the ER Flag is ON, the cur-
rent instruction will not be executed.

3-4 AR (Auxiliary Relay) Area

AR word addresses extend from AR 00 to AR 27; AR bit addresses extend
from AR 0000 to AR 2715. Most AR area words and bits are dedicated to
specific uses, such as transmission counters, flags, and control bits, and can-
not be used for any other purpose. An overview of the AR area is provided in
the following table. Bits in the AR area which are listed as “not used” cannot
be used as work bits in the program.

The AR area retains status during momentary power interruptions or when
changing to PROGRAM mode.

Word(s) Bit(s) Function
0010 03 00to 15 | Not used.
04 00 to 07 | RS-485 Communications Error Code:
When an error has accurred in RS-485 communications, the RS-485 Communications Error
Flag (SR25208) is turned ON, and a code that indicates the type of error is output to AR 0400
to AR 0407. These codes are as follows:
01: Parity error
02: Framing error
03: Overrun error
04: FCS error
These bits are refreshed every cycle.
0810 15 | Not used.
05 00 to 07 | RS-485 Reception Counter:
When a transmission is received on the RS-485 interface, the number of characters is counted
in hexadecimal and then output to AR 0500 to AR 0507 to assist the user in debugging RS-485
interface communications. This counter is used for all RS-485 interface operating modes, as
well.as for error characters. The counter can be reset by turning SR 25209 OFF — ON — OFF.
These bits are refreshed every cycle.
08to 15 | RS-485 Transmission Counter (refreshed each cycle):
This counter operates the same as the RS-485 Reception Counter, except that it counts the
number of characters transmitted from the PC through the RS-485 interface.
These bits are refreshed every cycle.
06 00to 15 | Not used.
07 00to 12 | Not used.
13 Error History Overwrite Bit:
This bit controls overwriting of records in the Error History Area in the DM area. Turn AR 0713
ON to overwrite the oldest error record each time an error occurs after 10 have been recorded.
Turn OFF AR 0713 to store only the first 10 records that occur after the history area is cleared.
This bit is refreshed every cycle.
14 Error History Reset Bit:
Turn this bit OFF — ON — OFF to reset the Error Record Pointer (DM 0969) and thus restart
recording error records at the beginning of the history area.
This bit is refreshed every cycle.
15 Error History Enable Bit:
Turn this bit ON to enable error history storage and OFF to disable error history storage.
This bit is refreshed every cycle.
081to 11 00to 15 | Not used.

33

AR (Auxiliary Relay) Area Section 3-4

Word(s) Bit(s) Function
12 00to 15 | System Parameter Warning Flags (See 3-4-1 System Parameter Filags.)
13 00to 13
14 System Parameter Backup Flag (See 3-4-1 System Parameter Flags.)
15 System Parameter/Backup Area Checksum Flag (See 3-4-1 System Parameter Flags.)
14 0010 06 | System Command Response Code (See 3-4-2 System Command Bits.)
07 System Command Completion Flag (See 3-4-2 System Command Bits.)
08to 14 | System Command Command Code (See 3-4-2 System Command Bits.)
15 System Command Execution Bit (See 3-4-2 System Command Bits.)
15 00 to 07 | PC Operating Mode:
These bits contain a hexadecimal code that indicates the operating mode of the PC. If the
Preserve Mode code (01) is set in bits 08 through 15 of DM 0900 (backup: DM 1900), the PC
will be started in the mode indicated by the code in AR 1500 to AR 1507.
The possible codes are:
00: PROGRAM mode
- 01: MONITOR mode
02: RUN mode
These bits are refreshed every cycle.
08110 15 | Not used.
1610 22 00to 15 | Not used.
23 00to 15 | Power-off Counter:
AR 23 indicates in 4-digit BCD the number of times that the PC power has been turned off. This
data has a capacitor backup, so it will be unreliable after power interruptions longer than 5
minutes. This counter can be reset as necessary using the Hex/BCD Change operation from
the Programming Console or other Peripheral Device.
The Power-off Counter is refreshed every time the power is turned on.
24 00 to 04 | Not used.
05 SCAN(18) Cycle Time Flag:
AR 2405 is turned ON when the cycle time set with SCAN(18) is shorter than the actual cycle
time.
06 to 14 | Not used.
18 Programmlng Console or Peripheral Interface Unit Mounted Flag:
AR 2415 is turned ON to indicate that a Programming Consoie or Peripheral Interface Unlt is
mounted to the CPU. It is refreshed every cycle.
25 00to 15 | FALS-generating Address: A
AR 25 contains (in 4-digit BCD) the address generating a user-programmed FALS code (from
FAL(06) or FALS(07)) or a system FALS code SF (cycle time error).
AR 25 is refreshed each cycle while an FALS code is being generated.
26 00to 15 | Maximum Cycle Time Area:
AR 26 contains the maximum cycle time that has occurred since program execution began.
This time is recorded in tenths of a millisecond in 4-digit BCD. It is refreshed every cycle.
27 00to 15 | Current Cycle Time Area:
AR 27 contains the present cycle time in tenths of a millisecond in 4-digit BCD. It is refreshed
every cycle.

34

AR (Auxiliary Relay) Area Section 34

3-4-1 System Parameter Flags

System Parameter Warning The system parameters are checked for errors when the system command is

Flags executed or the system parameters are reset at start-up. If a word in the sys-
tem parameters has an unacceptable value, its corresponding System Pa-
rameter Warning Flag will be turned ON.

The 30 bits from AR 1200 through AR 1313 correspond to the 30 words of
the Parameter Area (DM 0900 to DM 0929) as shown below.

AR 1200: DM 0900 AR 1201: DM 0901 AR 1202: DM 0902
AR 1203. DM 0903 AR 1204: DM 0904 AR 1205: DM 0905
AR 1206: DM 09306 AR 1207: DM 0907 AR 1208: DM 0908
AR 1209: DM 0909 AR 1210: DM 0910 AR 1211: DM 0911
AR 1212: DM 0912 AR 1213: DM 0913 AR 1214: DM 0914
AR 1215: DM 0115 AR 1300: DM 0916 AR 1301: DM 0917
AR 1302: DM 0918 AR 1303: DM 0919 AR 1304: DM 0920
AR 1305: DM 0921 AR 1306: DM 0922 AR 1307: DM 0923
AR 1308: DM 0924 AR 1309: DM 0925 AR 1310: DM 0926
AR 1311: DM 0927 AR 1312: DM 0928 AR 1313: DM 0929

If a Warning Flag is turned ON, the default value for the system parameter
will be used. Bits assigned to unused DM words are aiways OFF.

System Parameter Backup AR 1314 is turned ON when the System Command Execute Bit has been
Flag force-set and remains ON until reset by the execution of a system command
with a command code of 3.

Parameter/Backup Area AR 1315 is turned ON to indicate an error in the Parameter and Backup
Checksum Flag Areas checksum.

Refer to 3-4-2 System Command Bits for details on system command bits
and to 3-5 DM (Data Memory) Area for details on the Parameter and Backup
Areas.

These bits are refreshed when PC power is turned on and when the'System
Command Execute Bit isvforce-set.

3-4-2 System Command Bits

System Command When the system command has been executed, a response code is placed

Response Code in AR 1400 to AR 1403 to indicate the completion status of the command.
The System Command Completion Flag (AR 1407) should be checked to
confirm that system command execution has been completed before reading
these codes. The response codes are as follows:

Response Name Meaning
code

0 Normal completion | The system command has been successfully
executed,

1 Undefined The system command was executed with an

command error undefined command code.

2 Write-enable error | Memory is write-protected (i.e., the write enable
switch is ON).

3 Sum check error The checksum for the Parameter Area was not
set when the system command was executed,
i.e., a system command with a command code
of 1 has not been executed.

System Command AR 1407 is turned ON to indicate that the system command has completed
Completion Flag execution. This Flag is turned ON even if the system command was not suc-
cessfully executed.

35

AR (Auxiliary Relay) Area

Section 3-4

System Command
Command Code

gystem Command Execute
it

Refreshing

A command code is set by the user in AR 1408 to AR 1411 fo indicate how
the system command is o be executed while the System Command Execu-
tion Bit is turned ON. The command code must be written into AR 1408 to AR
1411 using the Hex/BCD Data Change or the Binary Data Change from the
Programming Console or other Peripheral Device. A system command will
not be executed if the command code is set using any other operation or if
set from the program.

The command codes are as follows:

Command Name Meaning
code :

1 Parameter set The contents of the Parameter Area (DM 0900
to DM 0929) are set into the system, the value of
each parameter is checked for validity, all invalid
values are replaced with the default values, and
a checksum is generated.

2 Parameter backup | The contents of the Parameter Area (DM 0900
to DM 0929) is transferred to the Parameter
Backup Area (DM 1900 to 1929), a checksum is
generated, the data in the Parameter Backup
Area is enabled, and AR 1314 (System
Parameter Backup Flag) is turned ON.

3 Backup disable The data contained in the Parameter Backup
Area is disabled and AR 1314 (System
Parameter Backup Flag) is turned OFF.

4 Parameter clear All words in the Parameter Area (DM 0900 to
DM 0929) are turned OFF (i.e., set to zero).

5 General parameter | Works in the same way as 01, but only DM 0900
set to DM 0905 are set.

6 High-speed counter | Works in the same way as 01, but only DM 0905
parameter set to DM 0919 are set.

7 RS-485 parameter | Works in the same way as 01, but only DM 0920
set to DM 0929 are set.

AR 1415 is turned ON by the execution of a system command. The system
command is actually executed when the Programming Console or other Pe-
ripheral Device is used to change the contents of AR 1408 to AR 1414 (Sys-
term Command Command Code).

To enable system command execution, AR 1415 must be force-set from a
Peripheral Device (e.g., using the Force Set/Reset operation from the Pro-
gramming Console). System command execution will not be enable is AR
1415 is set using any other operation or if set from the program. A system
command will also not be executed if the command code is written by any
method other than the Hex/BCD Data Change or the Binary Data Change
operation from the Programming Console or equivalent operation from anoth-
er Peripheral Device.

AR 1415 is automatically turned OFF by the system unless force-set from a
programming device.

AR 14 is refreshed when a system command is executed.

Executing the System Command

1,2, 3.

36

The system command is executed by manipulating the content of AR 14 with
a Programming Device. The following procedure demonstrates how to
execute the system command from a Programming Console.

1. Set the PC to either PROGRAM or MONITOR mode. (Press CLR,
MONTR, and turn the mode switch to PROGRAM or MONITOR.) -

2. Use the Hexadecimal/BCD Data Modification operation to change any
system parameters that need to be changed. (Refer to 7-2-4 Hexadeci-
mal/BCD Data Modification for details.)

DM (Data Memory) Area Section 3-5

3. Execute the system command to put the new system parameters into
effect.

a) Force-set AR 1415 (System Command Execute Bit).

EE o HOEH =)
b) Write the desired command code into AR 1408 to AR 1411 using the
Hex/BCD Data Change or the Binary Data Change operation.

¢) Verify that the content of AR 14 is 8x80 (x is the command code en-
tered in step 3b), indicating a successful execution.

d) Cancel the force-set status of AR 1415.

3-5 DM (Data Memory) Area

Although composed of 16-bit words like any other data area, the DM area is
accessible by word only. Individual bits within a DM word cannot be desig-
nated, so DM words cannot be specified by bit for use in instructions with bit
operands, such as LD, OUT, AND, and OR, nor can DM words be used with
the Shift instruction.

The DM area is divided into various parts as described in the following table.

Addresses Usage Memory type
DM 0000 to DM 0899 | General User Area RAM
DM 0900 to DM 0929 | Parameter Area (PC operating mode) (Read/write)
DM 0930 to DM 0968 | Not used.
DM 0969 to DM 0998 | Error History Area (up to 10 entries)
DM 1000 to DM 1899 | General User Area EEPROM
DM 1900 to DM 1929 | Parameter Area backup (Read-only)
DM 1930to DM 1989 | Not used. ‘
DM 1990 to DM 19989 | User Program Header

The DM area retains status during power interruptions.

General User Areas The General User Areas can be used for general data storage and manipula-
tion in the program.

DM 0000 to DM 0899 and DM 1000 to DM 1899 can be used for manipula-
tion and storage of data. DM 1000 to DM 1899 are in the read-only area, and
cannot be written to from the program, i.e., they must be written to from a
Programming device.

System DM DM 0900 to DM 0999 and DM 1900 to DM 1999 are known as System DM
and are not cleared by the Data Clear operation. These DM words are used
to control various aspects of PC operation and should never be used for any
purposes other than their designed purposes.

Refer to 3-5-2 Parameter and Parameter Backup Areas for details on the Pa-
rameter Area and Parameter Backup Area.

Refer to 3-5-3 User Program Header for details on the User Program Header.

3-5-1 Indirect Addressing

Normally, when the content of a data area word is specified for an instruction,
the instruction is performed directly on the content of that word. For example,
suppose MOV(21) is performed with DM 0100 as the first operand and LR 20
as the second operand. When this instruction is executed, the content of DM
0100 is moved fo LR 20.

37

DM (Data Memory) Area

Section 3-5

It is possible, however, to use indirect DM addresses as the operands for
many instructions. To indicate an indirect DM address, *DM is input with the
address of the operand. With an indirect address, the content of the operand
does not contain the actual data to be used. Instead, it contains the address
of another DM word, the content of which will actually be used in the instruc-
tion. If xDM 0100 was used in our example above and the content of DM
0100 is 0324, then xDM 0100 actually means that the content of DM 0324 is
to be used as the operand in the instruction, and the content of DM 0324 will
be moved fo LR 20.

- - o o o] Word Content
e DMoooo [4Cs9
oM 0100 —— DM 0100 | 0324 i dicatos
LR OO
Indirect ~ DMoto1 [F3sA Indicates

' [
DM 0324 55655

DM 0325 [2506 | . 5555 moved
DM 0326 | D541 to LR 00.

3-5-2 Parameter and Parameter Backup Areas

System Command

Basic Operation

38

1, 2, 3...

The Parameter Area (DM 0900 to DM 0929) and the Parameter Backup Area
(DM 1900 to DM 1929) contain parameters that contro! various aspects of
PC operation, enabling greater system fiexibility. These parameters are writ-
{en to the Parameter Area with a Programming Device such as a Program-
ming Console, and then copied to the Parameter Backup Area.

In the event of a power interruption, the contents of the Parameter Area will
be maintained for only 5 minutes by a capacitor backup. Always backup the
parameters in the Parameter Backup Area, which will retain its data indefi-
nitely because it is in EEPROM.

The system command executes the 7 basic operations that control the Pa-
rameter Area. The system command is executed by manipulating the content
of AR 14 with a Programming Device. Refer to 3-4-2 System Command Bits
for details.

The Parameter Backup Area is allocated exactly like the Parameter Area and
is used to back up Parameter Area settings. The procedure for using these
areas is as follows:

1. Data is first set into the Parameter Area from a Peripheral Device or via
programming instructions.

2. The system command is used to make these new settings effective (i.e.,
write them into the system) and generate a checksum for them. The
checksum is used to check the accuracy of data in later operations. Each
value is checked when it is set into the system and if an invalid value is
discovered, the default value is used.

3. The system command is next used to transfer Parameter Area settings to
the Parameter Backup Area and make it the valid area.

4. To change parameters once they have been set into the Parameter
Backup Area, the Parameter Backup Area is disabled using the system
command and then settings in the Parameter are changed and the oper-
ation is repeated.

DM (Data Memory) Area

Section 3-5

&Cauﬁon

Checksum

Operation On Startup

Parameter and Parameter
Backup Area Allocations

The system command can aiso be used to clear the contents of the Parame-
ter Area.

Input data into the Parameter Area carefully. If parameter settings are incorrect,
the PC may not operate correctly. If a setting is found to be invalid, the default
setling is used.

Whenever the system command is used to enable data in the Parameter
Area or transfer data to the Parameter Backup Area, a checksum is gener-
ated. This checksum is a numeric value computed from the contents of the
area and copied along with it. The copy (or the original file) can then be
checked later to see if the same value (i.e., the checksum) resuits from the
same computations. If the checksum disagrees with the previous one, it is
assumed that data has changed and is no longer valid.

The checksums for the Parameter and Parameter Backup Areas are checked
whenever new data is set, including data set at startup. If a checksum is
found to be incorrect, the data is not used and alternate measures are taken
(see next section for details).

When the PC is started, the parameters must be reset into the system. If the
Parameter Backup Area is the valid area and it's checksum is okay, its con-
tents are transferred to the Parameter Area and from there it is set into the
system.

If the Parameter Backup Area is not valid or if its checksum is incorrect, the
data in the Parameter Area is set into the system, assuming its checksum is
okay.

If the checksum for the Parameter Backup Area is incorrect, the default val-
ues for all settings in the Parameter Area are set into the system and an 9F
FAL number is output and AR 1315 (Parameter/Backup Area Checksum
Flag) is turned ON.

When parameters are finally set into the system, they are each checked for
validity and default parameters are set for any invalid ones regardless of the
method used to set parameters.

The following table shows the allocations of words and bits in the Parameter
and Parameter Backup Areas. The first DM address is the Parameter Area
address. The contents of these words can be changed either via program-
ming instructions or via a Peripheral Device (e.g., Programming Console).
The second DM address (given in parenthesis) is the Parameter Backup
Area address. The contents of these words can be updated by executing the
system command with a command code to backup parameters (02).

39

DM (Data Memory) Area Section 3-5

The following table is designed to first provide the name and sometimes a
basic description of the function of each, and then, if necessary, to detail the
operation of each bit. The top line of the header thus applies to the first (and
sometimes only) line of the table for each DM address. The next line applies
to the remaining lines for each DM address.

Address Name/Description Default
Bit | Content/Meaning

DM 0900 (DM 1900) Operating Mode on Startup Key switch
Bits 00 to 07 designate the PC mode on startup if bits 08 to 15 are setto
02. If bits 08 to 15 are set to 00, the PC startup mode will be designated
by the key switch on the Programming Console. If bits 08 to 15 are setto
01, the PC startup mode will be the same mode as it was when the PC
was last turned off.

0010 07 | 00: PROGRAM
01: MONITOR
02: RUN

0810 15 | 00: As set on Programming Console key switch
. 01: Mode when PC was last turned off (in AR 15)
02: Mode set in bits 00 to 07, above

DM 0901 (DM 1901) Cycle Time Limit 100 ms
A cycle time limit can be set in bits 00 to 07 that will be valid if bits 08 to
10 are set to 01. If bits 08 to 15 are set to 00, the cycle time limit will be
100 ms.

0010 07 | Cycle time limit in units of ten milliseconds. Setting is
between 00 and 99 in BCD resuiting in cycle time limits
between 000 and 990 ms, respectively.

081to 15 | 00: Bits 00 to 07 disabled (i.e., cycle time limit is 100 ms)
01: Bits 00 to 07 enabied

DM 0902 (DM 1902) Peripheral Device Service Time 5%
The percent of the cycle time allocated to servicing the Programming
Console and other Peripheral Devices connected to the CPU can be set
in bits 00 to 07. This value will be valid if bits 08 to 10 are set to 01. If bits
08 to 15 are set to 00, the service time will be 5%. The Device will be
serviced for at least 1 ms regardiess of the cycle time and this setting.

0010 07 | Percent of cycle time allocated to Device servicing between
00 and 99 in BCD.

08to 15 | 00: Bits 00 to 07 disabled (i.e., servicing set to 5%)
01: Bits 00 to 07 enabled

DM 0903 (DM 1903) Host Link Service Time 5%
The percent of the cycle time allocated to Host Link servicing can be set
in bits 00 to 07. This value will be valid if bits 08 to 10 are set to 01. If bits
08 to 15 are set 1o 00, the service time will be set to 5%. The minimum
service time is 1 ms regardless of the cycle time and this setting.

00to 07 | Percent of cycle time allocated to Host Link servicing
between 00 and 99 in BCD.

08to 15 | 00: Bits 00 to 07 disabled (i.e., servicing set to 5%)
01: Bits 00 to 07 enabled

DM 0804 (DM 1904) Programming Console Message Language Bits English
Bits 00 to 07 are not used. Bits 08 to 15 determine the language
displayed on the Programming Console.

0810 15 | 00: English
01: Japanese

40

DM (Data Memory) Area

Section 3-5

Address

Name/Description

Bit

| Content/Meaning

Default

DM 0905 to DM 0919
(DM 1905 to DM 1919)

Not used.

DM 0920 (DM 1920)-

00 to 07

Host Link Communications Format Selection

00: Standard
(1 start bit, 7-bit data length, even parity, 2 stop bits,
19,200 baud)

01: Custom settings
{i.e., according to contents of DM 0921)

Standard

0810 15

Not used.

DM 0921 (DM 1921)

00 to 07

Baud Rate (if DM 0920 bits 00 to 07 are 01)
00: 300 bps

01: 600 bps

02: 1,200 bps

03: 2,400 bps

04: 4,800 bps*

05: 9,600 bps

06: 19,200 bps

19200 bps

08to 15

Data Format (if DM 0920 bits 00 to 07 are 01)
00: 1 start bit, 7-bit data, 2 stop bits, even parity
01: 1 start bit, 7-bit data, 2 stop bits, odd parity

1 start bit, 7-bit
data, 2 stop bits,
even parity

02: 1 start bit, 8-bit data, 1 stop bits, no parity
03: 1 start bit, 8-bit data, 2 stop bits, no parity
04: 1 start bit, 8-bit data, 1 stop bits, even parity
05: 1 start bit, 8-bit data, 1 stop bits, odd parity

DM 0922 (DM 1922) 0010 07 | Host Link Transmission Delay 0Oms

In tenths of milliseconds between 00 and 99 (BCD,
correspond to 000 and 990 ms delays, respectively)

08to 15 Not used. -

DM 0923 to DM 0929
(DM 1923 to DM 1929)

Not used. -

3-5-3 User Program Header Area

DM 1990 to DM 1999 can be used to record the program’s title, version and
the date that the program was created, as shown below.

Address* Bits Contents
DM 1990 00to 07 | Program version number in BCD without the decimal
(For example, a value of 12 indicates version 1.2.)
0810 15 | Name/version Enable Bit (Set to 5A to enable the name
and version. These will not be displayed on the
Programming Console unless enabled. Any other value
will disable the name and version.)
DM 1991to }00to 15 | Program name in ASCII, eight characters. Characters
DM 1994 are displayed on the Programming Console in order
from DM 1991 to DM 1994, with the leftmost ASCil
character in each word (bits 08 to 15) displayed to the
left of the rightmost (bits 00 to 07).
DM 1995 0010 07 | Seconds of creation date
08to 15 | Minutes of creation date
DM 1996 00to 07 | Hour of creation date
081015 | Day of month of creation date
DM 1997 001to 07 | Month of creation date
0810 15 | Year of creation date
DM 199510 | Not used.
DM 1999

41

LR Area Section 3-8

This information {except for the seconds) can aiso be displayed on the Pro-
gramming Console by pressing CLR, SFT, and MONTR (see 7-2-6 Program
Header Display for details).

3-6 HR (Holding Relay) Area

The HR area is used to store/manipulate various kinds of data and can be
accessed either by word or by bit. Word addresses range from HR 00
through HR 99; bit addresses, from HR 0000 through HR 9915. HR bits can
be used in any order required and can be programmed as often as required.

The HR area retains status when the system operating mode is changed or
PC operation is stopped, but the C20HB-TS has a capacitor backup, not a
battery backup, so the HR area retains status for only 5 minutes when power
is interrupted. Since the HR area status isn’t reliable when the PC has been
off for 5 minutes or more, the HR area must be initialized when the PC is
turned on if HR area data is required in the program.

HR bits also have various special applications, such as creating latching re-
lays with the Keep instruction and forming self-holding outputs. These are
discussed in Section 4 Writing and Entering Programs and Section 5 Instruc-
tion Set. .

3-7 TC (Timer/Counter) Area

The TC area is used to create and program timers and counters and holds
the Completion flags, set values (SV), and present values (PV) for all timers
and counters. All of these are accessed through TC numbers ranging from
TC 000 through TC 511. Each TC number is defined as either a timer or
counter using one of the following instructions: TIM, TIMH(15), CNT, or
CNTR(12). No prefix is required when using a TC number in a timer or
counter instruction. ‘

Once a TC number has been defined using one of these instructions, it can-
not be redefined elsewhere in the program either using the same or a differ-
ent instruction. If the same TC number is defined in more than one of these
instructions or in the same instruction twice, an error will be generated during
the program check. There are no restrictions on the order in which TC num-
bers can be used.

The TC area retains the SVs of both timers and counters during power inter-
ruptions. The PVs of timers are reset when PC operation is begun and when
reset in interlocked program sections. The PVs of counters are not reset at
these times.

Note Use the first 16 TC numbers (TC 000 through TC 015) for TIMH(15) when
the cycle time is longer than 10 ms. The high-speed timer might not count
accurately if higher TC numbers are used, because the higher TC numbers
do not generate interrupts.

3-8 LR (Link Relay) Area

The LR area is used as a common data area by PCs that support a PC Link
System, but the C20HB-TS does not support the PC Link System, so the LR
area is available for use in the program as work words and bits.

The LR area is accessible either by bit or by word. LR area word addresses
range from LR 00 to LR 63; LR area bit addresses, from LR 0000 to
LR 6315.

LR area data is not retained when the power is interrupted, when the PC is
changed to PROGRAM mode, or when it is reset in an interlocked program
section.

42

TR (Temporary Relay) Area Section 3-9

3-9 TR (Temporary Relay) Area

The TR area provides eight bits that are used only with the LD and OUT in-
structions to enable certain types of branching ladder diagram programming.
The use of TR bits is described in Section 4 Writing and Entering Programs.

TR addresses range from TR 0 though TR 7. Each of these bits can be used
as many times as required and in any order required as long as the same TR
bit is not used twice in the same instruction block.

43

SECTION 4
Writing and Entering Programs

This section explains the basic steps and concepts involved in writing a basic ladder diagram program, inputting the pro-
gram into memory, and executing it. The entire set of instructions used in programming is described in Section 5 Instruc-
tion Set.

4-1 BasicProcedureuiuiiuiniirii i 46
4-2 Instruction TerminolOgY - - .. vvvvren ittt et e e e e e e 46
4-3 Ladder Diagramscuennuirierninunnennseieet e, 47
4-3-1 BaSiCTeIMS ..ottt e e 48
432 MnemonicCode . . .uuvt ittt e 48
4-4 The Programming ConsOleiuiuiinir it 50
4-4-1 TheKeyboardoiiiiiiiiiiii ittt 51
4-4-2 POMOGES . v veeie ettt e et e it 53
4-5 Preparation for Operation e e e e, 54
4-5-1 Enteringthe Passwordottt 54
4-5-2 Cleanng MemOTY ..o vttt ittt et e e e e 55
4-5-3 Clearing Error MeSsagesvuruneeneeiieen e eeeee e 57
4-6 Inputting, Modifying, and Checking the Programoouuureunennnnnnn.. 58
4-6-1 Setting and Reading from Program Memory Address 58
4-6-2 Entering or Editing Programsc0ciiiineinenannn, 59
4-6-3 Checkingthe Programcouiiiiiiin i, 62
4-6-4 Displayingthe Cycle TImecooeiiniiinine i, 64
4-6-5 Program Searchescioiiiiiitiiiii 65
4-6-6 Inserting and Deleting InStructionsoieeeeeinnnnnnnnnn... 67
4-6-7 Branching InstructionLines i i, 69
4-6-8 JUMIDS . oottt e 74
4-7 Controlling Bit StAtUSottt ittt e e e e 76
4-7-1 DIFFERENTIATE UP and DIFFERENTIATEDOWN 76
4-T-2 KEEP ittt et e e e 76
4-7-3 Self-maintaining Bits (Seal)vititiiniiie e 77
4-8 Work Bits (Internal ReIaYS)uuuvriieninint ettt ie e e e 77
4-9 Programming Precaltionsiiiiniiiii e 79
4-10 Program EXeCUtiono.uutnniini it e e 81

45

Instruction Terminology

. Section 4-2

4-1 Basic Procedure

1,2, 3.

There are several basic steps involved in writing a program. Sheets that can
be copied to aid in programming are provided in Appendix B Word Assign-
ment Recording Sheets and Appendix C Program Coding Sheet.

1. Obtain a list of all /O devices and the 1/O points that have been assigned
to them and prepare a table that shows the I/O bit allocated to each /O
device.

2. if the PC has any Units that are allocated words in data areas other than
the IR area or are allocated IR words in which the function of each bit is
specified by the Unit, prepare similar tables to show what words are used
for which Units and what function is served by each bit within the words.

3. Determine what words are available for work bits and prepare a table in
which you can allocate these as you use them.

4. Also prepare tables of TC numbers and jump numbers so that you ¢an
allocate these as you use them. Remember, the function of a TC number
can be defined only once within the program; jump numbers 01 through
99 can be used only once each. (TC numbers are described in 5-8 Timer
and Counter Instructions; jump numbers are described later in this sec-
tion.) :

5. Draw the ladder diagram.

6. Input the program into the CPU. When using the Programming Console,
this will involve converting the program to mnemonic form.

7. Check the program for syntax errors and correct these.
8. Execute the program to check for execution errors and correct these.

9. After the entire Control System has been instalied and is ready for use,
execute the program and fine tune it if required.

10. Back up the program.

The basics of ladder-diagram programming and conversion to mnemonic
code are described in 4-3 Basic Ladder Diagrams. Preparing for and input-
ting the program via the Programming Console are described in 4-4 The Pro-
gramming Console through 4-6 Inputting, Modifying, and Checking the Pro-
gram. The rest of Section 4 covers more advanced programming, program-
ming precautions, and program execution. All special application instructions
are covered in Section 5 Instruction Set. Debugging is described in Section 7
Debugging and Execution. Section 9 Troubleshooting also provides informa-
tion required for debugging.

4-2 Instruction Terminology

1,2, 3...

46

There are basically two types of instructions used in ladder-diagram pro-
gramming:

1. Instructions that correspond to the conditions on the ladder diagram and
are used in instruction form only when converting a program 1o mne-
monic code.

2. Instructions that are used on the right side of the ladder diagram and are
executed according to the conditions on the instruction lines leading to
them.

Ladder Diagrams

Section 4-3

Most instructions have at least one or more operands associated with them.
Operands indicate or provide the data on which an instruction is to be per-
formed. These are sometimes input as the actual numeric values, but are
usually the addresses of data area words or bits that contain the data to be
used. For instance, a MOVE instruction that has IR 000 designated as the
source operand will move the contents of IR 000 to some other location. The
other location is also designated as an operand. A bit whose address is des-
ignated as an operand is called an operand bit; a word whose address is -
designated as an operand is called an operand word. If the actual value is
entered as a constant, it is preceded by # to indicate that it is not an address.

Other terms used in describing instructions are introduced in Section 5 In-
struction Set.

4-3 Ladder Diagrams

Note

A ladder diagram consists of one line running down the left side with lines
branching off to the right. The line on the left is called the bus bar; the
branching lines, instruction lines or rungs. Along the instruction lines are
placed conditions that lead to other instructions on the right side. The logical
combinations of these conditions determine when and how the instructions at
the right are executed. A ladder diagram is shown below.

00000 06315 25208 HR0108 LR2503 24400 24401
L it 1V 1V 11 "
I il p (i p 4 1 @
00001 00501 00502 00503 00504
1t)4 iy 4 | V. \V
I p g p (i p (o
00100 00002 00003 HR 0050 00007 TIM 001 LROS15 00403 00405
1 (P4 1L] L 1V)4 il 11 3
4 —H———H p i ir i @
00010 21001 21002
3L) 4 [Jd
H y ¢ I ¢
00011 21005 21007
1L 1V 1
1 M

As shown in the diagram above, instruction lines can branch apart and they
can join back together. The vertical pairs of lines are called conditions. Con-
ditions without diagonal lines through them are called normally open condi-
tions and correspond to a LOAD, AND, or OR instruction. The conditions with
diagonal lines through them are called normally closed conditions and corre-
spond to a LOAD NOT, AND NOT, or OR NOT instruction. The number
above each condition indicates the operand bit for the instruction. It is the
status of the bit associated with each condition that determines the execution
condition for following instructions. The way the operation of each of the in-
structions corresponds to a condition is described below. Before we consider
these, however, there are some basic terms that must be explained.

When displaying ladder diagrams with a FIT, or LSS, a second bus bar will be
shown on the right side of the ladder diagram and will be connected to all
instructions on the right side. This does not change the ladder-diagram pro-
gram in any functional sense. No conditions can be placed between the in-
structions on the right side and the right bus bar, i.e., all instructions on the
right must be connected directly to the right bus bar. Refer to the FIT or LSS
Operation Manual for details.

47

Ladder Diagrams

Section 4-3

4-3-1 Basic Terms

Normally Open and
Normally Closed
Conditions

Execution Conditions

Operand Bits

Logic Blocks

Each condition in a ladder diagram is either ON or OFF depending on the
status of the operand bit that has been assigned to it. A normally open condi-
tion is ON if the operand bit is ON; OFF if the operand bit is OFF. A normally
closed condition is ON if the operand bit is OFF; OFF if the operand bitis
ON. Generally speaking, you use a normally open condition when you want
something to happen when a bit is ON, and a normally closed condition when
you want something to happen when a bit is OFF.

00000 . .
i E—— Instruction is executed
ir i
Normally open :l when IR 00000 is ON.
condition
00000 .
Ly retroct Instruction is executed
i {tmnen] ihen IR 00000 is OFF.
Normally closed
condition

In ladder diagram programming, the logical combination of ON and OFF con-
ditions before an instruction determines the compound condition under which
the instruction is executed. This condition, which is either ON or OFF, is
called the execution condition for the instruction. All instructions other than
LOAD instructions have execution conditions.

The operands designated for any of the ladder instructions can be any bit in
the IR, SR, HR, AR, LR, or TC areas. This means that the conditions ina
ladder diagram can be determined by /O bits, flags, work bits, timers/count-
ers, etc. LOAD and QUTPUT instructions can also use TR area bits, but they
do so only in special applications. Refer to 4-6-7 Branching Instruction Lines
for details.

The way that conditions correspond to what instructions is determined by the
relationship between the conditions within the instruction lines that connect
them. Any group of conditions that go together to create a logic result is
called a logic block. Although ladder diagrams can be written without actually
analyzing individual logic blocks, understanding logic blocks is necessary for
efficient programming and is essential when programs are to be input in mne-
monic code.

4-3-2 Mnemonic Code

48

The ladder diagram cannot be directly input into the PC via a Programming
Console; a FIT or LSS is required. To input from a Programming Console, it
is necessary to convert the ladder diagram to mnemonic code. The mnemon-
ic code provides exactly the same information as the ladder diagram, butin a
form that can be typed directly into the PC. Actually you can program directly
in mnemonic code, although it in not recommended for beginners or for com-
plex programs. Also, regardiess of the Programming Device used, the pro-
gram is input in mnemonic form, making it important to understand mnemon-
ic code.

Because of the importance of the Programming Console as a peripheral de-
vice and because of the importance of mnemonic code in complete under-
standing of a program, we will introduce and describe the mnemonic code
along with the ladder diagram. Remember, you will not need to use the mne-
monic code if you are inputting via a FIT or LSS (although you can use it with
these devices too, if you prefer).

Ladder Diagrams

Section 4-3

Program Memory Structure

The program is input into addresses in Program Memory. Addresses in Pro-
gram Memory are slightly different to those in other memory areas because
each address does not necessarily hold the same amount of data. Rather,
each address holds one instruction and all of the definers and operands (de-
scribed in more detail later) required for that instruction. Because some in-
structions require no operands, while others require up to three operands,
Program Memory addresses can be from one to four words long.

Program Memory addresses start at 00000 and run until the capacity of Pro-
gram Memory has been exhausted. The first word at each address defines
the instruction. Any definers used by the instruction are also contained in the
first word. Also, if an instruction requires only a single bit operand (with no
definer), the bit operand is also programmed on the same line as the instruc-
tion. The rest of the words required by an instruction contain the operands
that specify what data is to be used. When converting fo mnemonic code, all
but ladder diagram instructions are written in the same form, one word to a
line, just as they appear in the ladder diagram symbols. An example of mne-
monic code is shown below.

Address | Instruction Operands
00000 LD HR 0001
00001 AND 00001
00002 OR 00002
00003 LD NOT 00100
00004 AND 00101
00005 AND LD 00102
00006 MOV(21)

000
DM 0000
00007 CMP(20)
DM 0000
HR 00
00008 LD 25505
00009 OuT 00501
00010 MOV(21)
DM 0000
DM 0500
00011 DIFU(13) 00502
00012 AND 00005
00013 ouT 00503

The address and instruction columns of the mnemonic code table are filled in
for the instruction word only. For additional data lines, the left two columns
are left blank. If the instruction requires no definer or bit operand, the oper-
and column is left blank for first line. It is a good idea to cross through any
blank data column spaces (for all instruction words that do not require data)
so that the data column can be quickly scanned to see if any addresses have
been left out.

When programming, addresses are automatically displayed and do not have
1o be input unless for some reason a different location is desired for the in-
struction. When converting to mnemonic code, it is best to start at Program
Memory address 00000 unless there is a specific reason for starting else-
where.

49

The Programming Console Section 4-4

4-4 The Programming Console

Once a program has been written, it must be input into the PC. This can be
done in graphic (ladder diagram) form using a FIT or LSS. The most common
way of inputting a program, however, is through a Programming Console us-
ing mnemonic code. This section describes the Programming Console and
the operation necessary to prepare for program input. Refer to 4-6 Inputting,
Modifying, and Checking the Program for details on actual procedures for
inputting the program into memory.

Depending on the model of Programming Console used, it is either con-
nected to the CPU via a Programming Console Adapter and Connecting Ca-
ble or it is mounted directly to the CPU.

C200H-PRO27-E The following diagram shows the main components of the C200H-PRO27-E
Programming Console Programming Console.
Displays programming and ! !
monitoring information. b
wr';"?nann
Mode Switch) [~ iR ey 3
Sets the PC's operating —r—— =] peciies a key's secon
mode. il function.
SeH Sl evrfiom foun {2
e G e ou foSpiced]
Keyboard Keys - - -
Firf~s § & fiser] cee|fwn
' 1 ° 2 § 3 HREsETf INs|} @
Ta— CLR | YZR [IWITE(} O
N
C250HL-PRO31-TS The foliowing diagram shows the main components of the C250HL-
Programming Console PRO31-TS Programming Console.
LCD Display
Displays programming and | we=_, | BE=f=] EEPROM Sacket .
monitoring information An EPROM chip can be in-
: \‘~F serted in this socket. Referto
TR Y 7-3 C250HL-PRO31-TS
- bl PROM Writer Operations for
Mode Switch = details.
Sets the PC's operating
mode.
—-@-\ Shift Key
=B = Specifies a key's second
EE R function.
1394 55
Keyboard Keys ==——dlIWT3] ¢ Foifin
R XN N %
e an 44
Pox tET

50

The Programming Console

Section 4-4

4-4-1 The Keyboard

White: Numeric Keys

Red: CLR Key

Yeliow: Operation Keys

Gray: Instruction and Data
Area Keys

The keyboard of the Programming Console is functionally divided by key
color into the following four areas:

The ten white keys are used to input numeric program data such as program
addresses, data area addresses, and operand values. The numeric keys are
also used in combination with the function key (FUN) to enter instructions
with function codes.

The CLR key clears the display and cancels current Programming Console
operations. It is also used when you key in the password at the beginning of
programming operations. Any Programming Console operation can be can-
celled by pressing the CLR key, although the CLR key may have to be
pressed two or three times to cancel the operation and clear the display.

The yellow keys are used for writing and correcting programs. Detailed ex-
planations of their functions are given later in this section.

Except for the SHIFT key on the upper right, the gray keys are used to input
instructions and designate data area prefixes when inputting or changing a
program. The SHIFT key is similar to the shift key of a typewriter, and is used
1o alter the function of the next key pressed. (It is not necessary to hold the
SHIFT key down; just press it once and then press the key to be used with
it.)

51

The Programming Console

Section 4-4

52

The gray keys other than the SHIFT key have either the mnemonic name of
the instruction or the abbreviation of the data area written on them. The func-

tions of these keys are described below.

B [

Pressed before the function code when inputting an instruction
via its function code.

Pressed to enter SFT (the Shift Register instruction).
Input either after a function code to designate the differentiated
form of an instruction or after a ladder instruction to designate

an inverse condition.

Pressed to enter AND (the AND instruction) or used with NOT
to enter AND NOT.

Pressed to enter OR (the OR instruction) or used with NOT to
enter OR NOT.

Pressed to enter CNT (the Counter instruction) or to designate
a TC number that has already been defined as a counter.

Pressed to enter LD (the Load instruction) or used with NOT to
enter LD NOT. Also pressed to indicate an input bit.

Pressed to enter OUT (the Output instruction) or used with
NOT to enter OUT NOT. Also pressed to indicate an output bit.

Pressed to enter TIM (the Timer instruction) or to designate a
TC number that has already been defined as a timer.
Pressed before designating an address in the TR area.
Pressed before designating an address in the LR area.
Pressed before designating an address in the HR area.
Pressed before designating an address in the AR area.
Pressed before designating an address in the DM area.
Pressed before designating an indirect DM address.

Pressed before designating a word address.

Pressed before designating an operand as a constant.

Pressed before designating a bit address.

The Programming Console

Section 4-4

4-4-2 PC Modes

/\ DANGER!

Mode Changes

The Programming Console is equipped with a switch to control the PC mode.
To select one of the three operating modes—RUN, MONITOR, or PRO-
GRAM—use the mode switch. The mode that you select will determine PC
operation as well as the procedures that are possible from the Programming
Console.

RUN mode is the mode used for normal program execution. When the switch
is set to RUN and the START input on the CPU Power Supply Unit is ON, the
CPU will begin executing the program according to the program written in its
Program Memory. Although monitoring PC operation from the Programming
Console is possible in RUN mode, no data in any of the memory areas can
be input or changed.

MONITOR mode allows you to visually monitor in-progress program execu-
tion while controlling /O status, changing PV (present values) or SV (set val-
ues), etc. In MONITOR mode, I/O processing is handled in the same way as
in RUN mode. MONITOR mode is generally used for trial system operation
and final program adjustments.

In PROGRAM mode, the PC does not execute the program. PROGRAM
mode is for creating and changing programs, clearing memory areas, and
registering and changing the /O table. A special Debug operation is also
available within PROGRAM mode that enables checking a program for cor-
rect execution before trial operation of the system.

Do not leave the Programming Console connected to the PC by an extension
cable when in RUN mode. Noise entering via the extension cable can enter the
PC, affecting the program and thus the controlled system.

When the PC is turned on, the initial operating mode is affected by any Pe-
ripheral Device connected or mounted to the CPU as well as by desngnatlons
made in DM 0900 as shown in the following table:

Setting in DM 0900, bits 08 to 15

CPU connector Initial operating mode

Set to start in mode set on

Programming Console mode switch

Nothing connected RUN/CONSOLE mode

Programming Console mounted Mode set on mode switch and
CONSOLE mode

Peripheral Interface Unit mounted PROGRAM/CONSOLE mode

Set to continue mode PC was in
when last turned off

Nothing connected
Programming Console mounted
Peripheral Interface Unit mounted

Mode the PC was in when turned off.

Set to start in mode set in
bits 00 to 07 of DM 0800

Nothing connected
Programming Console mounted
Peripheral Interface Unit mounted

Mode set in bits 00 to 07 of DM 0900

/\ DANGER!

If the PC power supply is already turned on when a Peripheral Device is at-
tached to the PC, the PC will stay in the same mode it was in before the Pe-
ripheral Device was attached. The mode can be changed with the mode
switch on the Programming Console once the password has been entered.
The mode will not change when a peripheral device is removed from the PC
after PC power is turned on.

Always confirm that the Programming Console is in PROGRAM mode when
turning on the PC with a Programming Console connected unless another mode
is desired for a specific purpose. If the Programming Console is in RUN mode
when PC power is turned on, any program in Program Memory will be executed,
possibly causing a PC-controlled system to begin operation.

53

Preparation for Operation

Section 4-5

4-5 Preparation for Operation

1,2, 3.

This section describes the procedures required to begin Programming Con-
sole operation. These include password entry, clearing memory, error mes-

sage clearing, and /O table operations. I/0 table operations are also neces-
sary at other times, e.g., when changes are to be made in Units used in the

PC configuration.

The following sequence of operations must be performed before beginning
initial program input.
1. Confirm that all wiring for the PC has been installed and checked prop-
erly.
2. Confirm that a CPU’s write-enable switch is ON.

3. Connect the Programming Console to the PC. Make sure that the Pro-
gramming Console is securely connected or mounted to the CPU; im-
proper connection may inhibit operation.

4. Set the mode switch to PROGRAM mode.
5. Turn on PC power.

6. Enter the password.

7. Clear memory.

Each of these operations from entering the password on is described in detail
in the following subsections. All operations should be done in PROGRAM
mode unless otherwise noted.

4-5-1 Entering the Password

54

To gain access to the PC’s programming functions, you must first enter the
password. The password prevents unauthorized access to the program.

The PC prompts you for a password when PC power is turned on or, if PC
power is already on, after the Programming Console has been connected to
the PC. To gain access to the system when the “Password!” message ap-
pears, press CLR and then MONTR. Then press CLR to clear the display.

If the Programming Console is connected to the PC when PC power is al-
ready on, the first display below will indicate the mode the PC was in before
the Programming Console was connected. Ensure that the PC is in PRO-
GRAM mode before you enter the password. When the password is en-
tered, the PC will shift to the mode set on the mode switch, causing PC op-
eration to begin if the mode is set {o RUN or MONITOR. The mode can be
changed to RUN or MONITOR with the mode switch after entering the pass-
word.

“FROGRAM: =
|

ﬁ SPROGRAM
FASSWORD

Indicates the mode set by the mode selector switch.

Preparation for Operation

Section 4-5

Beeper

8.Immediately after the password is input or anytime immediately after the
mode has been changed, SHIFT and then the 1 key can be pressed to turn
on and off the beeper that sounds when Programming Console keys are
pressed. If BZ is displayed in the upper right corner, the beeper is operative.
If BZ is not displayed, the beeper is not operative.

This beeper also will also sound whenever an error occurs during PC opera-
tion. Beeper operation for errors is not affected by the above setting.

4-5-2 Clearing Memory

Key Sequence

Using the Memory Clear operation it is possible to clear all or part of the Pro-

- gram Memory, and the IR, HR, AR, DM and TC areas. Unless otherwise

specified, the clear operation will clear all of the above memory areas, pro-
vided that the CPU's write-enable switch is ON. If the write-enable switch is
OFF, Program Memory and DM 1000 through DM 1999 will not be cleared.
(The system DM areas, DM 0800 to DM 0999 and DM 1800 to DM 1999, will
not be cleared in any circumstances.)

Before beginning to programming for the first time or when installing a new
program, all areas should normally be cleared. Before clearing memory,
check o see whether there is already a program loaded. If there is one, de-
termine whether it is one that you need. If you do need the program, clear
only the memory areas that you do not need. Check the existing program
with the program check key sequence before using it. The check sequence is
provided later in this section. Further debugging methods are provided in
Section 7 Program Debugging and Execution. To clear all memory areas
press CLR until all zeros are displayed, and then input the keystrokes given
in the top line of the following key sequence. The branch lines shown in the
sequence are used only when performing a partial memory clear, which is
described below.

Memory can be cleared in PROGRAM mode only.

CLR FLAY NOT [rec | 2| MONTR
SET | REsET|]
- [Address] = Program Memory cleared
from designated address.
Both AR and HR areas ::B—, .-
TC area 2 a—» r - - Retained if pressed
DM area ‘E— S

55

Preparation for Operation Section 4-5

All Clear The following procedure is used to clear memory completely.
MEMORY EER
— = - — Continue pressing
oY FRIL FHL =2E the CLR key once for
——— each error message
until “00000" appears
on the display.
AN | S S
an | | HEREER —
SET
rec | | BEEEE MEM CLE ¢
RESET HRE CHT DM — Allclear
paaoEMEM CLE
l"°""‘ EMIx HR CHT DM [—
Partial Clear Itis possible to retain the data in specified areas or part of the Program

Memory. To retain the data in the HR and AR, TC, and/or DM areas, press
the appropriate key after entering REC/RESET. HR is pressed to designate
both the HR and AR areas. In other words, specifying that HR is to be re-
tained will ensure that AR is retained aiso. If not specified for retention, both
areas will be cleared. CNT is used for the entire TC area. The dusplay will
show those areas that will be cleared.

It is also possible to retain a portion of the Program Memory from the begin-
ning to a specified address. After designating the data areas 1o be retained,
specify the first Program Memory address 1o be cleared. For example, to
leave addresses 00000 to 00122 untouched, but to clear addresses from
00123 to the end of Program Mefmory, input 00123.

56

Preparation for Operation

Section 4-5

To leave the TC area uncleared and retaining Program Memory addresses
00000 through 00122, input as follows:

CC2)

4-5-3 Clearing Error Messages

Any error messages recorded in memory should be cleared. It is assumed
here that the causes of any of the errors for which error messages appear
have already been taken care of. If the beeper sounds when an attempt is
made to clear an error message, eliminate the cause of the error, and then

Key Sedquence

clear the error message (refer to Section 9 Troubleshooting).

BEOOE

BEEEEMEM CLRE 7
HRE CHT DM

BEBEEMEM CLR 7
HE K]y

HEl23MEM CLR 7
HF.Z L

BEEBEMEM CLE

EMD HE [KIg!

To display any recorded error messages, press CLR, FUN, and then
MONTR. The first message will appear. Pressing MONTR again will clear the
present message and display the next error message. Continue pressing

MONTR until all messages have been cleared.

Although error messages can be accessed in any mode, they can be cleared
only in PROGRAM mode.

6

=

57

Inputting, Modifying, and Checking the Program Section 4-6

4-6 Inputting, Modifying, and Checking the Program

Once a program is written in mnemonic code, it can be input directly into the
PC from a Programming Console. Mnemonic code is keyed into Program
Memory addresses from the Programming Console. Checking the program
involves a syntax check to see that the program has been written according
to syntax rules. once syntax errors are corrected, a trial execution can begin
and, finally, correction under actual operating conditions can be made.

The operations required to input a program are explained below. Operations
to modify programs that already exist in memory are also provided in this
section, as well as the procedure to obtain the current cycle time.

Before starting to input a program, check to see whether there is a program
already loaded. If there is a program already loaded that you do not need,
clear it first using the program memory clear key sequence, then input the
new program. If you need the previous program, be sure to check it with the
program check key sequence and correct it as required. Further debugging
methods are provided in Section 7 Debugging and Execution.

4-6-1 Setting and Reading from Program Memory Address

Key Sequence

58

When inputting a program for the first time, it is generally written to Program
Memory starting from address 00000. Because this address appears when
the display is cleared, it is not necessary to specify it.

When inputting a program starting from other than 00000 or to read or modify
a program that already exists in memory, the desired address must be desig-
nated. To designate an address, press CLR and then input the desired ad-
dress. Leading zeros of the address need not be input, i.e., when specifying
an address such as 00053 you need to enter only 53. The contents of the
designated address will not be displayed until the down key is pressed.

Once the down key has been pressed to display the contents of the desig-
nated address, the up and down keys can be used to scroll through Program
Memory. Each time one of these keys is pressed, the next or previous word
in Program Memory will be displayed.

If Program Memory is read in RUN or MONITOR mode, the ON/OFF status
of any displayed bit will also be shown.

0

Inputting, Modifying, and Checking the Program

Example

=)
)
¥
Y]
Y]
Y]
Y]

Section 4-6

If the following mnemonic code has already been input into Program Memory,
the key inputs below would produce the displays shown.

HEEEE Address { Instruction Operands
00200 | LD 00000

T r—— 00201 | AND 00001

HEIHE 00202 | TIM 000

0123

00203 LD 00100

BHEZEEREEAD OFF

L[BEOBE

BEZEIRERD M

AHD HEEE]

BEZBZREERAD OFF

TIH BEE

BEZR2

TIM #E123E

BEZBIRERD o

L BELEE

4-6-2 Entering or Editing Programs

Programs can be entered or edited only in PROGRAM mode. The write-en-
able switch on the CPU must also be set to ON.

The same procedure is used to either input a program for the first time or to
edit a program that already exists. In either case, the current contents of Pro-
gram Memory is overwritten, i.e., if there is no previous program, the
NOP(00) instruction, which will be written at every address, will be overwrit-
ten.

To input a program, just follow the mnemonic code that was produced from
the ladder diagram, ensuring that the proper address is set before starting.
Once the proper address is displayed, input the first instruction word, press
WRITE. Next, input any operands required, and press WRITE after each, i.e.,
WRITE is pressed at the end of each line of the mnemonic code. When
WRITE is pressed, the designated instruction will be entered and the next
display will appear. If the instruction requires fwo or more words, the next
display will indicate the next operand required and provide a default value for
it. If the instruction requires only one word, the next address will be dis-
played. Continue inputting each line of the mnemonic code until the entire
program has been entered.

When inputting numeric values for operands, it is not necessary to input lead-
ing zeros. Leading zeros are required only when inputting function codes
(see below). When designating operands, be sure to designate the data area
for all but IR and SR addresses by pressing the corresponding data area key,
and to designate each constant by pressing CONT/#. CONT/# is not required
for counter or timer SVs (see below). The AR area is designated by pressing
SHIFT and then HR. TC numbers as bit operands (i.e., completion flags) are
designated by pressing either TIM or CNT before the address, depending on
whether the TC number has been used to define a timer or a counter. To des-
ignate an indirect DM address, press CH/% before the address (pressing DM
is not necessary for an indirect DM address).

59

Inputting, Modifying, and Checking the Program . Section 4-6

Inputting SV for Counters The SV (set value) for a timer or counter is generally entered as a constant,

and Timers although inputting the address of a word that holds the SV is also possible.
When inputting an SV as a constant, CONT/# is not required; just input the
numeric value and press WRITE. To desighate a word, press CLR and then
input the word address as described above.

Designating Instructions The most basic instructions are input using the Programming Console keys
provided for them. All other instructions are entered using function codes.
These function codes are always written after the instruction’s mnemonic. if
no function code is given, there should be a Programming Console key for
that instruction.

To designate the differentiated form of an instruction, press NOT after the
function code.

To input an instruction using a function code, set the address, press FUN,
input the function code including any leading zeros, press NOT if the differen-
tiated form of the instruction is desired, input any bit operands or definers
required on the instruction line, and then press WRITE.

&Caution Enter function codes with care and be sure to press SHIFT when required.

Key Sequence

[Address displayed]wm———a= [instruction word)] “ m L& [Operand]

NOT

60

Section 4-6

Inputting, Modifying, and Checking the Program

Example The following program can be entered using the key inputs shown below.

Displays will appear as indicated.

lr°2j %o
w

Address

Instruction

Operands

00200

LD

00002

00201

TIM

000

0123

00202

TIMH(15)

001

0500

BHZEIREAD
HOP 882

BEzEl

=i
a3
[xcx]
[xx]
[]

[ax(]
b
3
[cx]
.—l.
—
bt
-
cH
3
H: I
e |
[e]
"
=0

)

oy
'earte!

(=)l

- o

61

Inputting, Modifying, and Checking the Program Section 4;9

Error Messages The following error messages may appear when inputting a program. Correct
the error as indicated and continue with the input operation. The asterisks in
the displays shown below will be replaced with numeric data, normally an
address, in the actual display.

Message Cause and correction

*kdkREPL ROM

An attempt was made to write to write-protected EEPROM. Be sure the
write-enable switch (pin 5 of the DIP switch) is set to ON.

skkPROG QUER

The instruction at the last address in memory is not NOP(00). Erase all
unnecessary instructions at the end of the program or use a larger Memory Unit.

#*kkxADDR QUER

An address was set that is larger than the highest memory in Program Memory.
input a smaller address

#4445ETDATAH ERE

Data has been input in the wrong format or beyond defined limits, e.g., a
hexadecimal value has been input for BCD. Re-input the data. This efror will
generate a FALS 00 error.

#kakl o0 MO. ERR

A data area address has been designated that exceeds the limit of the data area,
e.g., an address is too large. Confirm the requirements for the instruction and
re-enter the address.

4-6-3 Checking the Program

Key Sequence

Check Levels and Error
Messages

62

Once a program has been entered, it should be checked for syntax to be
sure that no programming rules have been violated. This check should also
be performed if the program has been changed in any way that might create
a syntax error.

To check the program, input the key sequence shown below. The numbers-
indicate the desired check level (see below). When the check level is en-
tered, the program check will start. If an error is discovered, the check will
stop and a display indicating the error will appear. Press SRCH to continue
the check. If an error is not found, the program will be checked through to the
first END(01), with a display indicating when each 64 instructions have been
checked (e.g., display #1 of the example after the following table).

CLR can be pressed o cancel the check after it has been started, and a dis-
play like display #2, in the example, will appear. When the check has reached
the first END, a display like display #3 will appear.

A syntax check can be performed on a program only in PROGRAM mode.

e] To check’
I ,lSRCH == =4SACH| yp 1o END(01)

To abort

el

(0, 1, 2, Check levels)

Three levels of program checking are available. The desired level must be
designated to indicate the type of errors that are to be detected. The follow-
ing table provides the error types, displays, and explanations of all syntax
errors. Check level 0 checks for type A, B, and C errors; check level 1, for
type A and B errors; and check level 2, for type A errors only.

The address where the error was generated will also be displayed.

Inputting, Modifying, and Checking the Program Section 4-6

Many of the following errors are for instructions that have not yet been de-
scribed. Refer to 4-7 Controlling Bit Status or Section 5 Instruction Set for
details on these.

Type Message Meaning and appropriate response
Type A | 7?2777 The program has been lost. Re-enter the program.
HO EMD IMSTR |ThereisnoEND(01)inthe program. Write END(01) at the final address in the program.

CIRCUIT ERR |The numberof logic blocks and logic block instructions does not agree, i.e., either LD
or LD NOT has been used to start a logic block whose execution condition has not been
used by another instruction, or a logic block instruction has been used that does not
have the required number of logic blocks. Check your program.

LOCH ERE An instruction is in the wrong place in the program. Check instruction requirements and
correct the program.

LUPL The same jump number has been used twice. Correct the program so that the same
number is only used once for each. (Jump number 00 may be used as often as
required.)

JME UMDEFD A JME(04) is missing for a JMP(05). Correct the jump number or insert the proper
JME(04).

STEP ERE STEP(08) with a section number and STEP(08) without a section number have been
used correctly. Check STEP(08) programming requirements and cotrect the program.

TypeB |IL-ILC ERE IL(02) and ILC(03) are not used in pairs. Correct the program so that each IL(02) has

a unique ILC(03). Although this error message will appear if more than one IL(02) is
used with the same ILC(03), the program will executed as written. Make sure your
program is written as desired before proceeding.

JMP-IME ERE |JMP(04) 00 and JME(05) 00 are not used in pairs. Although this error message will
appear if more than one JMP(04) 00 is used with the same JME(05) 00, the program

will be executed as written. Make sure your program is written as desired before
proceeding.

Type C | JJMP UMDEFD JME(05) has been used with no JMP(04) with the same jump number. Add a JMP(04)
with the same number or delete the JME(05) that is not being used.

Note The Programrhing Console does not check whether output bits are controlled
by more than one instruction. Check the program from the LSS or FIT to
check for duplicate output bits. »

63

Inputting, M odiﬁying, and Checking the Pro,_gram

Example

Section 4-6

The following example shows some of the displays that can appear as a re-
sult of a program check.

E

BEQedPROE CHE

Halts program check

dE1Z8PROGE CHEEMD

Check continues until END(01)

BZEBREFPROGE CHE
EMD ¢@1l202. FEMY

When errors are found

BRIFECIRCUIT ERR
ouT BERZEA

—Io

I SRCH

Gesg@IL-ILC ERE

l SRCH

E H o

4-6-4 Displaying the Cycle Time

Once the program has been cleared of syntax errors, the cycle time should
be checked. This is possible only in RUN or MONITOR mode while the pro-
gram is being executed. See Section 6 Program Execution Timing for details
on the cycle time.

Example

64

Display #1

Display #2

Display #3

To display the current average cycle time, press CLR then MONTR. The time
displayed by this operation is a typical cycle time. The differences in dis-
played values depend on the execution conditions that exist when MONTR is

pressed.

Note “SCAN TIME" is displayed instead of cycle time.

gEEEESCAM TIME
B34, 1M&

BOBEESCA . TIME
A5 3. FME

Inputting, Modifying, and Checking the Program Section 4-6

4-6-5 Program Searches

Key Sequence

The program can be searched for occurrences of any designated instruction
or data area address used in an instruction. Searches can be performed from
any currently displayed address or from a cleared display.

To designate a bit address, press SHIFT, press CONT/#, then input the ad-
dress, including any data area designation required, and press SRCH. To
designate an instruction, input the instruction just as when inputting the pro-
gram and press SRCH. Once an occurrence of an instruction or bit address
has been found, any additional occurrences of the same instruction or bit can
be found by pressing SRCH again. SRCH'G will be displayed while a search
is in progress.

When the first word of a multiword instruction is displayed for a search opera-
tion, the other words of the instruction can be displayed by pressing the down
key before continuing the search.

If Program Memory is read in RUN or MONITOR mode, the ON/OFF status
of any bit displayed will also be shown.

& [Instruction]

CLR]—I-—[SHIFI']{C?#NT : —> [Address] .d - sncﬂl

I

HR

§

(AR)

i
()

i

65

Inputting, Modifying, and Checking the Pro,_gram

Section 4-6

Example:
Instruction Search

Example:
Bit Search

66

e NIRRT
or | | BRI
Nezemmeecessd
HEJ LD BEOEE
— VI ARZEASED
SRCH UUJ—UU—‘ '.LH -----
) |LL BT RVED LT
oI e
sron | | BT B -
—J | LD B B
Ty '.“::T'_'T::' .s':
ver] [B2HGESREH
__J|EMD CB12082, YEWM
— [GEEEE
CiR

r1 Fo]“o‘ BE1GEE

TIM 781 . Elgirjl:l
Uu.__a TIH BE1

R R IR
srcy | | HEHEZBASRELD)
) |TIN G 1
‘,‘ gEZ283 TIM LDATH
- HE12Z
CLR
| S

wm]rTqu BEEEECONT SRCH
— | COMT BEEES
non | [BAZEECONT SRCH
| L[BEEOS
(acn] | BRZEICOMT SRCH
— I BEEES
IR
SRCH U"U"”'_j_ . -
—J |EMD CB1MCB2, FEMY

Inputting, Modifying, and Checking the Program Section 4-6

4-6-6 Inserting and Deleting Instructions

in PROGRAM mode, any instruction that is currently displayed can be de-
leted or another instruction can be inserted before it. These are not possible
in RUN or MONITOR modes.

To insert an instruction, display the instruction before which you want the new
instruction to be placed, input the instruction word in the same way as when
inputting a program initially, and then press INS and the down key. If other
words are required for the instruction, input these in the same way as when
inputting the program initially.

To delete an instruction, display the instruction word of the instruction to be
deleted and then press DEL and the up key. All the words for the designated
instruction will be deleted.

&Caution Be careful not to inadvertently delete instructions; there is no way to recover
them without reinputting them compietely.

Key Sequences
Locate position
in program .
then enter: [Instruction] =g INS
Instruction
currontly esme———pd DEL
displayed
When an instruction is inserted or deleted, all addresses in Program Memory
following the operation are adjusted automatically so that there are no blank
addresses or no unaddressed instructions.
Example The following mnemonic code shows the changes that are achieved in a pro-
gram through the key sequences and displays shown below.
Original Program
Address | Instruction Operands
00000 | LD 00100
00001 | AND 00101
00002 | LD 00201
00003 | ANDNOT 00102
00004 |} ORLD -
00005 | AND 00103
00006 | ANDNOT 00104
00007 |} OUT 00201
00008 | END(01) -
Before Insertion: Before Deletion:
O('N‘OO O(|’1|°1 O?}OQ 0?1;94 00100 00101 00103 00105 00104
1f 11 1T ¥4 00201 i it 1l 11 1y
* 11 11 i ; p (i 00201
oﬁm 0?1192 00105 o?"fm 0?192 Delate
H Al _l I_ i} U
l END(01) I = END(01) I

Inputting, Modifying, and Checking the Projgram Section 4-6

The following key inputs and displays show the procedure for achieving the
program changes shown above.

inserting an Instruction

R HEEEE
_____ - Find the address
our | | HIKIEILIE prior to the inser-
=04 | OUT HEOEE tion point
%2 (o [+) [2EEES
JI0uT HE2E Program After Insertion
e T T Address | instruction Operands
sl |OBZBFIRCH 00000 | LD 00100
—J [oUT BEZE] 00001 | AND 50101
e e — T 00002 LD 00201
1R e R ;
4 I:.' ﬁ .'UE'Et%HD aaiEd 00003 AND NOT 00102
HHL b — _— 00004 ORLD -
) [F726e Co KT s
.ol E=121] cicfelicts
AHE e et 00007 AND NOT 00104
[B 1][‘T] F 5 BRI 00008 ouT 00201
FH BE1EaS 00009 | END(01) -
) [EE2EEINSERT?
___J | AHD BE1AS
BEZOTIHSER 4Lt
* I;ﬂ‘_-l -lL;'“I'I_';_EF.THE?E:'q Insert the
N ! -~ ool instruction
4 BEZEaRERD
) |AHE BR1GRS

68

Inputting, Modifying, and Checking the Program Section 4-6
S S
Deleting an Instruction
spspslels
CLR
— — - Find the instruction
fg: b ::': '_}-'_' B8a that requires deletion.
O HEEHEG
Program After Deletion
c2](:A 0] 8 1 L::”J Kk o Address | Instruction Operands
auT Bazal 00000 | LD 00100
T R T T 00001 | AND 00101
SRCH ‘;‘ﬁ‘-‘-"—'-‘ CH - 00002 | LD 00201
— | OUT Hidel 00003 | AND NOT 00102
—~ e e 00004 | ORLD -
HEZEYRERD
4 (=" ey = 00005 | AND 00103
—/ | AKD HOT HEleg | 20058 1 AND o708
(e || @8287 DELETEY O goz0!
| AHE HOT GE 16 o) =
4 BEZBTLELETE EHD
. J | auT HEZEL Confirm that this is the
— instruction to be deleted.
BEZBERERD
4 AME HElES

4-6-7 Branching Instruction Lines

When an instruction line branches into two or more lines, it is sometimes
necessary to use either interlocks or TR bits to maintain the execution condi-
tion that existed at a branching point. This is because instruction lines are
executed across to a right-hand instruction before returning to the branching
point to execute instructions one a branch line. If a condition exists on any of
the instruction lines after the branching point, the execution condition could
change during this time making proper execution impossible. The following
diagrams illustrate this. In both diagrams, instruction 1 is executed before
returning to the branching point and moving on to the branch line leading to

instruction 2.

Instruction 1

Instruction 2

1]

Instruction 1

Branching
00000 point
it
17
[00002
Il
17
Diagram A: Correct Operation
Branching
00000 point 00001
11 11
il i
00002

Instruction 2

1]

Diagram B: Incorrect Operation

Address | Instruction Operands
00000 | LD 00000
00001 instruction 1
00002 | AND 00002
00003 Instruction 2

Address | Instruction Operands
00000 | LD 00000
00001 | AND 00001
00002 | Instruction 1
00003 | AND 00002
00004 | Instruction 2

69

Inputting, Modifying, and Checking the Program Section 4-6

If, as shown in diagram A, the execution condition that existed at the branch-
ing point cannot be changed before returning to the branch line (instructions
at the far right do not change the execution condition), then the branch line
will be executed correctly and no special programming measure is required.

If, as shown in diagram B, a condition exists between the branching point
and the last instruction on the top instruction line, the execution condition at
the branching point and the execution condition after completing the top in-
struction line will sometimes be different, making it impossible to ensure cor-
rect execution of the branch line.

There are two means of programming branching programs 1o preserve the
execution condition. One is to use TR bits; the other, to use interlocks
(IL(02)/1L(03)).

TR Bits The TR area provides eight bits, TR 0 through TR 7, that can be used fo tem-
porarily preserve execution conditions. If a TR bit is placed at a branching
point, the current execution condition will be stored at the designated TR bit.
When returning to the branching point, the TR bit restores the execution sta-
tus that was saved when the branching point was first reached in program
execution.

The previous diagram B can be written as shown below to ensure correct
execution. In mnemonic code, the execution condition is stored at the
branching point using the TR bit as the operand of the OUTPUT instruction.
This execution condition is then restored after executing the right-hand in-
struction by using the same TR bit as the operand of a LOAD instruction

l 06001 Address | Instruction Operands
l : : : : { Instruction 1' 00000 | LD . 00000

00002 00001 ouT TR 0

: : l Instruction 2l 00002 | AND . 00001
00003 | Instruction 1
00004 LD TR 0
00005 AND 00002
000086 Instruction 2

Diagram B: Corrected Using a TR bit

In terms of actual instructions the above diagram would be as follows: The
status of IR 00000 is loaded {a LOAD instruction) to establish the initial ex-
ecution condition. This execution condition is then output using an OUTPUT
instruction to TR 0 to store the execution condition at the branching point.
The execution condition is then ANDed with the status of IR 00001 and in-
struction 1 is executed accordingly. The execution condition that was stored
at the branching point is then re-loaded (a LOAD instruction with TR 0 as the
operand), this is ANDed with the status of IR 00002, and instruction 2 is ex-
ecuted accordingly.

70

Inputting, Modifying, and Checkingr the Program Section 4-6

The following example shows an application using two TR bits.

Address | Instruction Operands
°‘="=‘°° °‘=°‘=’°‘ °§"=’°2 [rovmony] [00000 (D — 00000
00005 00001 | QUT TR 0
T PR—— 00002 | AND 00001
oo " [EERE 00003 | OUT TR 1
: : ll instruction 3| 00004 AND 00002
00005 00005 ouT 00500
4 {instuciona] | 00006 | LD TR 1
00007 | AND 00003
00008 | OUT 00501
00009 | LD TR 0
00010 | AND 00004
00011 ouT 00502
00012 | LD TR 0
00013 AND NOT 00005
00014 ouT 00503

In this example, TR 0 and TR 1 are used to store the execution conditions at
the branching points. After executing instruction 1, the execution condition
stored in TR 1 is loaded for an AND with the status IR 00003. The execution
condition stored in TR 0 is loaded twice, the first time for an AND with the
status of IR 00004 and the second time for an AND with the inverse of the
status of IR 00005.

TR bits can be used as many times as required as long as the same TR bit is
not used more than once in the same instruction block. Here, a new instruc-
tion block is begun each time execution returns to the bus bar. If, in a single
instruction block, it is necessary to have more than eight branching points
that require the execution condition be saved, interlocks (which are described
next) must be used.

When drawing a ladder diagram, be careful not to use TR bits unless neces-
sary. Often the number of instructions required for a program can be reduced
and ease of understanding a program increased by redrawing a diagram that
would otherwise required TR bits. In both of the following pairs of diagrams,
the bottom versions require fewer instructions and do not require TR bits. In
the first example, this is achieved by reorganizing the parts of the instruction
block: the bottom one, by separating the second QUTPUT instruction and
using another LOAD instruction to create the proper execution condition for
it.

71

Inputting, Modifying, and Checking the Program Section 4-6

Interlocks

72

Note Although simplifying programs is always a concern, the order of execution of

instructions is sometimes imporiant. For example, a MOVE instruction may
be required before the execution of a BINARY ADD instruction to place the
proper data in the required operand word. Be sure that you have considered
execution order before reorganizing a program 1o simplify it.

Instruction 1

Instruction 2|

Uil

00000
{1 Instruction 2
[R]
00001
= = Instruction 1
00000 00003
; : { : I Instruction 1'
00001 00002
it [§4
i A
00004
{ : = Instruction 2|
0?001 O(')OJ(,JZ 00003
L 1l I . |
11 P4 i1 Instruction 1
00000
1L
13}
00001 00004
} i 11 ~= Instruction 2|

Note TR bits are only used when programming using mnemonic code. They are

not necessary when inputting tadder diagrams directly, as is possible from a
host computer running LSS. The above limitations on the number of branch-
ing points requiring TR bits, and considerations on methods to reduce the
number of programming instructions, still hold.

The problem of storing execution conditions at branching points can also be
handled by using the INTERLOCK (1L{02)) and INTERLOCK CLEAR
(ILC(03)) instructions to eliminate the branching point completely whiie allow-
ing a specific execution condition to control a group of instructions. The IN-
TERLOCK and INTERLOCK CLEAR instructions are always used together.

Inputting, Modifying, and Checkin_gr the Program

Section 4-6

When an INTERLOCK instruction is placed before a section of a ladder pro-
gram, the execution condition for the INTERLOCK instruction wili control the
execution of all instruction up to the next INTERLOCK CLEAR instruction. If
the execution condition for the INTERLOCK instruction is OFF, all right-hand
instructions through the next INTERLOCK CLEAR instruction will be ex-
ecuted with OFF execution conditions to reset the entire section of the ladder
diagram.

Diagram B on page 69 can also be corrected with an interlock. Here, the con-
ditions leading up to the branching point are placed on an instruction line for
the INTERLOCK instruction, all of lines leading from the branching point are
written as separate instruction lines, and another instruction line is added for
the INTERLOCK CLEAR instruction. No conditions are allowed on the in-
struction line for INTERLOCK CLEAR. Note that neither INTERLOCK nor

INTERLOCK CLEAR requires an operand.

00000
it l| IL(02) I Address | Instruction Operands
00001 00000 | LD 00000
; : {Instrumiﬂ 00001 1L(02) —
00002 00002 | LD 00001
i finstrucion 2] 00003 | Instruction 1
00004 | LD 00002
: ILC(03) l 00005 | Instruction 2
00006 | ILC(03) —_
If IR 00000 is ON in the revised version of diagram B, above, the status of IR
00001 and that of IR 00002 would determine the execution conditions for in-
structions 1 and 2, respectively. Because 1R 00000 is ON, this would produce
the same results as ANDing the status of each of these bits. If IR 00000 is
OFF, the INTERLOCK instruction would produce an OFF execution condition
for instructions 1 and 2 and then execution would continue with the instruc-
tion line following the INTERLOCK CLEAR instruction.
As shown in the following diagram, more than one INTERLOCK instruction
can be used within one instruction block; each is effective through the next
INTERLOCK CLEAR instruction.
00000
: : @ Address | Instruction Operands
00001 00000 LD 00000
: : Il instryction 1 I 00001 1L(02) -
00002 00002 [LD 00001
1l I ez 00003 | instruction 1
" j——l 00004 | LD 00002
00003 00004 - 00005 | IL(02) -
1} # @ 00006 | LD 00003
00005
T —— 00007 | AND NOT 00004
ﬁoo:)oe @ 00008 Instruction 2,
1L Instruction 4 00009 LD 00005
" r-l—__l 00010 Instruction 3
@ 00011 LD . 00006
00012 Instruction 4|
00013 | ILC(03) —

73

Inputting, Modifying, and Checking the Program Section 4-6

If IR 00000 in the above diagram is OFF (i.e., if the execution condition for
the first INTERLOCK instruction is OFF), instructions 1 through 4 would be
executed with OFF execution conditions and execution would move to the
instruction following the INTERLOCK CLEAR instruction. If IR 00000 is ON,
the status of IR 00001 would be loaded as the execution condition for instruc-
tion 1 and then the status of IR 00002 would be loaded to form the execution
condition for the second INTERLOCK instruction. if IR 00002 is OFF, instruc-
tions 2 through 4 will be executed with OFF execution conditions. If IR 00002
is ON, IR 00003, IR 00005, and IR 00006 will determine the first execution
condition in new instruction lines.

4-6-8 Jumps

A specific section of a program can be skipped according to a designated
execution condition. Although this is similar to what happens when the exe-
cution condition for an INTERLOCK instruction is OFF, with jumps, the oper-
ands for all instructions maintain status. Jumps can therefore be used to con-
trol devices that require a sustained output, e.g., pneumatics and hydraulics,
whereas interlocks can be used to control devices that do not required a sus-
tained output, e.g., electronic instruments.

Jumps are created using the JUMP (JMP(04)) and JUMP END {JME(05))
instructions. If the execution condition for a JUMP instruction is ON, the pro-
gram is executed normally as if the jump did not exist. If the execution condi-
tion for the JUMP instruction is OFF, program execution moves immediately
to a JUMP END instruction without changing the status of anything between
the JUMP and JUMP END instruction.

All JUMP and JUMP END instructions are assighed jump numbers ranging
between 00 and 48. There are two types of jumps. The jump number used
determines the type of jump.

A jump can be defined using jump numbers 01 through 49 only once, i.e.,
each of these numbers can be used once in a JUMP instruction and once in
a JUMP END instruction. When a JUMP instruction assigned one of these
numbers is executed, execution moves immediately to the JUMP END in-
struction that has the same number as if all of the insiruction between them
did not exist. Diagram B from the TR bit and interlock example could be re-
drawn as shown below using a jump. Aithough 01 has been used as the
jump number, any number between 01 and 49 could be used as long as it
has not already been used in a different part of the program. JUMP and
JUMP END require no other operand and JUMP END never has conditions
on the instruction line leading to it.

00000
: : }JMP(O4) 01 I Address | Instruction Operands
00001 00000 | LD 00000
it finsrcton 1] I o1
00002 00002 LD 00001
11 5
i @ 00003 | Instruction 1
oo 00004 | LD 00002
::I 00005 | Instruction 2
Diagram B: Corrected with a Jump 00008 | JME(CS) o

This version of diagram B would have a shorter execution time when 00000
was OFF than any of the other versions.

74

Inputting, Modifying, and Checking the Program Section 4-6

The other type of jump is created with a jump number of 00. As many jumps
as desired can be created using jump number 00 and JUMP instructions us-
ing 00 can be used consecutively without a JUMP END using 00 between
them. It is even possible for all JUMP 00 instructions to move program
execution to the same JUMP END 00, i.e., only one JUMP END 00
instruction is required for all JUMP 00 instruction in the program. When 00 is
used as the jump number for a JUMP instruction, program execution moves
to the instruction following the next JUMP END instruction with a jump num-
ber of 00. Aithough, as in all jumps, no status is changed and no instructions
are executed between the JUMP 00 and JUMP END 00 instructions, the pro-
gram must search for the next JUMP END 00 instruction, producing a slightly
longer execution time.

Execution of programs containing multiple JUMP 00 instructions for one
JUMP END 00 instruction is similar to that of interlocked sections. The foliow-
ing diagram is the same as that used for the interlock example above, except
redrawn with jumps. The execution of this diagram would differ from that of
the diagram described above (e.g., in the previous diagram interiocks would
reset certain parts of the interlocked section, however, jumps do not affect
the status of any bit between the JUMP and JUMP END instructions).

00000
: } !JMP(O«:) 00 ‘ Address | instruction Operands
00001 : 00000 | LD 00000
: : ‘{Insuucﬁon 1 I 00001 | JMP(04) 00
00002 LD 00001
00002 i
00003 Instruction 1
11 JMP(04) 00
" E 00004 LD 00002
00003 00004 00005 | JMP(04) 00
il HF fisiucion 2] 00006 | LD 00003
00005 00007 | AND NOT 00004
(¥ .
L @ 00008 | Instruction 2|
00006 00009 | LD 00005
11 instruction 4
I @ 00010 | Instruction 3
00011 LD 00006
{JME‘OS’ © l 00012 | Instruction 4]
00013 | JME(05) | 00

75

Controlling Bit Status

Section 4-7

4-7 Controlling Bit Status

There are five instructions that can be used generally to control individual bit
status. These are the OUTPUT, QUTPUT NOT, DIFFERENTIATE UP, DIF-
FERENTIATE DOWN, and KEEP instructions. All of these instructions ap-
pear as the last instruction in an instruction line and take a bit address for an
operand. Although details are provided in 5-7 Bit Control Instructions, these
instructions (except for OUTPUT and OUTPUT NOT, which have already
been introduced) are described here because of their importance in most
programs. Although these instructions are used {o turn ON and OFF output
bits in the IR area (i.e., to send or stop output signals to external devices),
they are also used to control the status of other bits in the IR area or in other
data areas.

4-7-1 DIFFERENTIATE UP and DIFFERENTIATE DOWN

DIFFERENTIATE UP and DIFFERENTIATE DOWN instructions are used to
turn the operand bit ON for one cycle at a time. The DIFFERENTIATE UP
instruction turns ON the operand bit for one cycle after the execution condi-
tion for it goes from OFF to ON; the DIFFERENTIATE DOWN instruction
turns ON the operand bit for one cycle after the execution condition for it
goes from ON to OFF. Both of these instructions require only one line of
mnemonic code.

4-7-2 KEEP

76

00000 Address | Instruction Operands
It
Lk} @ 00000 | LD 00000
00001 | DIFU(13) 00200
00001)
i {D'FD(T“) 00201 l Address | Instruction Operands
00000 LD 00001
00001 | DIFD(14) 00201

Here, IR 00200 will be turned ON for one cycle after IR 00000 goes ON. The
next time DIFU(13) 00200 is executed, IR 00200 will be turned OFF, regard-
less of the status of IR 00000. With the DIFFERENTIATE DOWN instruction,
IR 00201 will be turned ON for one cycle after IR 00001 goes OFF (IR 00201
wilt be kept OFF until then), and will be turned OFF the next time DIFD(14)
00201 is executed.

The KEEP instruction is used to maintain the status of the operand bit based
on two execution conditions. To do this, the KEEP instruction is connected 1o
two instruction lines. When the execution condition at the end of the first in-
struction fine is ON, the operand bit of the KEEP instruction is turned ON.
When the execution condition at the end of the second instruction line is ON,
the operand bit of the KEEP instruction is turned OFF. The operand bit for the
KEEP instruction will maintain its ON or OFF status even if it is located in an
interlocked section of the diagram.

Work Bits (Internal Relays)

Section 4-8

In the following example, HR 0000 will be turned ON when IR 00002 is ON
and IR 00003 is OFF. HR 0000 will then remain ON until either IR 00004 or
IR 00005 turns ON. With KEEP, as with all instructions requiring more than
one instruction line, the instruction lines are coded first before the instruction
that they control.

ooooa' o?o’gs Address | Instruction Operands
1
. i S:setinput KEEPO 333? II;I:ID NOT ggggg
00004 HR 0000 00002 LD 00004
1l R: reset input 00008 | OR 90005
00005 : P 00004 | KEEP(11) HR 0000
J1
mk

4-7-3 Self-maintaining Bits (Seal)

Although the KEEP instruction can be used to create self-maintaining bits, it
is sometimes necessary to create self-maintaining bits in another way so that
they can be turned OFF when in an interfocked section of a program.

To create a self-maintaining bit, the operand bit of an QUTPUT instruction is
used as a condition for the same OUTPUT instruction in an OR setup so that
the operand bit of the OUTPUT instruction will remain ON or OFF until
changes occur in other bits. At least one other condition is used just before
the OUTPUT instruction to function as a reset. Without this reset, there would
be no way to control the operand bit of the QUTPUT instruction.

The above diagram for the KEEP instruction can be rewritten as shown be-
low. The only difference in these diagrams would be their operation in an in-
terlocked program section when the execution condition for the INTERLOCK
instruction was ON. Here, just as in the same diagram using the KEEP in-
struction, two reset bits are used, i.e., HR 0000 can be turned OFF by turning
ON either IR 00004 or IR 00005. '

00002 00004 Address | Instruction Operands
o 1 Y4 L HR 0000
— —H P 00000 [LD 00002
00005 00001 | AND NOT 00003
HR 0000 4 00002 | OR HR 0000
1} 00003 | AND NOT 00004
00004 | ORNOT 00005
00005 | OUT HR 0000

4-8 Work Bits (Internal Relays)

In programming, combining conditions to directly produce execution condi-
tions is often extremely difficult. These difficulties are easily overcome, how-
ever, by using certain bits to trigger other instructions indirectly. Such pro-
gramming is achieved by using work bits. Sometimes entire words are re-
quired for these purposes. These words are referred to as work words.

Work bits are not transferred to or from the PC. They are bits selected by the
programmer to facilitate programming as described above. /O bits and other
dedicated bits cannot be used as works bits. All bits in the IR area that are
not allocated as 1/O bits, and certain unused bits in the AR area, are avail-
able for use as work bits. Be careful to keep an accurate record of how and
where you use work bits. This helps in program planning and writing, and
also aids in debugging operations.

77

Work Bits (Internal Relays)

Section 4-8

Work Bit Applications

Reducing Complex

Examples given iater in this subsection show two of the most common ways
to employ work bits. These should act as a guide to the aimost limitless num-
ber of ways in which the work bits can be used. Whenever difficulties arise in
programming a control action, consideration should be given to work bits and
how they might be used to simplify programming.

Work bits are often used with the QUTPUT, OUTPUT NOT, DIFFERENTIATE
UP, DIFFERENTIATE DOWN, and KEEP instructions. The work bit is used
first as the operand for one of these instructions so that iater it can be used
as a condition that will determine how other instructions will be executed.
Work bits can also be used with other instructions, e.g., with the SHIFT REG-
ISTER instruction (SFT(10)).

Although they are not always specifically referred to as work bits, many of the
bits used in the examples in Section 5 Instruction Set use work bits. Under-
standing the use of these bits is essential to effective programming.

Work bits can be used to simplify programming when a certain combination

Conditions of conditions is repeatedly used in combination with other conditions. In the
following example, IR 00000, IR 00001, IR 00002, and IR 00003 are com-
bined in a logic block that stores the resulting execution condition as the sta-
tus of IR 24600. IR 24600 is then combined with various other conditions to
determine output conditions for IR 00100, IR 00101, and IR 00102, i.e., to
turn the outputs allocated to these bits ON or OFF.

00000 00001 Address | Instruction Operands
i} v ia 24600 00000 | LD 00000
00001 | AND NOT 00001
00002 00002 | OR 00002
il 00003 | OR NOT 00003
00004 | OUT 24600
00003 00005 | LD 24600
Pg) 00006 | AND 00004
00007 | AND NOT 00005
| 00004 00005 00100 00008 | OUT 00100
il " L4 00009 | LD 24600
00010 | ORNOT 00004
24800 00005 00011 | AND 00005
00101
H " 00012 | oUT 00101
00013 | LDNOT | 24600
3% 00014 OR 00006
ol 00015 | OR 00007
24600 00016 | OUT 00102
i 00102
00006
=t 1
1
00007
1L
11

78

Programming Precautions Section 4-9

Differentiated Conditions Work bits can also be used if differential treatment is necessary for some, but
not all, of the conditions required for execution of an instruction. In this exam-
ple, IR 00100 must be left ON continuously as long as IR 00001 is ON and
both IR 00002 and IR 00003 are OFF, or as long as IR 00004 is ON and IR
00005 is OFF. It must be turned ON for only one cycle each time IR 00000
turns ON (uniess one of the preceding conditions is keeping it ON continu-
ously).

This action is easily programmed by using IR 22500 as a work bit as the op-
erand of the DIFFERENTIATE UP instruction (DIFU(13)). When IR 00000
turns ON, IR 22500 will be turned ON for one cycle and then be turned OFF
the next cycle by DIFU(13). Assuming the other conditions controlling IR
00100 are not keeping it ON, the work bit IR 22500 will turn IR 00100 ON for
one cycle only.

o??m @ Ag:or::s I:;truction Operand:0 —

22500 00001 | DIFU(13) 22500

il 00100 00002 | LD 22500

00001 00002 00003 00003 | LD 60001
+— 00004 | AND NOT 00002
00004 00005 00005 | AND NOT 00003
] P q] 00006 | ORLD —
00007 | LD 00004

00008 | AND NOT 00005

00009 | ORLD —_—

00010 | OUT 00100

4-9 Programming Precautions

The number of conditions that can be used in series or parallel is unlimited
as long as the memory capacity of the PC is not exceeded. Therefore, use as
many conditions as required to draw a clear diagram. Although very compli-
cated diagrams can be drawn with instruction lines, there must not be any
conditions on lines running vertically between two other instruction lines. Dia-
gram A shown below, for example, is not possible, and should be drawn as
diagram B. Mnemonic code is provided for diagram B only; coding diagram A
would be impossible.

00000 00002

1L - .
i -L il Instruction 1
00004

00001 T 00003
I)4
" y Al

Instruction 2

il

Diagram A Address | Instruction Operands
00000 LD 00001
00001 AND 00004
00001 0 00002

11 11 11 Instruction 1 00002 | OR 00000

1 1 1 { l
00000 00003 AND 00002

ﬁu: 00004 | Instruction 1

00000 00004 00003 00005 LD 00000
4__{ : : : .'(f % Instruction 2! 00006 | AND 00004
00001 00007 | OR 00001
I 00008 AND NOT 00003

00009 Instruction 2

Diagram B

79

Programming Precautions Section 4-9

The number of fimes any particular bit can be assigned to conditions is not
limited, so use them as many times as required to simplify your program.
Often, complicated programs are the resuii of attempts to reduce the number
of times a bit is used.

Except for instructions for which conditions are not allowed (e.g., INTER-
LOCK CLEAR and JUMP END, see below), every instruction line must also
have at least one condition on it to determine the execution condition for the
instruction at the right. Again, diagram A , below, must be drawn as diagram
B. If an instruction must be continuously executed (e.g., if an output must
always be kept ON while the program is being executed), the Always ON
Flag (SR 25313) in the SR area can be used.

Diagram A
25313 -
1 {m‘ Address | Instruction Operands
00000 LD 25313
Diagram B 00001 | Instruction

There are a few exceptions to this rule, including the INTERLOCK CLEAR,
JUMP END, and step instructions. Each of these instructions is used as the
second of a pair of instructions and is controlled by the execution condition of
the first of the pair. Conditions should not be placed on the instruction lines
leading to these instructions. Refer to Section 5 Instruction Set for details.

When drawing ladder diagrams, it is important to keep in mind the number of
instructions that will be required to input it. In diagram A, below, an OR LOAD
instruction will be required to combine the top and boftom instruction lines.
This can be avoided by redrawing as shown in diagram B so that no AND
LOAD or OR LOAD instructions are required. Refer {0 5-6-2 AND LOAD and
OR LOAD for more details and 4-6 Inputting, Modifying and Checking the
Program for further examples.

00000 Address | Instruction Operands
f 00207 00000 | LD 00000
00001 00207 00001 LD 00001
l ” 00002 | AND 00207
00003 ORLD —
00004 | OUT 00207
Diagram A
00001 00207 : Address | Instruction Operands
: 00207 00000 | LD 00001
‘ 00001 | AND 00207
00000 00002 | OR 00000
I 00003 ouT 00207
Diagram B

80

Program Execution Section 4-10

T

4-10 Program Execution

When program execution is started, the CPU cycles the program from top to
bottom, checking all conditions and executing all instructions accordingly as it
moves down the bus bar. It is important that instructions be placed in the
proper order so that, for example, the desired data is moved to a word before
that word is used as the operand for an instruction. Remember that an in-
struction line is completed to the terminal instruction at the right before exe-
cuting instruction lines branching from the first instruction line to other termi-
nal instructions at the right.

Program execution is only one of the tasks carried out by the CPU as part of
the cycle time. Refer to Section 6 Program Execution Timing for details.

81

SECTION 5
Instruction Set

This section provides a brief summary of each instruction in the C20HB-TS instruction set and provides a more detailed
description of the ladder diagram instructions, bit control instructions, and timer and counter instructions.

5-1 NI OM .+ iiet vttt anenn s erneaneessnnnnnsoeenneensssnencesnennenananss 84
5-2 INSHUCHON FOIMAL .. vutiniet ittt vrinenneerseneeneennensennennennannss 84
5-3 Data Areas, Definer Values,and Flags coooi i iiiin it ittt inaia, 84
5-4 Differentiated INSTUCHONS .. vvvvttvttrttrterineersenrnennenreeenenensaeans 86
5-5 C20HB-TS InStuCHOm SOt oo vvv v ittt veanesrrenenenesonsensonesnennenanes 87
5-6 Ladder Diagram INSIMUCHONSvutintntiiiieeiieeerannereanananrannnnss 94
5-6-1 LOAD,LOAD NOT, AND, AND NOT,OR,andORNOT 94
562 ANDLOAD and OR LOAD ..ttt ittt ittt ettt eeiaeaenenns 95
5-6-3 Coding Conditions and Other InSITuCtONSc.vvrveininnevnnnnnnna. 95
5-7 BitControl INSITUCHOMS .+ v vvvvntrrnnenennteereneeeonennsesnenesaensenanen 97
5-7-1 OUTPUT and OUTPUTNOT-OUTand OQOUTNOTcivvvvnnnnn. 97
5-7-2 DIFFERENTIATE UP and DOWN - DIFU(13) and DIFD(14) 98
57-3 KEEP —KEEP(I1) ...ttt ittt ittt it et ieneaeernnaenns 99
5-8 Timer and Counter INSHUCHONSvvtttiririr it it iieetnne e renrnenennnssn 101
5-8-1 TIMER —TIM ...ttt iar ettt itiat e etitenenneeenans 102
5-8-2 HIGH-SPEED TIMER-TIMH(15)iiii it et ieens 106
5-8-3 COUNTER - CNT ... ittt ittt ettt et et eennennns 107
5-8-4 REVERSIBLE COUNTER-CNTR(12) ...viiiriiieiiniieineneannnnn 110

83

Data Areas, Definer Values, and Flags Section 5-3

5-1

5-2

Notation

In the remainder of this manual, all instructions will be referred to by their
mnemonics. For example, the Output instruction will be called OUT; the AND
Load instruction, AND LD. If you’re not sure of the instruction a mnemonic is
used for, refer to 5-5 C20HS-TS Instruction Set.

If an instruction is assigned a function code, it will be given in parentheses
after the mnemonic. These function codes, which are 2-digit decimal num-
bers, are used to input most instructions into the CPU and are described
briefly below and in more detail in 4-6 Inputting, Modifying and Checking the
Program. A table of instructions listed in order of function codes, is provided
in 5-5 C20HS-TS Instruction Set.

An @ before a mnemonic indicates the differentiated version of that instruc-
tion. Differentiated instructions are explained in 5-4 Differentiated Instruc-
tions.

Instruction Format

Most instructions have at least one or more operands associated with them.
Operands indicate or provide the data on which an instruction is to be per-
formed. These are sometimes input as the actual numeric values (i.e., as
constants), but are usually the addresses of data area words or bits that con-
tain the data to be used. A bit whose address is designated as an operand is
called an operand bit; a word whose address is designated as an operand is
called an operand word. In some instructions, the word address designated
in an instruction indicates the first of multiple words containing the desired
data.

Each instruction requires one or more words in Program Memory. The first
word is the instruction word, which specifies the instruction and contains any
definers (described below) or operand bits required by the instruction. Other
operands required by the instruction are contained in following words, one
operand per word. Some instructions required up to four words.

A definer is an operand associated with an instruction and contained in the
same word as the instruction itself. These operands define the instruction
rather than telling what data it is to used. Examples of definers are TC num-
bers, which are used in timer and counter instructions to create timers and
counters, as well as jump numbers (which define which Jump instruction is
paired with which Jump End instruction). Bit operands are also contained in
the same word as the instruction itself, although these are not considered
definers.

5-3 Data Areas, Definer Values, and Flags

In this section, each instruction description includes its ladder diagram sym-
bol, the data areas that can be used by its operands, and the values that can
be used as definers. Details for the data areas are also specified by the oper-
and names and the type of data required for each operand (i.e., word or bit
and, for words, hexadecimal or BCD).

Not all addresses in the specified data areas are necessarily allowed for an
operand, e.g., if an operand requires two words, the last word in a data area
cannot be designated as the first word of the operand because all words for a
single operand must be in the same data area. Unless a limit is specified,
any bit/word in the area can be used. Any limitations are specified in a Limi-
tations subsection. Refer to Section 3 Memory Areas for addressing converi-
tions and the addresses of flags and control bits.

Data Areas, Definer Values, and Flags ' Section 5-3

&Caution The IR and SR areas are considered as separate data areas. If an operand has

Indirect Addressing

access to one area, it doesn’t necessarily mean that the same operand will have
access to the other area. The border between the IR and SR areas can, howev-
er, be crossed for a single operand, i.e., the last bitin the IR area may be speci-
fied for an operand that requires more than one word as long as the SR area is
also aliowed for that operand.

The Flags subsection lists flags that are affected by execution of an instruc-
tion. These flags include the following SR area flags.

Abbreviation Name Bit
ER Instruction Execution Error Flag 25503
CY Carry Flag 25504
GR Greater Than Flag . 25505
EQ Equals Flag 25506
LE Less Than Flag 25507

ER is the flag most commonly used for monitoring an instruction’s execution.
When ER goes ON, it indicates that an error has occurred in attempting to
execute the current instruction. The Flags subsection of each instruction lists
possible reasons for ER being ON. ER will turn ON if operands are not en-
tered correctly. Instructions are not executed when ER is ON. A table of in-
structions and the flags they affect is provided in Appendix A Error and Arith-
metic Flag Operation.

When the DM area is specified for an operand, an indirect address can be
used. Indirect DM addressing is specified by piacing an asterisk before the
DM: *DM.

When an indirect DM address is specified, the designated DM word will con-
tain the address of the DM word that contains the data that will be used as
the operand of the instruction. If, for example, xDM 0001 was designated as
the first operand and LR 00 as the second operand of MOV(21), the contents
of DM 0001 was 0324, and DM 0324 contained 5555, the value 5555 would
be moved to LR 00.

Word Content

ST e T _Moven DM 0000 | 4C59
*OM 001 ————— DM 0001 | 0324
LR 0O Indirect DM 0002 F35A Indicates

address DM 0324.

[} .
DM 0324 5555

DM 0325 [2506 | ™\ 5555 moved
DM 0326 [D541 to LR 00.

When using indirect addressing, the address of the desired word must be in
BCD and it must specify a word within the DM area. In the above example,

the content of xDM 0000 would have to be in BCD (between 0000 and 0999).

Designating Constants

Although data area addresses are most often given as operands, many oper-
ands and all definers are input as constants. The value available for a given
definer or operand depends on the particular instruction that uses it. Con-
stants must also be entered in the form required by the instruction, i.e., in
BCD or in hexadecimal.

85

Differentiated Instructions Section 5-4

5-4 Differentiated Instructions

Most instructions are provided in both differentiated and non-differentiated
forms. Differentiated instructions are distinguished by an @ in front of the
instruction mnemonic. '

A non-differentiated instruction is executed each time it is cycled as long as
its execution condition is ON. A differentiated instruction is executed only
once after its execution condition goes from OFF to ON. If the execution con-
dition has not changed or has changed from ON to OFF since the last time
the instruction was cycled, the instruction will not be executed. The following
two examples show how this works with MOV(21) and @MOV(21), which are
used to move the data in the address designated by the first operand to the
address designated by the second operand.

I 00000
“ MOV(21) Address | Instruction Operands
l HR 10 00000 | LD 00000
Diagram A DM 0000 00001 MOV(21)
HR 10
DM 0000
| %00
3] @nmovee Address | Instruction Operands
l HR10 00000 | LD 00000
Diagram B DM 0000 00001 | @MOV{21)
HR 10
DM 0000

In diagram A, the non-differentiated MOV(21) will move the content of HR 10
to DM 0000 whenever it is cycled with 00000. If the cycle time is 80 ms and
00000 remains ON for 2.0 seconds, this move operation will be performed 25
times and only the last value moved to DM 0000 will be preserved there.

In diagram B, the differentiated @ MQOV(21) will move the content of HR 10 to
DM 0000 only once after 00000 goes ON. Even if 00000 remains ON for 2.0
seconds with the same 80 ms cycle time, the move operation will be exe-
cuted only during the first cycle in which 00000 has changed from OFF to
ON. Because the content of HR 10 could very well change during the 2 sec-
onds while 00000 is ON, the final content of DM 0000 after the 2 seconds
could be different depending on whether MOV(21) or @MOV(21) was used.

All operands, ladder diagram symbols, and other specifications for instruc-
tions are the same regardless of whether the differentiated or non-differen-
tiated form of an instruction is used. When inputting, the same function codes
are also used, but NOT is input after the function code to designate the differ-
entiated form of an instruction. Most, but not all, instructions have differenti-
ated forms.

The C20HB-TS also provides differentiation instructions: DIFU(13) and
DIFD(14). DIFU(13) operates the same as a differentiated instruction, but is
used to turn ON a bit for one cycle. DIFD(14) also turns ON a bit for one
cycle, but does it when the execution condition has changed from ON to
OFF. Refer to 5-7-2 DIFFERENTIATE UP and DOWN — DIFU(13) and
DIFD(14) for details.

86

Instruction Set

Section 5-5

5-5 C20HB-TS Instruction Set .

The following table provides a brief summary of each instruction in the
C20HB-TS instruction set. The first 12 instructions do not have function
codes. These 12 instructions are listed in alphabetic order. The remaining
instructions are listed in numerical order of their function codes.

Name - Symbol Function Operand Data
Mnemonic Areas
AND Logically ANDs the status of the desig- B:
AND B nated bit with the current execution condi- IR
] }—— | tion. SR
HR
AR
LR
TC
AND LOAD vee e Logically ANDs the resultant execution None
AND LD 1 conditions of the preceding logic blocks.
: : ' I . ::. l
3) 1] :
AND NOT Logically ANDs the inverse of the desig- B:
AND NOT nated bit with the current execution condi- IR
B tion, SR
HR
- AR
LR
TC
COUNTER A decrementing counter. SV: 0 to 9999; N: Sv:
CNT CP: count pulse; R: reset input. The TC bit TC IR
CP is entered as a constant. HR
CNTN AR
R SV LR
DM
#
LOAD Defines the status of bit B as the execution B:
LD condition for subsequent operations in the IR
B - instruction line. SR
HR
AR
LR
TC
TR
LOAD NOT Defines the status of the inverse of bit B as B:
LD NOT the execution condition for subsequent op- IR
B erations in the instruction line. SR
HR
AR
LR
TC
OR Logically ORs the status of the designated B:
OR bit with the current execution condition. IR
5 SR
i I HR
I AR
LR
TC

87

Instruction Set Section 5-5
Name Symbol Function Operand Data
Mnemonic . Areas
OR LOAD Logically ORs the resultant execution con- None
ORLD e ditions of the preceding logic blocks.
OR NOT Logically ORs the inverse of the desig- B:
ORNOT nated bit with the execution condition. IR
SR
E I HR
AR
LR
TC
OUTPUT Turns ON B for an ON execution condition; B:
ouT turns OFF B for an OFF execution condi- IR
tion. SR
© :
AR
LR
TR
OUTPUT NOT Turns OFF B for an ON execution condi- B:
OUT NOT tion; turns ON B for an OFF execution con- IR
dition. SR
G ;
AR
LR
TIMER ON-delay {(decrementing) timer operation. N: SV:
TIM Set value: 000.0 t0 999.9 s. The same TC TC IR
et TIM N bit cannot be assigned to more than one HR
sv| |timer/counter. The TC bit is entered as a AR
constant, LR
DM
#
NO OPERATION Nothing is executed and program operation moves | None
NOP(00) to the next instruction.
None
END Required at the end of each program. Instructions | None
END(01 located after END(01) will not be executed.
on) END(01) 1)
INTERLOCK If an interlock condition is OFF, all outputs and all | None
1L(02) timer PVs between the current IL(02) and the next
INTERLOCK IL(02 ILC(03) are turned OFF or reset, respectively. Oth-
CLEAR er instructions are treated as NOP. Counter PVs
ILC(03) _— are maintained. If the execution condition is ON,
ILC(03 execution continues normally.

Instruction Set Section 5-5
Name Symbol Function Operand Data
Mnemonic Areas
JUMP When the execution condition for the JMP(04) in- | N:
JMP(04) struction is ON, all instructions between JMP(04) | 00 to 49
JUMP END and the corresponding JME(05) are to be ignored
JME(05) or treated as NOP(00). For direct jumps, the corre-
sponding JMP(04) and JME(05) instructions have
the same N value inthe range 01 through 49. Direct
jumps are usable only once each per program (i.e.,
Nis 01through 49 can be used only once each) and
the instructions between the JUMP and JUMP
END instructions are ignored; 00 may be used as
many times as necessary, instructions between
JMP 00 and the next JME 00 are treated as NOP,
thusincreasing cycle time, as compared with direct
jumps.
FAILURE ALARM Assigns atailure alarm code to the given execution { N:
(@)FAL(06) condition.When N can be given a value between 01 | 00 to 99
and 99 to indicate that a non-fatal error (i.e., one
that will not stop the CPU) has occurred. This is in-
dicated by the PLG outputting N (the FAL number)
tothe FAL output area. To resetthe FAL area, N can
be defined as 00. This will cause all previously re-
corded FAL numbers in the FAL area to be deleted.
FAL data sent after a 00 will be recorded in the nor-
mal way. The same code numbers can be used for
both FAL(06) and FALS(07).
SEVERE Atatal error is indicated by outputting N to the FAL | N:
FAILURE ALARM outputareaand the CPU is stopped. The same FAL | 01 to 99
FALS(07) numbers are used for both FAL(06) and FALS(07).
STEP DEFINE When used with a control bit (B), defines the start | B:
STEP(08) of a new step and resets the previous step. When | IR
used without B, it defines the end of step execution. ;IS
LR
STEP START Used with a control bit (B) to indicate the end of the | B:
SNXT(08) step, reset the step, and start the next step which | IR
has been defined with the same control bit. Hg
A
LR
SHIFT REGISTER Creates a bit shift register for data from the starting | St/E:
SFT(10) ! word (St) through to the ending word (E). I input bit; | IR
p SFT(10) P: shift pulse; R: reset input. St must be less than | HR
SLISE or equal to E. St and E must be in the same data | AR
R E area. LR
15 00 15 00
[[0 s Jn
KEEP s Defines abit (B) as a latch, controlled by the set (S) | B:
KEEP(11) and reset (R) inputs. iR
HR
KEEP(11) AR
R B LR

89

Instruction Set Section 5-5
Name Symbol Function Operand Data
Mnemonic Areas
REVERSIBLE Increases or decreases the PV by one whenever | N: SV:
COUNTER I the increment input (Il) or decrement input (DI) sig- { TC IR
CNTR (12) DI CNTR(12) nals, respectively, go from OFF to ON. SV: 0 to SR
N 9999; R: reset input. Each TC bit can be used for HR
R . one timer/counter only. The TC bit is entered as a AR
constant. LR
DM
#
DIFFERENTIATE DIFU(13) turns ON the designated bit (B) for one | B:
up ' cycle on reception of the leading (rising) edge of the | IR
DIFU(13) input signal; DIFD(14)turns ONthe bitforone cycle | HR
DIFFERENTIATE on reception of the trailing (falling) edge. AR
DOWN LR
DIFD(14)
HIGH-SPEED A high-speed, ON-delay (decrementing) timer. SV: | N: SV:
TIMER 00.02 to 99.99 s. Each TC bit can be assigned to | TC IR
TIMH(15)] TIMH(15) N | | Only One timer or counter. The TC bit is entered as SR
a constant. HR
SV AR
LR
HR
#
WORD SHIFT The data in the words from the starting word (St) | St/E:
{@)WSFT(16) through to the ending word (E), is shifted left in | IR
——t WSFT(16) word units, writing all zeros into the starting word. | HR
St St must be less than or equal to E, and St and E | AR
E must be in the same data area. LR
DM
REVERSIBLE Creates and controls a reversible non-synchro- | C SUE
WORD SHIFT nous word shift register between St and E. Ex- | IR IR
(@)RWS(17) RWS(17) changes the content of a word containing zerowith | SR SR
’ C the content of either the preceding or following HR HR
; b . AR AR
St word, depending on the shift direction. Bits 13, 14, LR LR
E and 15 of control word C determine the mode of | 1o TC
operation of the register according tothe following: | pm DM
The shift direction is determined by bit 13 (OFF | #
shifts the non-zero data to higher addressed
words; ON to lower addressed words). Bit 14 is the
register enable bit (ON for shift enabled). Bit 15 is
the reset bit (if bit 15 is ON, the register will be set
to zero between St and E when the instruction is
executed with bit 14 also ON). St and E must be in
the same data area.
CYCLE TIME Sets the minimum cycle time, Mi, in tenths of milli- | Mi: —
(@)SCAN(18) SCAN(18) seconds. The possible setting range is from 0 to | IR Not used.
- 999.0 ms. If the actual cycle time is less than the | SR
Mi time set using SCAN(18), the CPU will wait until Rg
- the designated time has elapsed before starting LR
- the next cycle. TC
DM
#
COMPARE Compares the data in two 4-digit hexadecimal | Cp1/Cp2:
(@)CMP(20) words (Cp1 and Cp2) and outputs resultto the GR, | IR
CMP(20) EQ, or LE Flags. }S-IE
Cpt AR
Cp2 LR
TC
DM
#

90

Instruction Set Section 5-5
Name Symbol Function Operand Data
Mnemonic Areas
MOVE Transfers data from source word, (S) to destination | S: D:
(@)MOV(21) word (D). IR IR
— MOV(21) SR HR
S HR AR
5) AR LR
LR DM
TC
DM
#
MOVE NOT Transfers the inverse of the datain the source word | S: D:
(@)MVN(22) v (8) to destination word (D). IR IR
—t MVN(22) SR HR
S HR AR
D AR LR
LR DM
TC
DM
#
BCD-TO-BINARY Converts 4-digit, BCD data in source word (S) into | S: R:
(@)BIN(23) 16-bit binary data, and outputs converted data to | IR iR
—t BIN(23) result word (R). SR HR
S s R HR AR
R BCD BIN AR LR
(BCD) (BIN) LR DM
x109 x16° TC
X101 v xist | DM
x102 - x162
x10% x16°
BINARY-TO-BCD Converts binary data in source word (S) into BCD, | S: R:
(@)BCD(24) and outputs converted data to result word (R). IR IR
-t BCD({24) s R 32 l;-\lg
S
= (BIN) (BCD) AR LR
x16° X100 LR DM
x161 x10 DM
—_
x162 x102
x16% x103
ARITHMETIC Each bit within a single word of data (Wd) is shifted | Wd:
SHIFT LEFT one bit to the left, with zero written to bit 00 and bit | IR
(@)ASL(25) ASL(25) 15 moving to CY. :2
wd 15 00 LR
CY |je— wd g 0 DM
ARITHMETIC Each bit within a single word of data (Wd) is shifted | Wd:
SHIFT RIGHT one bit to the right, with zero written to bit 15 and bit | IR
ASR(26 00 i CY. HR
(@) {(26) ASE(26) moving to e
wWd 15 00 LR
0 ——' Wd |—-| cY | DM

91

Instruction Set

Section 5-5

Name Symbol Function Operand Data
Mnemonic Areas
ROTATE LEFT Each bit within a single word of data (Wd) is moved | Wd:
(@)ROL(27) one bit to the left, with bit 15 moving to carry (CY), | IR
ROLET) and CY moving to bit 00. 22
Wwd 15 00 LR
E{ wd oy DM
ROTATE RIGHT Each bit within a single word of data (Wd) is moved | Wd:
(@)ROR(28) one bitto the right, with bit 00 moving to carry (CY), | IR
— T FOREE) and CY moving to bit 15. Eg
Wd 15 00 LR
I——l cY I——ol Wd }—l DM
COMPLEMENT Inverts bit status of one word (Wd) of data, chang- | Wd:
(@)COM(29) ing Os to 1s, and vice versa. IR
HR
COM(29) Wd = Wa AR
wd LR
DM
BCD ADD Adds two 4-digit BCD values (Au and Ad) and con- | Au/Ad: R:
{@)ADD(30) tent of CY, and outputs the result to the specified re- | IR IR
ADD(30) sult word (R). SR HR
Au HR AR
Ad Au + Ad + |cv I..R|cy | AR LR
R LR DM
TC
DM
#
BCD SUBTRACT Subtracts both the 4-digit BCD subtrahend (Su) | Mi/Su: R:
{@)SUB(31) SUBGS and content of CY, from the 4-digit BCD minuend | IR IR
{) (Mi) and outputs the result to the specified result | SR _HR
Mi word (R). HR AR
Su AR LR
: vi-su- [67] - oo M
DM
#
BCD MULTIPLY Multiplies the 4-digit BCD multiplicand (Md) and | Md/Mr: R:
(@)MUL(32) 4-digit BCD multiptier (Mr), and outputs the result | IR IR
=] MUL(32) to the specified result words (R and R+ 1). R and | SR HR
Md R + 1 must be in the same data area. HR AR
Mr AR LR
o LR DM
TC
MixMr - R+1 | R oM
#
BCD DIVIDE Divides the 4-digit BCD dividend (Dd) by the 4-digit | Dd/Dr: R:
(@)DIV(33) WRE BCD divisor (Dr), and outputs the result to the spe- | IR IR
DIV(33) cified result words. R receives the quotient; R + 1 | SR HR
Dd receives the remainder. R and R+ 1 must be in the | HR AR
Dr same data area. AR LR
R LR DM
TC
Dd = Dr -—I R+1 | | R I DM
#

92

Instruction Set Section 5-5
Name Symbol Function Operand Data
Mnemonic Areas
LOGICAL AND Logically ANDs two 16-bit input words (11 and 12) [11/12: R:
(@)ANDW(34) and sets the bits in the result word (R} if the corre- | IR IR
——1_ANDW(34)] | sponding bits in the input words are both ON. - SR HR
i HR AR
2 AR LR
R LR DM
TC
DM
#
LOGICAL OR Logically ORstwo 16-bitinputwords (11 and I2)and | 11/12: R:
(@)ORW(35) i sets the bits in the result word (R) whenone orboth { IR IR
ORW(35) of the corresponding bits in the input words is/are | SR HR
A ON. HR AR
2 AR LR
R LR DM
TC
DM
#
EXCLUSIVE OR Exclusively ORs two 16-bit input words (11 and 12) [11/12: R:
(@)XORW(36) — XORW(36) and sets the bitsin the result word (R) when the cor- | IR IR
responding bits in input words differ in status. SR HR
1 HR AR
12 AR LR
R LR DM
TC
DM
#
EXCLUSIVE NOR Exclusively NORstwo 16-bitinputwords (11 and 12) [11/12: R:
(@)XNRW(37) ‘ and sets the bitsin the resultword (R) whenthe cor- | IR IR
XNRW(37) responding bits in both input words have the same | SR HR
i status. HR AR
12 AR LR
R LR DM
TC '
DM
#
INCREMENT Increments the value of a 4-digit BCD word (Wd) by | Wd:
(@)INC(38) one, without affecting carry (CY). iR
—{"INC(38) HR
Wd AR
LR
DM
DECREMENT Decrements the value of a 4-digit BCD word by 1, | Wd:
(@)DEC(39) without affecting carry (CY). IR
—_DEC(39) HR
AR
Wd LR
DM
SET CARRY Sets the Carry Flag (i.e., turns CY ON). None
{@)STC(40)
STC(40
CLEAR CARRY Clears the Carry Flag (i.e, turns CY OFF). None
(@)CLC(41)

93

Ladder Diagram Instructions Section 5-6

5-6 Ladder Diagram Instructions

Ladder Diagram instructions include Ladder instructions and Logic Block in-
structions. Ladder instructions correspond to the conditions on the ladder
diagram. Logic block instructions are used to relate more complex parts of
the diagram that cannot be programmed with Ladder instructions alone.

5-6-1 LOAD, LOAD NOT, AND, AND NOT, OR, and OR NOT

Ladder Symbols Operand Data Areas
| B B Bt
- 11
LOAD -LD I " IR, SR, AR, HR, TC, LR, TR
LOAD NOT - LD NOT l B B: Bi
) l A1 IR, SR, AR, HR, TC, LR
B B: Bit
AND - AND I
IR, SR, AR, HR, TC, LR
B B: Bit
AND NOT - AND NOT W
IR, SR, AR, HR, TC, LR
B: Bit
OR-0OR B
11 IR, SR, AR, HR, TC, LR
[
B: Bit
OR NOT - OR NOT B
} { IR, SR, AR, HR, TC, LR
Limitations There is no limit to the number of any of these instructions, or restrictions in

the order in which they must be used, as long as the memory capacity of the
PC is not exceeded.

Description These six basic instructions correspond to the conditions on a ladder dia-
gram. As described in Section 4 Writing and Entering Programs, the status of .
the bits assigned to each instruction determines the execution conditions for
all other instructions. Each of these instructions and each bit address can be
used as many times as required. Each can be used in as many of these in-
structions as required.

‘The status of the bit operand (B) assigned to LD or LD NOT determines the
first execution condition. AND takes the logical AND between the execution

94

Ladder Diagram Instructions Section 5-6

Flags

condition and the status of its bit operand; AND NOT, the logical AND be-
tween the execution condition and the inverse of the status of its bit operand.
OR takes the logical OR between the execution condition and the status of its
bit operand; OR NOT, the logical OR between the execution condition and
the inverse of the status of its bit operand.

There are no flags affected by these instructions.

5-6-2 AND LOAD and OR LOAD

AND LOAD - AND LD

OR LOAD-ORLD

Description

Flags

Poe e P=eo=aq
« 00000 ¢ 00002
e Il 1 [1
' LI 'LL [
Ladder Symbol ' opoo1 ! s 00003 ¢
1] [] (§4]
[" s A1 "
¢ om0 oooor 1
n il 1V 1
LS R ..
Ladder Symbol eSSz zlZIz M
. oo?oz o??os .
ALY N | N

When instructions are combined into blocks that cannot be logically com-
bined using only OR and AND operations, AND LD and OR LD are used.
Whereas AND and OR operations logically combine a bit status and an exe-
cution condition, AND LD and OR LD logically combine two execution condi-
tions, the current one and the last unused one.

In order to draw ladder diagrams, it is not necessary to use AND LD and OR
LD instructions, nor are they necessary when inputting ladder diagrams di-
rectly, as is possible from LSS. They are required, however, to convert the
program to and input it in mnemonic form. The procedures for these, limita-
tions for different procedures, and examples are provided in 4-6 Inputting,
Modifying, and Checking the Program.

In order to reduce the number of programming instructions required, a basic
understanding of logic block instructions is required.

There are no flags affected by these instructions.

5-6-3 Coding Conditions and Other Instructions

Writing mnemonic code for ladder instructions is described in Section 4 Writ-
ing and Inputting the Program. Converting the information in the ladder dia-
gram symbol for all other instructions follows the same pattern, as described
below, and is not specified for each instruction individually.

Refer to the figures on page 96 for a sample ladder diagram and corre-
sponding mnemonic code written on program coding sheet from Appendix C.

The first word of any instruction defines the instruction and provides any de-
finers. If the instruction requires only a single bit operand with no definer, the
bit operand is also placed on the same line as the mnemonic. All other oper-
ands are placed on lines after the instruction line, one operand per line and in
the same order as they appear in the ladder symbol for the instruction.

The address and instruction columns of the mnemonic code table are filled in
for the instruction word only. For all other lines, the Ieft two columns are left

95

Ladder Diagram Instructions Section 5-6

00001

blank. If the instruction requires no definer or bit operand, the data column is
left blank for first line. It is a good idea to cross through any blank data col-
umn spaces (for all instruction words that do not require data) so that the
data column can be quickly cycled to see if any addresses have been left
out.

If an IR or SR address is used in the data column, the left side of the column
is left blank. If any other data area is used, the data area abbreviation is
placed on the left side and the address is place on the right side. If a con-
stant is to be input, the number symbol (#) is placed on the left side of the
data column and the number to be input is placed on the right side. Any num-
bers input as definers in the instruction word do not require the number sym-
bol on the right side. TC bits, once defined as a timer or counter, take a TIM
(timer) or CNT (counter) prefix.

When coding an instruction that has a function code, be sure to write in the
function code, which will be necessary when inputting the instruction via the
Programming Console. Also be sure to designate the differentiated instruc-
tion with the @ symbol.

The following diagram and corresponding mnemonic code illustrate the
points described above.

Address|Instruction | Data

HR 0015
1L

00000
| T T { DIFU(13) 22500 00000 |LD + 00000
00002 00001 JAND ' 00001
" 00002 |OR - ! 00002
00100 00200 22500 00003 |DIFU(13) T 22500
1 1Y BCNT(87) '
i A 00004 |LD s 00100
01001 01002 LR 6300 #0001 T
o 00005 |AND NOT + 00200
o 00006 |LD '+ 01001
00007 |AND NOT 1 01002
00008 [ANDNOT |LR ! 6300
00005 00009 |ORLD . =
1 TiM 000 00010 |AND | 22500
#0150 15s - T
00011 |BCNT(67) . —
T 000 # 1 0001
[1] MOV(21) 5
' 004
HR 00]
1
LR 00 HR L) 00
00012 {LD ! 00005
[]
(]

96

00013 |TIM 000
@ # , 0150
00014 |LD TIM+ 000

00015 | MOV(21)

)
HR E 00
LR ' 00
00016 [LD HR | 0015
00017 |OUT NOT , 00500

Bit Control Instructions

Section 5-7

Multiple Instruction Lines

If an instruction requires multiple instruction lines (such as KEEP(11)), all of
the lines for the instruction are entered before the right-hand instruction.
Each of the lines for the instruction is coded, starting with LD or LD NOT, to
form ‘logic blocks’ that are combined by the instruction. An example of this

for SFT(10) is shown below.

Instructi 0O d

00000 09?01 | Address ction perands
i it SFT(10) 00000 | 1D 00000
0??02 P 00001 AND 00001
W HR OO 00002 | LD 00002

00100 00200 22500
{} L T B HRoo 00003 | 1D 00100
01001 01002 LR 6300 00004 AND NOT 00200
“ }’f }ly 00005 LD 01001
00006 AND NOT 01002
HR 0015

i 00500 00007 | ANDNOT| (R 6300
00008 ORLD —
00009 AND 22500
00010 | SFT(10) —
HR 00
HR 00
00011 LD HR 0015
00012 QUT NOT 00500

5-7 Bit Control Instructions

There are five instructions that can be used generally to contro! individual bit
status. These are OUT, OUT NOT, DIFU{13), DIFD(14), and KEEP(11).
These instructions are used to turn bits ON and OFF in different ways.

5-7-1 OUTPUT and OUTPUT NOT — OUT and OUT NOT

OUTPUT - OUT

OUTPUT NOT - OUT NOT

Limitations

Description

Ladder Symbol

Operand Data Areas

B: Bit

®

IR, SR, AR, HR, TC, LR, TR

Ladder Symbol

Operand Data Areas

B: Bit

<

IR, SR, AR, HR, TC, LR

Any output bit can generally be used in only one instruction that controls its

status.

OUT and OUT NOT are used to control the status of the designated bit ac-

cording fo the execution condition.

OUT turns ON the designated bit for an ON execution condition, and turns
OFF the designated bit for an OFF execution condition. With a TR bit, OUT
appears at a branching point rather than at the end of an instruction line. Re-

fer to 4-6-7 Branching Instruction Lines for details.

OUT NOT turns ON the designated bit for a OFF execution condition, and
turns OFF the designated bit for an ON execution condition.

97

Bit Control Instructions

Section 5-7

Flags

OUT and OUT NOT can be used to control execution by turning ON and OFF
bits that are assigned to conditions on the ladder diagram, thus determining
execution conditions for other instructions. This is particularly helpful and al-
lows a complex set of conditions to be used to control the status of a single
work bit, and then that work bit can be used to contro! other instructions.

The length of time that a bit is ON or OFF can be controlled by combining the
OUT or OUT NOT with TIM. Refer to Examples under 5-8-1 TIMER - TIM for
details.

There are no flags affected by these instructions.

5-7-2 DIFFERENTIATE UP and DOWN — DIFU(13) and DIFD(14)

Limitations

Description

Flags

Precautions

98

Ladder Symbols Operand Data Areas
— DIFU(13) B B: Bi
IR, AR, HR, LR
— DIFD(14) B B: Bit
IR, AR, HR, LR

Any output bit can generally be used in only one instruction that controls its
status.

DIFU(13) and DIFD(14) are used to turn the designated bit ON for one cycle
only.

Whenever executed, DIFU(13) compares its current execution with the previ-
ous execution condition. If the previous execution condition was OFF and the
current one is ON, DIFU(13) will turn ON the designated bit. If the previous
execution condition was ON and the current execution condition is either ON
or OFF, DIFU(13) will either turn the designated bit OFF or leave it OFF (i.e.,
if the designated bit is already OFF). The designated bit will thus never be
ON for longer than one cycle, assuming the instruction is executed each
cycle (see Precautions, below).

Whenever executed, DIFD(14) compares its current execution with the previ-
ous execution condition. If the previous execution condition was ON and the
current one is OFF, DIFD(14) will turn ON the designated bit. If the previous
execution condition was OFF and the current execution condition is either
ON or OFF, DIFD(14) will either turn the designated bit OFF or leave it OFF.
The designated bit will thus never be ON for longer than one cycle, assuming
the instruction is executed each cycle (see Precautions, beiow).

These instructions are used when differentiated instructions (i.e., those pre-
fixed with an @) are not available and single-cycle execution of a particular
instruction is desired. They can also be used with non-differentiated forms of
instructions that have differentiated forms when their use will simplify pro-
gramming. Examples of these are shown below.

There are no flags affected by these instructions.

DIFU(13) and DIFD{14) operation can be uncertain when the instructions are
programmed between 1L and ILC or between JMP and JME.

Bit Control Instructions Section 5-7

Example 1:

Use When There Are No

In diagram A, below, whenever CMP(20) is executed with an ON execution
condition it will compare the contents of the two operand words (HR 10 and

Ditferentiated Instructions p 0000) and set the arithmetic flags (GR, EQ, and LE) accordingly. If the

execution condition remains ON, flag status may be changed each cycle if
the content of one or both operands change. Diagram B, however, is an ex-
ample of how DIFU(13) can be used to ensure that CMP(20) is executed only
once each time the desired execution condition goes ON.

Example 2:
Use to Simplify
Programining

00000 Address | Instruction Operands
i} CMP(20)
TR 10 00000 LD 00000
. 00001 | CMP(20)
Diagram A DM 0000 TR 70
DM 0000
00000
: ; @ Address | Instruction Operands
22500 00000 | LD 00000
i CMP(20) 00001 | DIFU(13) 22500
HR 10 00002 | LD 22500
Diagram B DM 0000 00003 | CMP(20)
HR 10
DM 000

Although a differentiated form of MOV(21) is available, the following diagram
would be very complicated to draw using it because only one of the condi-
tions determining the execution condition for MOV(21) requires differentiated

treatment.
00000 @ Address | Instruction Operands

' = 00000 | LD 00000
29500 00001 | DIFU(13) 22500
1} MOV(21) 00002 | LD 22500
00001 00002 00003 HR 10 00003 | LD ' 00001
i DM 0000 00004 | AND NOT 00002
00004 00005 00005 | AND NOT 00003
3 00006 | OR LD —
00007 | LD 00004
00008 ‘| AND NOT 00005
00009 [ORLD v —

00010 | MOV(21)
HR 10
DM 0000

5-7-3 KEEP — KEEP(11)
Ladder Symbol Operand Data Areas
S
B: Bit
KEEP(11)
. 8 IR, AR, HR, LR

Limitations

Any output bit can generally be used in only one instruction that controls its
status. Refer o 3-2 IR Area for details.

99

Bit Control Instructions Section 5-7

Description KEEP(11) is used to maintain the status of the designated bit based on two
execution conditions. These execution conditions are labeled Sand R. Sis
the set input; R, the reset input. KEEP(11) operates like a latching relay that
is set by S and reset by R.

When S turns ON, the designated bit will go ON and stay ON until reset, re-
gardless of whether S stays ON or goes OFF. When R turns ON, the desig-
nated bit will go OFF and stay OFF until set, regardiess of whether R stays
ON or goes OFF. The relationship between execution conditions and
KEEP(11) bit status is shown below.

S execution condition

R execution condition

1
]
L]
]
I
)
1

Status of B

The following two diagrams would function identically, though the one using
KEEP(11) requires one less instruction to program and would maintain status
even in an interlocked program section.

00002 00003 Address | Instruction Operands
| Ty 00500
1 00000 LD 00002
00500 00001 | OR 00500
— 00002 | AND NOT 00003
‘ 00003 | OUT 00500
’_|°°?°2 S Address | Instruction Operands
J KEEP(11) 00000 | LD 00002
; 00001 | LD 00003
00003 q 0050 00002 | KEEP(11) 00500
'l
Flags There are no flags affected by this instruction.
Precautions Never use an input bit in an inverse condition on the reset (R) for KEEP(11)

when the input device uses an AC power supply. The delay in shutting down
the PC’s DC power supply (relative to the AC power supply to the input de-
vice) can cause the designated bit of KEEP(11) to be reset. This situation is
shown below.

Input Unit
A |__._S_
NEVER *

I R HR 0000

KEEP(11)

Bits used in KEEP are not reset in interlocks.

100

Timer and Counter Instructions

Section 5-8

Example If a HR bit or an AR bit is used, bit status will be retained even during a
power interruption. KEEP(11) can thus be used to program bits that will main-
tain status after restarting the PC following a power interruption. An example
of this that can be used to produce a warning display following a system
shutdown for an emergency situation is shown below. Bits 00002, 00003, and
00004 wouid be turned ON to indicate some type of error. Bit 00005 would be
turned ON to reset the warning display. HR 0000, which is turned ON when
any one of the three bits indicates an emergency situation, is used to turn ON
the warning indicator through 00500.

‘ o002 Address | Instruction Operands

! KEEP(I) 00000 | LD 00002

, 00001 | OR 00003

+— omergency HR 0000 00002 | OR 00004

situation 00003 | LD 00005

‘ '—'IW 00004 | KEEP(11) HR 0000

Reset i 00005 | LD HR 0000

00005 o 00006 | OUT 00500

==

HR 0000 Activates
it @ sy

KEEP(11) can also be combined with TIM to produce delays in turning bits
ON and OFF. Refer to 5-8-1 TIMER ~ TIM for details.

5-8 Timer and Counter Instructions

TIM and TIMH are decrementing ON-delay timer instructions which require a
TC number and a set value (SV).

CNT is a decrementing counter instruction and CNTR is a reversible counter
instruction. Both require a TC number and a SV. Both are also connected to
muitiple instruction lines which serve as an input signal(s) and a reset.

Any one TC number cannot be defined twice, i.e., once it has been used as
the definer in any of the timer or counter instructions, it cannot be used
again. Once defined, TC numbers can be used as many times as required as
operands in instructions other than timer and counter instructions.

TC numbers run from 000 through 511. No prefix is required when using a
TC number as a definer in a timer or counter instruction. Once defined as a
timer, a TC number can be prefixed with TIM for use as an operand in certain
instructions. The TIM prefix is used regardless of the timer instruction that
was used to define the timer. Once defined as a counter, a TC number can
be prefixed with CNT for use as an operand in certain instructions. The CNT
is also used regardless of the counter instruction that was used to define the
counter.

TC numbers can be designated as operands that require either bit or word
data. When designated as an operand that requires bit data, the TC number
accesses a bit that functions as a “completion flag” that indicates when the
time/count has expired, i.e., the bit, which is normally OFF, will turn ON when
the designated SV has expired. When designated as an operand that re-
quires word data, the TC number accesses a memory location that holds the
present value (PV) of the timer or counter. The PV of a timer or counter can
thus be used as an operand in CMP(20), or any other instruction for which
the TC area is allowed. This is done by designating the TC number used to
define that timer or counter to access the memory location that holds the PV.

101

Timer and Counter Instructions Section 5-8

5-8-1 TIMER - TIM

Note that “TIM 000" is used to designate the TIMER instruction defined with
TC number 000, to designate the completion flag for this timer, and to desig-
nate the PV of this timer. The meaning of the term in context shouid be clear,
i.e., the first is always an instruction, the second is always a bit operand, and
the third is always a word operand. The same is true of all other TC numbers
prefixed with TIM or CNT.

An SV can be input as a constant or as a word address in a data area. If an
IR area word assigned to an Input Unit is designated as the word address,
the Input Unit can be wired so that the SV can be set externally through
thumbwheel switches or similar devices. Timers and counters wired in this
way can only be set externally during RUN or MONITOR mode. All SVs, in-
cluding those set externally, must be in BCD.

Limitations _

Description

ON
Execution condition OFF

ON
Completion flag OFF

Precautions

102

Definer Values
Ladder Symbol N: TC number
(000 through 511)
TIMN
sv Operand Data Areas

SV: Set value (word, BCD)

IR, AR, DM, HR, LR, #

SV is between 000.1 and 999.9. The decimal point is not entered.

Each TC number can be used as the definer in only one TIMER or
COUNTER instruction.

TC 000 through TC 003 should not be.used in TIM if they are requiréd for
TIMH(15). Refer to 5-8-2 HIGH-SPEED TIMER — TIMH(15) for details.

A timer is activated when its execution condition goes ON and is reset (to
SV) when the execution condition goes OFF. Once activated, TIM measures
in units of 0.1 second from the SV. TIM accuracy is +0.0/~0.1 second.

If the execution condition remains ON long enough for TIM to time down to
zero, the completion flag for the TC number used will turn ON and will remain
ON until TIM is reset {i.e., until its execution condition is goes OFF).

The following figure illustrates the relationship between the execution condi-
tion for TIM and the completion flag assigned to it.

Timers in interlocked program sections are reset when the execution condi-
tion for IL(02) is OFF. Power interruptions also reset timers. If a timer that is
not reset under these conditions is desired, SR area clock pulse bits can be
counted to produce timers using CNT. Refer to 5-8-3 COUNTER — CNT for
details.

Timer and Counter Instructions

Section 5-8

Program execution will continue even if a non-BCD SV is used, but timing will
not be accurate. '

Extended Timers

Flags ER: SVisnotin BCD.
Indirectly addressed DM word is non-existent. (Content of *DM word
is not BCD, or the DM area boundary has been exceeded.)
Examples All of the following examples use OUT in diagrams that would generally be
used to control output bits in the IR area. There is no reason, however, why
these diagrams cannot be modified to control execution of other instructions.
Example 1: The following example shows two timers, one set with a constant and one set
Basic Application via input word 005. Here, 00200 will be turned ON after 00000 goes ON and
stays ON for at least 15 seconds. When 00000 goes OFF, the timer will be
reset and 00200 will be turned OFF. When 00001 goes ON, TIM 001 is
started from the SV provided through IR word 005. Bit 00201 is also turned
ON when 00001 goes ON. When the SV in 005 has expired, 00201 is turned
OFF. This bit will also be turned OFF when TIM 001 is reset, regardless of
whether or not SV has expired.
00000
o-—l % TIM 000 Address | Instruction Operands
#0150 § 015.0s | 00000 | LD 00000
00001 | TiM 000
TIM 000 @ # 0150
{ 00002 | LD TIM 000
00001 00003 | OUT 00200
— TIM 001 00004 | LD 00001
005 § IR 005 00005 | TiM 001
005
TIM 001 O 00006 | ANDNOT | TiM 001
00201
2 (] 00007 | OUT 00201
Example 2: There are two ways to achieve timers that operate for longer than 999.9 sec-

onds. One method is to program consecutive timers, with the Completion
Flag of each timer used to activate the next timer. A simple example with two
900.0-second (15-minute) timers combined to functionally form a 30-minute
timer. :

00 Lm T— Address | Instruction Operands

' 00000 | LD 00000
#9000 | 900.0s

Moot 00001 | TIM 001

} TIM 002 # 8000

40000 | so00s | 00002 | LD TIM 001

00003 | TIM 002

TIM L002 # 8000

ml 00200 00004 | LD TiM 002

00005 | OUT 00200

In this example, 00200 will be turned ON 30 minutes after 00000 goes ON.

TIM can also be combined with CNT or CNT can be used to count SR area
clock pulse bits to produce longer timers. An example is provided in 5-8-3
COUNTER — CNT.

103

Timer and Counter Instructions Section 5-8

Example 3:
ON/OFF Delays

TIM can be combined with KEEP(11) to delay turning a bit ON and OFF in
reference 10 a desired execution condition. KEEP{11) is described in 5-7-3
KEEP - KEEP(11).

To create delays, the Completion Flags for two TIM are used to determine
the execution conditions for setting and reset the bit designated for

KEEP(11). The bit whose manipulation is to be delayed is used in KEEP(11).

Turning ON and OFF the bit designated for KEEP(11) is thus delayed by the
SV for the two TIM. The two SV could naturally be the same if desired.

In the following example, 00500 would be turned ON 5.0 seconds after
00000 goes ON and then turned OFF 3.0 seconds after 00000 goes OFF. It
is necessary {o use both 00500 and 00000 to determine the execution condi-
tion for TIM 002; 00000 in an normally closed condition is necessary to reset
TIM 002 when 00000 goes ON and 00500 is necessary to activate TIM 002
(when 00000 is OFF).

Address | Instruction Operands

TiM 001
00501 5.0s

00000 | LD 00000
00001 | TIM 001
0050

TIM 002 00002 | LD 00500
0030 | 30s [00003 | AND NOT 00000
s 00004 | TIM 002

0030
00005 | LD TIM 001
00500 00006 | LD TIM 002

KEEP(11)

Example 4:
One-Shot Bits

104

50s

00007 | KEEP(11) 00500

3.0s

The length of time that a bit is kept ON or OFF can be controlled by combin-
ing TIM with OUT or QUT NO. The foliowing diagram demonstrates how this
is possible. In this example, 00204 would remain ON for 1.5 seconds after
00000 goes ON regardless of the time 00000 stays ON. This is achieved by
using 01000 as a self-maintaining bit activated by 00000 and turning ON
00204 through it. When TIM 001 comes ON (i.e., when the SV of TIM 001
has expired), 00204 will be turned OFF through TIM 001 (i.e., TIM 001 will

Timer and Counter Instructions

Section 5-8

turn ON which, as an inverse condition, creates an OFF execution condition

for OUT 00204).
“__oi?oo mfn3°1 @ Address | Instruction Operands
00000 |LD 01000
00000 00001 | ANDNOT | TIM 001
o | — 00002 | OR 00000
01000 00003 | OUT 01000
"_|| 00004 | LD 01000
y TiM 0ot 00005 | TIM 001
#0015 [155 ¥ 0015
01000 TIM 001 00006 | LD 01000
+H K @ 00007 | AND NOT TIM 001
00008 | OUT 00204
00000 £
:
00204
Example 5: Bits can be programmed to turn ON and OFF at regular intervals while a des-
Flicker Bits ignated execution condition is ON by using TIM twice. One TIM functions to
turn ON and OFF a specified bit, i.e., the completion flag of this TIM turns the
specified bit ON and OFF. The other TIM functions to control the operation of
the first TIM, i.e., when the first TIM’s completion flag goes ON, the second
TIM is started and when the second TIM'’s completion flag goes ON, the first
TIM is started.
00000 T'M.m Address | Instruction Operands
il T oo 00000 | LD 00000
#0010 | 105
—_— 00001 | AND TIM 002
| TIM 002 00002 | TIM 001
#0015 | 155 # 0010
00003 | LD TIM 001
TiM 001 0200 00004 | TIM 002
T # 0015
00005 | LD TIM 001
00006 | OUT 00205
00000 ;
)
00205 :
|

10s 15s

A simpler but less flexible method of creating a flicker bit is to AND one of the
SR area clock pulse bits with the execution condition that is to be ON when
the flicker bit is operating. Although this method does not use TIM, it is in-
cluded here for comparison. This method is more limited because the ON
and OFF times must be the same and they depend on the clock pulse bits
available in the SR area.

In the following example the 1-second clock pulse is used (25502) so that
00206 would be turned ON and OFF every second, i.e., it would be ON for

105

Timer and Counter Instructions : Section 5-8

00000 25502

0.5 seconds and OFF for 0.5 seconds. Precise timing and the initial status of
00206 would depend on the status of the clock pulse when 00000 goes ON.

5-8-2 HIGH-SPEED TIMER - TIMH(15)

Limitations

Description

Precautions

Flags

106

Address | Instruction Operands
@ 00000 | LD 00000
00001 | AND 25502
00002 | OUT 00206
Definer Values
Ladder Symbol N: TC number
(000 through 511, but 000
through 003 preferred)
TIMH(15) N
sV Operand Data Areas

SV: Set value (word, BCD)

IR, AR, DM, HR, LR, #

SV is between 00.02 and 99.99. (Although 00.00 and 00.01 may be set,
00.00 will disable the timer, i.e., turn ON the Completion Flag immediately,
and 00.01 is not reliably cycled.) The decimal point is not entered.

Each TC number can be used as the definer in only one timer or counter in-
struction.

TC 000 through TC 003 must be used to ensure adequate accuracy if the
cycle time is greater than 10 ms.

TIMH(15) operates in the same way as TIM except that TIMH measures in
units of 0.01 second.

Refer to 5-8-1 TIMER — TIM for operational details and examples. Except for
the above, and all aspects of operation are the same.

Timers in interlocked program sections are reset when the execution condi-
tion for 1L(02) is OFF. Power interruptions also reset timers. If a timer that is
not reset under these conditions is desired, SR area clock puise bits can be
counted to produce timers using CNT. Refer to 5-8-3 COUNTER — CNT for
details.

The cycle time affects TIMH(15) accuracy if TC 004 through TC 511 are
used. If the cycle time is greater than 10 ms, use TC 000 through TC 003.

Program execution will continue even if a non-BCD SV is used, but timing will
not be accurate.

ER: SVis notin BCD.

Indirectly addressed DM word is non-existent. (Content of xXDM word
is not BCD, or the DM area boundary has been exceeded.)

Timer and Counter Instructions Section 5-8

OFF to ON changes have been counted in 00001. This would result in 00203

being turned ON.

— 00?01 cp Address | Instruction Operands
' ONT 001 00000 | LD 00000
00%02 R #0100 00001 AND 00001
r ¢i 00002 | LD NOT 00002
i 00t oR T
L
i 00005 | CNT 001
CNT 002 # 0100
o | 00006 | LD CNT 001
T 001 00007 | LD NOT 00002
it P 00008 | CNT 002
CNT 002 P 0200
00002 R #0200 00009 | LD CNT 002
P 4| 00010 | OUT 00203
CNT 002
CNT can be used in sequence as many times as required to produce count-
ers capable of counting any desired vaiues.
Example 3: CNT can be used to create extended timers in two ways: by combining TIM
Extended Timers

00000 TIM 001 CNT 002

with CNT and by counting SR area clock pulse bits.

in the following example, CNT 002 counts the number of times TIM 001
reaches zero from its SV. The completion flag for TIM 001 is used to reset
TIM 001 so that is runs continuously and CNT 002 counts the number of
times the completion flag for TIM 001 goes ON (CNT 002 would be executed
once each time between when the completion flag for TIM 001 goes ON and
TIM 001 is reset by its completion flag). TIM 001 is also reset by the comple-
tion flag for CNT 002 so that the extended timer would not start again until
CNT 002 was reset by 00001, which serves as the reset for the entire ex-
tended timer.

Because in this example the SV for TIM 001 is 5.0 seconds and the SV for
CNT 002 is 100, the completion flag for CNT 002 turns ON when 5 seconds x
100 times, i.e., 500 seconds (or 8 minutes and 20 seconds) have expired.
This would result in 00201 being turned ON.

4 ¥ A¥ Address | Instruction Operands
I e 00000 | LD - 30000
00001 | ANDNOT | _TIM 001
| i cp 00002 | AND NOT | _CNT 002
' onT 00003 | TIM 001
00001 # 0050
g [- #0100 00004 | LD TIM 001
T a2 00005 | LD 00001
4 @ 00006 | CNT i 0(:&2)
00007 | LD CNT 002
00008 | OUT 00200

in the following example, CNT 001 counts the number of times the 1-second
clock pulse bit (25502) goes from OFF to ON. Here again, 00000 is used to
control the times when CNT is operating.

109

Timer and Counter Instructions Section 5-8

Because in this example the SV for CNT 001 is 700, the completion flag for
CNT 002 turns ON when 1 second x 700 times, or 11 minutes and 40 sec-
onds have expired. This would result in 00202 being turned ON.

) ‘_loool-o_o;zlﬁl:oz CP Address | Instruction Operands
' onT 00000 | LD 00000
00031 R 00001 | AND 25502
(] #0700 00002 | LD NOT 00001
ONT 001 00003 | CNT 001
¢ : 00202 # 0700
00004 | LD CNT 001
00005 |OuUT 00202

Caution The shorter clock pulses will not necessarily produce accurate
timers because their short ON times might not be read accurately during longer
cycles. Inparticular, the 0.02-second and 0.1-second clock pulses should notbe
used to create timers with CNT instructions.

5-8-4 REVERSIBLE COUNTER - CNTR(12)

Definer Values

Ladder Symbol N: TC number

(000 through 511)

CNTR(12)
N

=L Operand Data Areas

sV

SV: Set value (word, BCD)
IR, AR, DM, HR, LR, #

Limitations

Each TC number can be used as the definer in only one timer or counter in-
struction.
Description The CNTR(12) is a reversible, up/down circular counter, i.e., it is used to

count between zero and SV according to changes in two execution condi-
tions, those in the increment input (l1) and those in the decrement input (D).
The present value (PV) will be incremented by one whenever CNTR(12) is
executed with an ON execution condition for il and the last execution condi-
tion for |l was OFF. The present vaiue (PV) will be decremented by one
whenever CNTR(12) is executed with an ON execution condition for DI and
the last execution condition for DI was OFF. If OFF to ON changes have oc-
curred in both Il and DI since the last execution, the PV will not be changed.

If the execution conditions have not changed or have changed from ON to
OFF for both Il and DI, the PV of CNT will not be changed.

When decremented from 0000, the present value is set to SV and the com-
pletion flag is turned ON until the PV is decremented again. When incre-
mented past the SV, the PV is set to 0000 and the completion flag is turned
ON until the PV is incremented again.

CNTR(12) is reset with a reset input, R. When R goes from OFF to ON, the
PV is reset to zero. The PV will not be incremented or decremented while R
is ON. Counting will begin again when R goes OFF. The PV for CNTR(12)

110

Timer and Counter Instructions Section 5-8

will not be reset in interlocked program sections or by the effects of power
interruptions.

Changes in Il and DI execution conditions, the completion flag, and the PV
are illustrated below starting from part way through CNTR(12) operation (i.e.,
when reset, counting begins from zero). PV line height is meant to indicate
changes in the PV only.

Execution condition
on increment (1)

Execution condition
on decrement (D)

Completion flag

PV

Precautions Program execution will continue even if a non-BCD SV is used, but the SV
will not be correct.

Flags ER: SVisnotin BCD.

Indirectly addressed DM word is non-existent. (Content of xDM word
is not BCD, or the DM area boundary has been exceeded.)

111

SECTION 6
Program Execution Timing

The timing of various operations must be considered both when writing and debugging a program. The time required to
execute the program and perform other CPU operations is important, as is the timing of each signal coming into and leav-
ing the PC in order to achieve the desired control action at the right time. This section explains the cycle and shows how
to calculate the cycle time and I/O response times.

1/O response times in Link Systems are described in the individual System Manuals.

6-1
6-2
6-3
6-4

CycleTime

..

Instruction EXecution TImescvuittit ittt tetererenreeneanacanensn

I/O Response Time

Host Link Response Time

..

..

114
117
121
122

113

Cycle Time

Section 6-1

6-1

114

Cycle Time

To aid in PC operation, the average, maximum, and minimum cycle times
can be displayed on the Programming Console or any other Programming
Device and the maximum cycle time and current cycle time values are held in
AR 26 and AR 27. Understanding the operations that occur during the cycle
and the elements that affect cycle time is essential to effective programming
and PC operations.

The major factors in determining program timing are the cycle time and the
I/O response time. One cycle of CPU operation is called a cycle; the time
required for one cycle is called the cycle time. The time required to produce a
control output signal following reception of an input signal is called the /O
response time.

Cycle Time

Section 6-1

The overall flow of CPU operation is as shown in the following flowchart.

C Power application D

Clear IR area and resets all timers
Check /O Unit connections Initialization
Reset watchdog timer
r ™
Check hardware and Program Memory
NO - Overseeing
‘ Check OK? processes
YES
Set error flags and activates indicators |
Resets watchdog timer and program counter
|
ERROR or ALARM? 1.
or ?
Execute user program Program
execution
ERROR
End of program?
YES o
I3
SCAN(18) executed? o
o
YES Cycle time
rocessi
Reset watchdog timer and adjust cycle time P ng
|
=
Compute cycle time
|
y
Reset watchdog timer
‘ /O refreshing
Refresh input bits and output terminals
Service RS-485 interface RS—485
‘ servicing
Service CPU-mounted devices Device
servicing

The first three operations, immediately after power application, are performed
only once each time the PC is turned on. The rest of the operations are per-
formed in cyclic fashion, with each cycle forming one cycle. The cycle time is
the time that is required for the CPU to complete cne of these cycles. This
cycle includes basically six operations.

ns

Cycle Time Section 6-1
The following table shows the breakdown of the PC cycle, time requirements,
and reasons for variations in the cycle time. The total cycle time will be the
sum of all the following.

Process Content Time requirements
Overseeing Resetting watchdog timer, /O bus check, 3.0 ms

UM check

Program execution

Execution of user program

Total time for executing all instructions
according to current execution conditions.
Varies with instructions used and
execution conditions. Refer to 6-2
instruction Execution Times for details.

Cycle time adjustments

Computation of cycle time and required
adjustment for SCAN(18)

Almost instantaneous (less than 1 ms) if
no adjustment is necessary.

Time required is determined by operand of
SCAN(18) if adjustment is necessary,

11O refresh Output terminal status updated according to | Inputs: 0.07 ms per 8 pts.

output bit status and input bits status .

updated according to input terminal status. Outpits: 0.04 ms per 8 pts.
RS-485 servicing Built-in RS-485 interface serviced. If not set in System DM, 5% of the

calculation cycle time will be used (but the
minimum time is 1 ms); otherwise, the
percentage set in System DM (between
0% and 99%) will be used. The minimum
servicing time is 0.2 ms even if System
DM is set to 0%.

Peripheral Device servicing

Peripheral Devices connect to CPU
serviced (e.g., Programming Devices)

If not set in System DM, 5% of the
calculation cycle time will be used (but the
minimum time is 1 ms); otherwise, the
percentage set in System DM (between
0% and 99%) will be used. The minimum
servicing time is 0.2 ms even if System
DM is set to 0%.

Watchdog Timer and Long

Cycle Times

116

Within the PC, the watchdog timer measures the cycle time and compares it

to a set value. If the cycle time exceeds the set value of the watchdog timer,
a FALS 9F error is generated and the CPU stops.

Even if the cycle time does not exceed the set value of the watchdog timer, a
long cycie time can adversely affect the accuracy of system operations as

shown in the following table.

Cycle time (ms)

Possible adverse affects

10 or greater

TIMH(15) inaccurate when TC 016 through TC 511 are used.

20 or greater

0.02-second clock pulse not accurately readable.

100 or greater

0.1-second clock pulse not accurately readable and Cycle
Timer Error flag {25309) turns ON.

200 or greater

0.2-second clock pulse not accurately readable.

6,500 or greater

FALS code 9F generated regardless of watchdog timer setting
and the system halts.

Instruction Execution Times

Section 6-2

6-2 Instruction Execution Times

This following table lists the execution times for all instructions that are avail-
able for the C20HB-TS. The maximum and minimum execution times and the
conditions which cause them are given where relevant. When “word” is re-
ferred to in the Conditions column, it implies the content of any word except
for indirectly addressed DM words. indirectly addressed DM words, which
create longer execution times when used, are indicated by “kDM.”

Execution times for most instructions depend on whether they are executed
with an ON or an OFF execution condition. Exceptions are the ladder dia-
gram instructions OUT and OUT NOT, which require the same time regard-
less of the execution condition. The OFF execution time for an instruction
can ailso vary depending on the circumstances, i.e., whether it is in an inter-
locked program section and the execution condition for IL is OFF, whether it
is between JMP(04) 00 and JME(05) 00 and the execution condition for
JMP(04) 00 is OFF, or whether it is reset by an OFF execution condition. “R,”
“IL,” and “JMP” are used to indicate these three times.

117

Instruction Execution Times

Section 6-2

Table: Instruction Execution Times

118

L.___Ins;tructic:m Conditions ON execution time (us)* | OFF execution time (us)"
LD - 0.75 1.5
LD NOT --- 0.75 1.5
AND - 0.75 1.5
AND NOT -— 0.75 1.5
10R - 0.75 1.5
OR NOT - 0.75 1.5
AND LD - 0.75 1.5
ORLD --- 0.75 1.5
ouTt - 1.13 2.25
OUT NOT - 1.13 2.25
TIM Constant for SV 2.25 R: 2.25
IL: 2.25
JMP:; 225
%DM for SV R: 259
IL: 2.25
JMP: 225
CNT Constant for SV 2.25 R: 2.25
IL: 225
JMP: 225
*DM for SV R: 255
IL: 2.25
JMP: 225
NOP(00) -— 0.75 -
END(01) --- 85 -
IL(02) - 32 35
ILG(03) -— 59 35
JMP(04) - 35 35
JME(05) - 45 35
FAL(06) FAL(06) 00 (reset) 357 2.25
FAL(06) 01 to 99 247 2.25
FALS(07) - 11.1 ms 2.25
STEP(08) - 364 2.25
SNXT(09) - 22 2.25
SFT(10) With 1-word shift register 227 R: 191
IL: 30
JMP: 30
With 250-word shift register 8.06 ms R: 1.81 ms
IL: 30
JMP: 30
KEEP(11) - 1.13 ---
CNTR(12) Constant for SV 107 R: 85
IL: 49
*DM for SV 265 JMP: 49
DIFU(13) --- 105 Normal: 93
IL: 93
JMP: 84
Note: * The execution time is given in microseconds unless otherwise stated.

Instruction Execution Times

Section 6-2

Instruction Conditions ON execution time (us)” | OFF execution time (us)”
DIFD(14) - 104 Normal: 92
IL: 92
JMP: 84
TIMH(15) Interrupt, Constant for SV 149 R: 199
iL: 199
Normal cycle, Constant for SV 169 JMP: 73
interrupt, xDM for SV 149 R: 291
iL: 291
Normal cycle, *DM for SV 169 JMP: 73
WSFT(16) When shifting 1 word 260 3
' When shifting 1000 words using ¥DM 17.3 ms
RWS(17) When shifting 1 word 558 3.75
When shifting 1000 words using *DM 57.4 ms
SCAN(18) —— Cycle time set in 3.75
instruction — actual cycle
time
CMP(20) When comparing a constant to a word 162 3
When comparing two xDM 447
MOV(21) When transferring a constant to a word 113 3
When transferring *DM to xDM 321
MVN(22) When transferring a constant to a word 115 3
When transferring *DM to xDM 392
BIN(23) When converting a word to a word 197 3
When converting xDM to xDM 465
BCD(24) When converting a word to a word 198 3
When converting xDM to xDM 451
ASL(25) When shitting a word 62 2.25
When shifting *DM 190
ASR(26) When shifting a word 62 2.25
When shifting *xDM 190
ROL(27) When rotating a word 66 2.25
When rotating *xDM 194
ROR(28) When rotating a word 66 2.25
When rotating *xDM 194
COM(29) When inverting a word 379 2.25
When inverting *DM 506
ADD(30) Constant + word =» word 166 3.75
*DM + %DM = DM 593
SUB(31) Constant + word -» word 192 3.75
*DM — xDM = xDM 600
MUL(32) Constant x word - word 634 3.75
*DM x *DM = word 1045
DIV(33) Word + constant - word 737 3.75
*DM = xDM = xDM 1156
ANDW(34) Constant < word = word 162 3.75
*DM < *DM =+ xDM 557
ORW(35) Constant > word = word 162 3.75
%DM > «DM =» xDM 560
XORW(36) Constant XORW word = word 162 3.75
*DM XORW xDM = *xDM 560
Note: * The execution time is given in microseconds uniess otherwise stated.

119

Instruction Execution Times

Section 6-2

120

Instruction Conditions ON execution time (us)” | OFF execution time (us)”
XNRW(37) Constant XNRW word — word 163 3.75
*DM XNRW %DM —» DM 561
INC(38) When incrementing a word 79 2.25
When incrementing xDM 207
-1 DEC(39) When decrementing a word 72 2.25
When decrementing xDM 260
STC(40) -— 21 1.5
CLC(41) --- 21 1.5
Note: * The execution time is given in microseconds unless otherwise stated.

I/O Response Time

Section 6-3

6-3 1/O Response Time

Minimum I/O Response
Time

The I/O response time is the time it takes for the PC to output a control signal
after it has received an input signal. The time it takes to respond depends on
the cycle time and when the CPU receives the input signal relative 1o the in-
put refresh period.

The minimum and maximum IO response time calculations described below
are for where 00000 is the input bit that receives the signal and 00200 is the
output bit corresponding to the desired output point.

| 00000
‘ il 00200

The PC responds most quickly when it receives an input signal just prior to
the input refresh period in the cycle. Once the input bit corresponding to the
signal has been turned ON, the program would have o be executed once to
turn ON the output bit for the desired output signal and then the input refresh
and overseeing operations would have to be repeated before the output re-
fresh operation refreshes the output bit. The I/O response time in this case is
thus found by adding the input ON-delay time, the cycle time (including the
I/O refresh times), and the output ON-delay time. This situation is illustrated
below.

CPU reads
input signai

1 1 1
\ f—— Cycle time ———ole~— Cycle ime e

Cycle
1
: Output refresh
1
Input E .
signal | . CPU writes '
. Input ON delay outputsignal T 15104t ON delay
Qutput : :
signal 1
]
]

e }/Q T@SPONSE M et
' T
) 1}

Minimum /O response time = input ON delay + cycle time + I/O refresh time
+ output ON delay

121

Host Link Response Time

Section 6-4

Maximum /O Response
Time

Calculation Example

6-4

122

The PC takes longest to respond when it receives the input signal just after
the input refresh phase of the cycle. In this case the CPU does not recognize
the input signal until the end of the next cycle. The maximum response time
is thus one cycle longer than the minimum I/O response time, except that the
input refresh time would not need to be added in because the input comes
just after it rather than before it.

Overseeing

1) [}
\;;— Cycle time em———tlomme Cycle time ———s!

Output refresh <

Cycle

Input CPU reads CPU writes /',
signal input signal output signal 1
i Input ON delay outpult ON delay
Output : '
signal !
L L}
]
@ /O response time .

Maximum I/O response time = input ON delay + (cycle time x 2) + output ON
delay

The data in the following table would produce the minimum and maximum
cycle times shown calculated below. '

Input ON-delay 1.5 ms
Cycle time 20 ms
Input refresh time 0.23 ms
Output ON-delay 15 ms

Minimum VO response time = 1.5 + 20 + 0.23 +15 = 36.73 ms

Maximum I/O response time = 1.5 + (20 x 2) +15 = 56.5ms

Host Link Response Time

The processing that determines and the methods for calculating the minimum
and maximum times required from an input on one PC in a Host Link System
to an output on another PC in the same Host Link System are described be-
low. The transfer between the PCs is handled through a host computer con-
nected to both these PCs. Although more precise equations may be written if
required, those used in the following calculations do not consider fractions of
acycle.

In considering response times, it is important to remember the sequence of

processing that occurs during the PC cycle. The main factor that affects the

rzsponse time is the timing of inputs and outputs, the length of the transmis-
sion, and the time required for host computer processing.

Host Link Response Time Section 6-4

The following diagram iliustrates the setup used in response time calcula-

tions.
| Host computer |
PG Cycle time Cycle time
I I (50 ms) l e ! (30 ms)
l_o—%_J Lo
Input Qutput

The following equations are used to calculate the minimum and maximum
response times for the C20HB-TS. The maximum response time is an ap-

proximation.
Minimum response time = Input ON delay + Command transmission time + (Cycle time of PC for Unit #0 x 2) + Response transmis-
sion time + Host computer processing time + Command transmission time + (Cycle time of PC for Unit #31
x 2) + Output ON delay
Maximum response time = Input ON delay + Command transmission time + (Cycle time of PC for Unit #0 x 10) + Response transmis-

sion time + Host computer processing time + Command transmission time + (Cycle time of PC for Unit
x 10) + Qutput ON delay

#31

123

SECTION 7
Program Debugging and Execution

This section provides the procedures for debugging a program, and for monitoring and controlling the PC through a Pro-
gramming Console.

If you are using a FIT or a computer running LSS, refer to the applicable Operation Manual for procedures on these.

7-1 Displaying and Clearing Error MesSageS . oo vvviiivrnrrinerassroeseeniansansnns
7-2 Monitoring Operation and ModifyingDatacoiviiiiiiiiiiiiiiiiiiiennn.
T-2-1 BityWord Monitoroiviiiiiiiiiiiie ittt eie e iiniennnnnnenes
7-22 FOrced Set/ReSEL .ottt ittt e ittt e
7-2-3 Forced Set/ResetCancelcovvviiiiiiiiiiiiiiiiiiiiii i
7-2-4 Hexadecimal/BCD Data Modificationcoivviiniiiiiiniineniennn.
7-2-5 Hex/ASCII DisplayChangeooviiiiiiiiin et iieienans.
7-2-6 Program HeaderDisplayccoviiiiiiiiiiniii it
727 3-word MORItOroiiiitiiiii it it
7-2-8 3-wordDataModificationcccvviiiiiiiiiiiiii it
7-2-9 Binary MODIIOTcvtviiineinniiinnerinnrenioanaeneecnnnnnas
7-2-10 Binary Data Modificationc.oveiiiiiniiiiiniiniierireraannas
7-2-11 Changing Timer/Counter SV i ittt i it iiiain e
7-3 C250HL-PRO31-TS PROM Writer OPerations vvveurnnnrerenenenneeronenns
7-3-1 Switching to and from PROM WriterModecovvvviiiniinn.
7-3-2 EPROMTYPE SEttNgottt eniiineennnnoneennsenss
7-3-3 EPROMErase ChecKcoiirntivnn ittt e iaiieneeninnnenenns
734 EPROMDataReadoiininiiiii ittt ciiiinaeas
7-3-5 EPROMDData Wrile .. oiit ittt i it iea ittt i anannannnas
7-3-6 EPROMData COmpPare:ovveeretvr it iineennnoennsnonnonsenons

126
127
128
131
133
134
135
136
136
137
138
139
141
144
145
145
146
147
147
148

125

Displaying and Clearing Error Messages Section 7-1

7-1 Displaying and Clearing Error Messages

Key Sequence

126

After inputting a program and correcting it for syntax errors, it must be exe-
cuted and all execution errors must be eliminated. Execution errors include
an excessively long cycle, errors in settings for various Units in the PC, and
inappropriate control actions, i.e., the program not doing what it is designed
to do.

If desired, the program can first be executed isolated from the actual control
system and wired to dummy inputs and outputs to check for certain types of
errors before actual trial operation with the controlled system.

When an error occurs during program execution, it can be displayed for iden-
tification by pressed CLR, FUN, and then MONTR. If an error message is
displayed, MONTR can be pressed to access any other error messages that
are stored by the system in memory. If MONTR is pressed in PROGRAM
mode, the error message will be cleared from memory. Be sure to write down
the error message when required before pressing MONTR. OK will be dis-
played when the last message has been cleared.

If a beeper sounds and the error cannot be cleared by pressing MONTR, the
cause of the error still exists and must be eliminated before the error mes-
sage can be cleared. If this happens, take the appropriate corrective action to
eliminate the error. Refer to Section 9 Troubleshooting for all details on all
error messages. The sequence in which error messages are displayed de-
pends on the priority levels of the errors. The messages for fatal errors (i.e.,
those that stop PC operation) are displayed before non-fatal ones.

Although error messages can be displayed in any mode, they can be cleared
only in PROGRAM mode. There is no way to restart the PC following a fatal
error without first clearing the error message in PROGRAM mode.

EHEH -

Monitoring Operation and Modifying Data Section 7-2

Example The following displays show some of the messages that may appear. Refer
to Section 9 Troubleshooting for an extensive list of error messages, their
meanings, and the appropriate responses.

CLR
FLUMH C%Ta
BEBEBERRE CHE
MO s
MEMORY ERR 1
MONTR
MO EMD IH=T
Fatal
I-0 BUS EEERE errors
ZWS FRIL FHLS
_____________________________ S,
WS FHRIL FHL
Non-fatal
SCHM TIME OUER errors

T TR All errors .
BEEEEERR CHE have been
Dk cleared

7-2 Monitoring Operation and Modifying Data

The simplest form of operation maonitoring is to display the address whose
operand bit status is to be monitored using the Program Read or one of the
search operations. As long as the operation is performed in RUN or MONI-
TOR mode, the status of any bit displayed will be indicated.

This section provides other procedures for monitoring data as well as proce-
dures for modifying data that already exists in a data area. Data that can be
modified includes the PV (present value) and SV (set value) for any timer or
counter.

All monitor operations in this section can be performed in RUN, MONITOR,
or PROGRAM mode and can be cancelled by pressing CLR.

All data modification operations except for timer/counter SV changes are per-
formed after first preforming one of the monitor operations. Data modification
is possible in either MONITOR or PROGRAM mode, but cannot be per-
formed in RUN mode. :

7=-2-1 Bit/Word Monitor

The status of any bit or word in any data area can be monitored using the
following operation. Although the operation is possible in any mode, ON/OFF
status displays will be provided for bits in MONITOR or RUN mode only.

127

Monitoring Operation and Modifying Data Section 7-2

128

The Bit/Word Monitor operation can be entered either from a cleared display
by designating the first bit or word to be monitored or it can be entered from
any address in the program by displaying the bit or word address whose
status is to be monitored and pressing MONTR.

When a bit is monitored, it's ON/OFF status will be displayed (in MONITOR
or RUN mode); when a word address is designated other than a timer or
counter, the digit contents of the word will be displayed; and when a timer or
counter number is designated, the PV of the timer will be displayed and a
small box will appear if the completion flag of a timer or counter is ON. When
multiple words are monitored, a caret will appear under the leftmost digit of
the address designation to help distinguish between different addresses. The
status of TR bits and SR flags (e.g., the arithmetic flags), cleared when
END(01) is executed, cannot be monitored.

Up to six memory addresses, either bits, words, or a combination of both,
can be monitored at once, aithough only three of these are displayed at any
one time. To monitor more than one address, return to the start of the proce-
dure and continue designating addresses. Monitoring of all designated ad-
dresses will be maintained unless more than six addresses are designated. If
more than six addresses are designated, the leftmost address of those being
monitored will be cancelled.

To display addresses that are being monitored but are not presently on the
Programming Console display, press MONTR without designating another
address. The addresses being monitored will be shifted to the right. As
MONTR is pressed, the addresses being monitored will continue shifting to
the right until the rightmost address is shifted back onto the display from the
left.

During a monitor operation the up and down keys can be pressed to incre-
ment and decrement the leftmost address on the display and CLR can be
pressed to cancel monitoring the leftmost address on the display. If the last
address is cancelled, the monitor operation will be canceiled. The monitor
operation can also be cancelled regardless of the number of addresses being
monitored by pressing SHIFT and then CLR.

LD and OUT can be used only to designate the first address to be displayed;
they cannot be used when an address is already being monitored.

Monitoring Operation and Modifying Data Section 7-2

Key Sequence

Program
read

v . (cont | l_l AL
CLR ,LsulFr] + | F & [Address] HON‘I‘RJ
(o] (o}
—l Clears leftmost

HR £
l address

SHIFT (AR) Cancels moni- SHIFT
for operation

st

+

[+

)E9))

1
=
F

t)|

(4)C

Examples The following examples show various applications of this monitor operation.

Program Read then Monitor

)
3 | [EE1EERERD
TIM BEE
EEE EEE
1234
[:: TEEE1
V| - eoes

L Indicates Completion flag is ON

Monitor operation
is cancelled

E

e B

— 150

=
[
=1

=

[n]

[

129

Monitoring Operation and Modifying Data

Section 7-2

Bit Monitor

Word Monitor

130

(=] (&)

(») (A1

ausia

) &)

CH

i)
15
ot
=
[SN

-

AHEE 1

®

) (

.,...
[in
T
(o1
o
)

Ry
m &

T T | Do

D]
)
RN
DU
-
D]

Fante!

Monitoring Operation and Modifying Data

Section 7-2

Multiple Address Monitoring

7-2-2

e

Forced Set/Reset

When the Bit/Word Monitor operation is being performed and a bit, timer, or

counter address is leftmost on the display, PLAY/SET can be pressed to turn
ON the bit, start the timer, or increment the counter and REC/RESET can be
pressed to turn OFF the bit or reset the timer or counter. Timers will not oper-
ate in PROGRAM mode. SR bits cannot be turned ON and OFF with this op-
eration.

If you press PLAY/SET or REC/RESET alone (i.e., without SHIFT), then
Force Set/Reset will continue only as long as the key is held down. If you
press either of these with SHIFT, however, then the operation will continue
until cancellied with NOT.

Without using NOT, the operation may be cancelled in any of the following
four ways:
e With the Restore Status operation

e With a PC mode change

e When operation halts due to an error

EEﬂ

B EEE

BEHEED

- e e

-
bt
—r
anaedy.
(1]
=

paiing
s’

1GFF* OFF

l—l-
[
[y)
=80
Bomele
[t}
i
1

b

1GFF™ OFF

AR
v

E

J &

o}
5

[

- - g

CHAMHMEL DM B85

Cancels monitoring of
leftmost address

Monitor operation
canceled

131

Monitoring Operation and Modifying Data

Section 7-2

e When operation halts due to a power failure

This operation can be used in MONITOR mode to check wiring of outputs
from the PC prior o actual program execution. This operation cannot be

used in RUN mode.
Key Sequence

Bit or Timer/Counter r_“
currently monitored FLAY
on left of display. l SET
‘ REC
lRESET
SHIFT PLAY
SET
SHIET REC
RESET
NOT
Example The following exampie shows how either bits or timers can be controlled with

the Force Set/Reset operation. The displays shown below are for the follow-

ing program section.

TiM 000
#0123

00002
el
TIM 000
mal
Address | Instruction Operands
00200 LD 00002
00201 TIM 000
0123
00202 LD TIM 000
00203 ouT 00500

132

@

012.3s

~

Monitoring Operation and Modifying Data

Section 7-2

The following displays show

what happens when TIM 000 is set with 00100

OFF (i.e., 00500 is turned ON) and what happens when TIM 000 is reset with
00100 ON (i.e., timer starts operation, turning OFF 00500, which is turned
back ON when the timer has finished counting down the SV).

(This example is in MONITOR mode.)

BEl1BERE50H

sl sl Monitoring
~ OFF™ 0OFF 00100 and 00500.
o) | BElEERESEE
SET E oM ™ OFF
I——— Indicates that force set/reset is in progress.
\]
REC BElREERSEE
RESET BEOFF OFF
- OFF™ OFF
o) | THEEEE I BEEESEE Monitoring
B123~ OFF™ OFF TIM000.
PLAY TEQEER 18800588 Setting TIM 000
SET E El l:u.-j E! E_l o ':‘ F F o,]:‘ I." turns ON 00500.
TEEEEO]l eSS an Returns to the beginning
Bliz3 OFF™ OFF when the key is released.
v
) il e RE S EFNES N
l ™ "uom -_1_- ":1 l'-_" 'f‘ HEl l':" i U SR ":i bl Display with 0010 originally
o HEHE QM OH ON.
REC TOEEER 1 HEEESEH
RESET) | EE(H {1 =3 NI
Bl oo i aFF Timer starts timing, turning
_____ P ———— 00500 OFF.*
TEHREOE]l BRRESEE
BHl12Z oM™ OFF
TEQEEElOaRESEE When the time is up, 00500
a El E{ E‘ E‘ o~ ;:' l'"l . i:! i,"i goes ON again,

7-2-3

Key Sequence

L Indicates that the time is up.

*Timing not done in PROGRAM mode.

Forced Set/Reset Cancel

This operation restores the status of all bits in the IR, TIM, CNT, HR, AR, or
LR areas which have been force set or reset. It can be performed in PRO-

GRAM or MONITOR mode.

—{cm] [rav] [mec) -(uo'r
) o) meserj |

When the PLAY/SET and REC/RESET keys are pressed, a beeper will
sound. If you mistakenly press the wrong key, then press CLR and start

again from the beginning.

133

Monitoring Operation and Modifying Data Section 7-2

Example

The following example shows the displays that appear when Restore Status
is carried out normally.

< B
WY
2
.
e
KX
2t
o
2
Y
=%

BRI R
SET
Rec | | BHERBEBFORCE RELE®?
RESET

7-2-4 Hexadecimal/BCD Data Modification

Key Sequence

134

When the Bit/Word Monitor operation is being performed and a BCD or hexa-
decimal value is leftmost on the display, CHG can be input to change the
value. SR words cannot be changed.

If & timer or counter is leftmost on the display, the PV will be displayed and
will be the value changed. See 7-2-11 Changing Timer/Counter SV for the
procedure to change SV. PV can be changed in MONITOR mode only when
the timer or counter is operating.

To change contents of the leftmost word address, press CHG, input the de-
sired value, and press WRITE.

Word currently
monitored on [Data] =i WRITE
left of display.

Monitoring Operation and Modifying Data Section 7-2

Example The following example shows the effects of changing the PV of a timer.
This example is in MONITOR mode

P

- =
= 5]
=
v
=
1=
=
=

TEEE
Bizs AR b
I Timing :
GEEEEFRES WAL T :
TEAE @119 7777 PV changed |
| Timing |
FZ]FO]FO} HEAEEFRES UALT !
TERA BlEE @2EE |~ """ 0C !
l Timing
TEOGE
199
I Timing

7-2-5 Hex/ASCII Display Change

This operation converts DM data displays back and forth between 4-digit
hexadecimal data and ASCII.

Key Sequence

Word currently | m)
displayed. 1
Example
BELEG
c
BEOER
DM - e
ZH oM B8Ga

i
OanEE
E—E

135

Monitoring Operation and Modifying Data Section 7-2

7-2-6 Program Header Display

Key Sequence

Example

With this operation you can display the name of the program, along with the
version number and the time it was last revised (given in year, month, day,
hour, and minute). ‘

When the SHIFT and MONITOR keys are pressed, the Programming Con-
sole displays the program name, version number, and so on, which have pre-
viously been stored in the DM System area. If the title/version enable (5A) in
DM 1990 is OFF, then asterisks will be displayed.

On models with a clock function, the revision time is generated automaticaily
whenever there is an insertion, deletion, or addition to the program, or when
memory is cleared or timer/counter SVs are set. For models without the clock
function, it is necessary to set the revision time.

For more detail, refer to 3-5 DM (Data Memory) Area.

7-2-7 3-word Monitor

Key Sequence

136

To monitor three consecutive words together, specify the lowest numbered
word, press MONTR, and then press EXT to display the data contents of the
specified word and the two words that follow it.

A CLR eniry changes the three-word monitor operation to a single-word dis-
play.

r-_j r—
Single Word monitor in progress e————g{ EXT | e *

Monitoring Operation and Modifyin,_g Data Section 7-2

Example

[:] BEEEE
{w] BEEEE

CHAHHEL DM @86
[@6 @

B9AE
PR CEEEE
—J| 8123 4567 S9AE
(¢ ||PEEEEDEREZDEEE]
" J| RECD B123 4567
(§ ||DE8E4DEaB3IDEARE
—J| EFEE AECD &123
(¢ | |bBaESDERR4LEAET
> J| 1111 EF&8 RECD
(4 || DEEE4DERAIDEERAZ
_—J| EFGE RBCD @123
(o) |FEEEZ DEEEE
CLR i i
_J|ABCL @123

7-2-8 3-word Data Modification

Key Sequence

This operation changes the contents of a word during the 3-word Monitor op-
eration. The blinking square indicates where the data can be changed. After
the new data value is keyed in, pressing WRITE causes the original data to
be overwritten with the new data. If CLR is pressed before WRITE, the
change operation will be cancelled and the previous 3-word Monitor opera-
tion will resume.

3 words currently
displayed e = [Data] wnnE!

137

Monitoring Operation and Modifying Data Section 7-2

Example
DEEEZDEEEIDEEEE | gwordmonior
Bl12Z 45687 Z9AE in progress.
cha | |DEEES ZCHCHAMG? Stops in the middle
H123 45&7 S9RE of monitoring.
B DBEEE ICHCOHAMG?
1 e - =t
gEEl 457 S9AE
’ LERaz ZCHCHAMEG?
CHG == o i
BEEl 4567 S9ARE
[cz [03][54]F5 [J_I:ﬂ_l:'i_l-.'ﬂ..-: KA H;l:ll'jﬂﬁ' ¢
{ HEEl 345 23AB
|
Y | DEEEZDEEE]l DEEoR
" | @EEl 2345 S9AE
B ey, [T —
R DEgEzbEaslbgnan Resumes previous
G123 4567 SOAE | monwrng

7-2-9 Binary Monitor

You can specify that the contents of a monitored word be displayed in binary
by pressing SHIFT and MONTR after the word address has been input.
Words can be successively monitored by using the up and down keys to in-
crement and decrement the displayed word address. To clear the binary dis-
play, press CLR.

Key Sequence |

—
) = tord —ofowrfenr}

Binary moni- -—.[—C—E
_...__. tor clear

All monitor —.@
=)

(=

138

Monitoring Operation and Modifying Data

Section 7-2

Example

MONTR

CLR

P

CHAMHEL DM G086

7-2-10 Binary Data Modification

CHAMHEL DM o@8a

This operation assigns a new 16-digit binary value to an IR, HR, AR, LR, or

DM word.

The blinking square, which can be shifted to the left with the up key and to

the right with the down key, indicates the position of the bit that can be

changed. After positioning to the desired bit, a 0 or a 1 can then be entered
as the new bit value. Bits can be force set or force reset by pressing SHIFT
and PLAY/SET or SHIFT and REC/RESET.

139

Monitoring Operation and Modifying Data Section 7-2

Key Sequence

140

Forced Set and Forced Reset are indicated by S and R, and set at 1 and 0.
They are cancelled by NOT. (See Force Set/Reset indicators in 7-2-1 Bit/
Word Monitor. After a bit value has been changed, the blinking square will
appear at the next position to the right of the changed bit.

Word currently
displayed in WRITE
binary

?fﬁ <))

SHIFT

il

() (@

Monitoring Operation and Modifying Data Section 7-2

Example
BEERE
[:] cH | | HEEOER
* CHHHHEL B
r1 GEEEG
CHAMHEL BEl
cEEl PMOMTE
@”"’“ BEEEAIEIEIG1IA1E]
) cBB1 CHGE?
. JilEgnapiginigialal
%1‘ cEE1 CHE?Y
1guguiglialelalinl
Ao cEE] CHE?Y
— JI1HERRIGlElalalal
T CHE1 CHGET
— JI|18eEGliBglnlealaial
"*‘ cEE] CHE?
J | l1GaEgEigligligliaisd
”;“ cHEL CHEY
_JllsdgEglialglsliaial
4 cEEL CHE?Y
iEpEleigliglelol
—) cBE1 MONTR
__JilsgeRlalolaiclal
L IRbitoot1s L IRbit00100

7-2-11 Changing Timer/Counter SV

There are two ways to change the SV of a timer or counter. It can be done
either by inputting a new value; or by incrementing or decrementing the cur-
rent SV. Either method can be used only in MONITOR or PROGRAM mode.
In MONITOR mode, the SV can be changed while the program is being exe-
cuted. Incrementing and decrementing the SV is possible only when the SV
has been entered as a constant.

To use either method, first display the address of the timer or counter whose
SV is to be changed, presses the down key, and then press CHG. The new
value can then be input numerically and WRITE pressed to change the SV or
EXT can be pressed followed by the up and down keys to increment and
decrement the current SV. When the SV is incremented and/or decremented,
CLR can be pressed once to change the SV to the incremented or decre-
mented value but remaining in the display that appeared when EXT was
pressed or CLR can be pressed twice to return to the original display with the
new SV.

This operation can be used to change a SV from designation as a constant to
a word address designation and visa versa.

141

Monitoring Operation and Modifying Data

Section 7-2

Key Sequence

Example

Timer/Counter
currently displayed.

—{ ¥ |o{ere

or ! &

—(4
[New SV} ——ﬁ

The following examples show inputting a new constant, changing from a con-

stant to an address, and incrementing to a new constant.

Inputting New SV and
Changing to Word Designation

142

)| eBaaa
CLR
WO
TIM gER
Y| ERZB1SRCH
SRCH = oy
Co | TIk BEE
’*‘ aEzel TIM DATA
s 8123
'CHG gEzel TIM DATH
TEEE #9123 #7777
[)F2)=)[EE28T, TIF OATA 7 g
{ TEEE #6123 #0124 | newsSv
ware] | EEZ2E1 TIM [:'FS'EFI_
#0124
q’? sRzZEl DARATAH? Changing to
LSl'llFT = TERE #5123 oFRT word deggnaﬁon.
T BRZE1 DRTAR?
J | TRER #1223 cBl@
o IEEIE It v ST
wRITE BEZEL TIH ['HTij
SRS

Monitoring Operation and Modifying Data Section 7-2

Incrementing and — | FREER
Decrementing er ||~ """
(—)| SRR E
ma || EVEIETEE)
J | TIH GER
) 1% T Dol e e
scn] [BEZE1SRCH N
TIF EEE
oEzel TIM DRARTH
U 1 a -_'

pE=al TIM DATH

SO

v

cHE i A, - -
] TEHEE #0123 #2777

&

BR2E10ATA Y U-D
TanE #8123 #0123

|-— Current SV (during

change operation)
SV before the change
(4 |[EEZG1DATA_7
| TEEBE #0127 #9122
*‘ HEZBIDATH 7
| THoEe #8123 #0123
(§ | |B92810ATR 2
TEHEE #E123 #8124
on | [BEZEIDATA 7
Topg #8124 #7797
oA pEzEal TIH DATH | Returns to original display
$E1 g | withnewSV

143

C250HL-PRO31-TS PROM Writer Operations Section 7-3

7-3 C250HL-PRO31-TS PROM Writer Operations

PROM Writer Operations

In addition to all of the functions of the C200H-PRO27-E Programming Con-
sole, the C250HL-PRO31-TS Programming Console has been equipped with
a built-in PROM Writer.

The C250HL-PRO31-TS’s Programming Console operations are identical to
those of the C200H-PRO27-E. Refer to 7-1 Displaying and Clearing Error
Messages and 7-2 Monitoring Operation and Modifying Data for details on
the Programming Console operations.

B4A, 128, 128A, or 256).

(There are 8K words of User Memory in the
C20HB-SCO001-TS, so a 64K-bit EPROM cannot be
used. Use either 27128, 27128A, or 27256 ROM.)

The PROM Writer can be used to transfer the Program Memory and DM
1000 to DM 1999 to PROM, transfer the Program Memory and DM 1000 to
DM 1999 from EPROM to the PC, or compare the EPROM data to the PC
data. The five PROM Writer operations are described briefly in the following
fable.
Operation Function Key Sequence
EPROM Type Setting Specifies the type of EPROM being used (2764, Decrease memory size.

<[>

Increase memory size.

EPROM Erase Check

Performs an erase check.)

DEL

EPROM Data Read

Reads data from the EPROM chip and transfers it to
the PC.

EPROM Data Write

Copies PC data to the EPROM chip if it passes an
erase check.

=)

()

EPROM Data Compare

Compares the EPROM chip data to the PC data.

Installing an EPROM Chip

144

1,2, 3.

The following procedure explains how to install and remove an EPROM chip
from the PROM Writer socket in the C250HL-PRO31-TS.

1. Raise the socket’s lever to release the socket armature.

2. Insert the EPROM chip into the socket. When inserting the chip, hold it up-
rightand be sure not to touch the terminal pins. The notch on the chip should
be on the right side.

Lever

[SN
3RBERRERENEE

D | Make sure that the chip is being
installed in the right direction.

3. Check that the chip is inserted properly and depress the lever.

C250HL-PRO31-TS PROM Writer Operations Section 7-3

7-3-1

Example

Switching to and from PROM Writer Mode

The C250HL-PRO31-TS can be switched between Programming Console
mode and PROM Writer mode by pressing the SHIFT + EXT keys. The Pro-
gramming Console must be set to PROGRAM mode in order to switch from
Programming Console mode to PROM Writer mode.

{PROGREAM >
E FRASSWORD

<CPROGERAM

) | EaEa
CLR
S
Y PROM HMOD 2T G
EXT FROM MODE o4 <« [Enter PROM Writer mode
| S
= | 5y)
@ or | | HEEE . Return to Programming
J Console mode

7-3-2 EPROM Type Setting

This operation is used to select the type of EPROM chip being used. The five
possible settings are: 2764, 2764A, 27128, 27128A, and 27256.

To change the EPROM setting, press the Up and Down Arrow keys to display
different settings and then press the MON key to select the displayed setting.

The Up Arrow key will change the setting to a smalier memory size and the
Down Arrow key will change the setting to a larger memory size, in the order
shown below.

2T 02VEdA 0 2TIER 02V128A 027258

t $

145

C250HL-PRO31-TS PROM Writer Operations Section 7-3

Example

FROM FMODE 2red

FEOM HMOLE 2764
27E4H
FEOM MODE 27ed

Ly B e
o -
a t s Lt

FEOM MODE 27128

FREOM MODE 27128

27E54H

FROM MODE 2VE4A

HICIHICIONE

7-3-3 EPROM Erase Check

This operation performs an erase check on the EPROM chip in the PROM
Writer socket.

Example

FROM MODE 2756

FEOM MODE 27Y25c
ERASE CHECK

FREOM FMODE TFREL
$#ERS ®wwk FF

e
= EPROM data

Erase Check Resuits

Normal FEOM MODLDE 27256
completion

Erase check FROM HMODE 2T 258
erorresults ~ | $ER'S ki FF

| I——
= Error data

Indicates address where
error occurred.

146

C250HL-PRO31-TS PROM Writer Operations Section 7-3

7-3-4 EPROM Data Read

The EPROM Data Read operation reads data from the EPROM chip and
transfers it to the PC. This operation is possible only when the PC’s User
Memory write-protect switch (pin 5 of DIP switch 2) is set to ON.

When the EPROM setting is set for 27256 EPROM, only the last 16K bytes of
the chip’s data will be transferred. (The 16K bytes of data in addresses
$2000 through $3FFF will be transferred, but the 16K bytes of data in ad-
dresses $0000 through $1FFF will not be transferred.)

Example

(%]
n
[y

—)V |FREOM HMODE

CLR

-
POl
¥

b3

mar) | FREOM MODE 27256
Lse) |FROM RERD

w FROM MODE 27256
HLOD ek RIR
T l_'_l—— Read data

indicates read address.

EPROM Read Results

Normal FROM MODE 27256
completion
EPROM read PEOM MODLDE 27V25s
erorresults ™ | &1 [y wkk FF

I
I_‘_'— Error data

Indicates address where
error occurred.

7-3-5 EPROM Data Write

The EPROM Data Write operation writes PC data to the EPROM chip if it
passes an erase check.

When the EPROM setting is set for 27256 EPROM, the 16K bytes of PC data
will be transferred to the last 16K bytes of the chip’s memory. (16K bytes of
data will be transferred to addresses $2000 through $3FFF. Data will not be
transferred to addresses $0000 through $1FFF.)

147

C250HL-PRO31-TS PROM Writer Operations Section 7-3

Example
Ccm FROM MODE 27256
FEOM MODE 27255
[“’“ FROM WRITE
FEOM MODE 27258 Erase check
o #ERS sk FF = error results
PROM MODE 2F23& + Data written
HEPRE ek ok to EPROM
L
— L_FJ—— Write data
Indicates write address.
EPROM Write Results Normal FROM MODE 27256
completion
EPROM write FEOM MODE 27206
error results HFRE bk iy FF
| I
l PC data
EPROM data
Indicates address where
error occurred.
Result when FROM MODE 27Ed
64K-bit EPROM . — -
hised . |#OUR IFFF Z7

7-3-6 EPROM Data Compare

The EPROM Data Compare operation compares PC’s User Memory data to
the data in the EPROM chip.

-I

l_‘_l'.

Exampl ‘ROM MODE 27
xample E FROM MODE 5

FROM HD[E FTRE
[““ COMPARE CHECE

FEOM HMODE 27256
HFOMHP ek ek ko

| I
l PC data
EPROM data

Address being
compared.

_ﬁ
T

MONTR

148

C250HL-PRO31-TS PROM Writer Operations

Section 7-3

EPROWM Compare Results

Normal FROM MODRE
iy

completion

]

-}
b
I:l".

[

Verification _, | FREOM MODE
error results BOMP sk

e
P b §
LAty e
T T i

|

=

Result when FEROM MODE
BRI EPRON = |#0UR 1FFF

ZTE4

PCdata
EPROM data

Indicates address where
verification error occurred.

149

SECTION 8
RS-485 Interface

The C20HB-TS has a built-in RS-485 interface which allows it to be connected to a Host Link System. This section de-
scribes modes, settings, and procedures used with the RS-485 interface. For information on errors which occur while
using this interface in a Host Link System, refer to 9-6 Host Link Error Processing. For information on Host Link Sys-
tems including other C-series PCs, refer to the Host Link System Manuals.

8-1 RS-485 System Configuration and Settingsc.cvertriirienen e ernenns 152
8-2 Connection to a2 Host Computer’s RS-232C POrt . ..o vvvviieiiiieeeeeeeaeaannnn 154
8-3 RS-485 Interface Flags and Control Bifscoiivuriiiiiiiiniieiiiiennnannn 154
8-4 RS-485 Communications Protocolo.ouiiiiiiiie ittt iieeiieeeaeaneann 155
8-4-1 Block Fommatoivriitiiiiii ittt iiieiiaiieate e eeeeeans 155
8-4-2 Block Format With More ThanOneFrameovviniiii e eneennnnn. 155
8-4-3 DataRePresentationvuiiite vttt ittt e, 157
844 FCSCalculationovuiviriiniit ittt i nnaneannnnn. 158
8-4-5 [FCS Calculation ProgramExamplecviiiininnniiinennnn. 158
8-5 Host Link Commands and ReSPONSeSuvuiirtin i eeeeeeerneneennnn. 159
8-5-1 BT i e e e 159
8-5-2 STATUS READ ... ittt ittt 160
8-5-3 ERROR READiiiiiiiiiit ittt ettt aeeeanens 160
854 IR AREAREAD ... ittt ittt ettt 161
8-5-5 HR AREAREAD ...ttt e et e 162
856 AR AREAREAD ... ittt ittt et 162
8-5-7 LRAREAREADo i e e 162
8-5-8 TC STATUS READ ...ttt ittt e it e ieeananas 163
8-5-09 DM AREAREAD i i e 163
8-5-10 PV READ ...ttt it ittt e e 163
8-5-11 SV READ I ..t ittt e et 164
8-5-12 SV READ 2 .. it i it e 164
8-5-13 STATUS WRITE ittt ittt ettt eenas 165
8-5-14 IR AREA WRITEcciiiiiiiiitiiiii ittt it 165
8-5-15 HRAREA WRITEottt ittt ieeaeeen e 165
8-5-16 AR AREA WRITE ittt ittt iieeeenans 166
8-5-17 LR AREA WRITE i iiiiiiiitiiii i eiiaiiiiaeiaaieaeeanas 166
8-5-18 TC STATUS WRITE ..ottt ittt ittt tanenananaas 166
8-5-19 DM AREAWRITE ittt ittt it eaeenns 167
8-5-20 PV WRITE ...ttt ittt ettt et eieeaeannnen 167
8-5-21 SV CHANGE l ...ttt e et ettt e 168
8-5-22 SV CHANGE 2 ..ottt e e e e e 168
8-5-23 FORCED SET ...ttt it it ettt ettt 169
8-5-24 FORCED RESET ...ttt ettt 169
8-5-25 MULTIPLEFORCED SET/RESET ... i'tiviiiiiiiiieeiieeineannas, 170
8-5-26 MULTIPLE FORCED SET/RESET STATUSREADc0covvvuuunn.. 170
8-5-27 FORCED SET/RESETCANCEL0vviiriiiiiiiinniiinnenennn. 171
8-5-28 PCMODEL READitiiiit ittt st ettt eaanaens 171
8-5-20 ABORT and INITIALIZE ittt 172
8-5-30 Response toanUndefinedCommandcoiiiireeinnenennnnnn. 172
8-5-31 Response Indicating an Unprocessed Commandcovveenenennnnn.. 172
8-5-32 PROGRAM READ ...ttt it e e e 172
8-5-33 PROGRAM WRITE ittt ittt et eeeanans 173
8-5-34 T/OREGISTER ...ttt et et 173
8-5-35 O READ ...ttt e e 174
8-5-36 Response Code Listoiiiiriii it 175
8-6 CommandLevelsoc.uuiiiieini ittt e 176

151

RS-485 System Configuration and Settin,gs

Section 8-1

8-1

152

RS-485 System Configuration and Settings

You can use the RS-485 interface to connect a host computer to up fo 16
C20HB-TS PCs, as shown in the following diagram. The total cable length

can be up to 500 m.

Host computer

RS-485

C20HB-SC001-TS

C20HB-SC001-TS

i

| S | 1

] I 1

| S EE——

i -

C20HB-SC00

1-TS

RS-485 System Configuration and Settin,gs Section 8-1

Unit Number Settings Each PC in a Host Link System must have a unique unit number, which is set
on the DIP switch (SW2) located next to the PC’s Peripheral Device port. The
unit number is set in binary on pins 1 {0 4.

é é OFF

3
ON
l I— Not used.
Write-disable switch

2° + 21 + 22 + 23 =Host Link unit number

() (2 @) @

Pin Value
Oor1(29)
Oor2(21)
Oor4 (29
Oor8 (23

PO -

Communications Settings The RS-485 communications settings are set in DM 0920 to DM 0922. The
: default settings are 1 start bit, 7-bit data length, even parity, 2 stop bits,
and18,200 baud, but these settings can be changed. Refer to 3-5-2 Parame-
ter and Parameter Backup Areas for details.

153

RS-485 Interface Flags and Control Bits Section 8-3

8-2 Connection to a Host Computer’s RS-232C Port

A B500-AL004 Link Adapter must be used when C20HB-TS PCs are con-
nected to a host computer’s RS-232C port, as shown in the following dia-
gram. Up to 16 C20HB-TS PCs can be connected to a single host computer.
The maximum aliowable cable length is 500 m. Refer to the B500-AL004
Link Adapter’s Operation Manual for details on the Link Adapter.

Host computer B500-AL004 Link Adapter
Pin no. Shielded wire Bin Namd——— [Name] Bin
1 T 1| F6 SDA | 8
2 = 2|8 [SDB | 5
3 3R RDA | 6
RS-232C A
interface |4 4 | RS | RDB | 1
5 51 €8 ¢ |3
g g gg 1 b \ Shielded
s « Wwire
8 810 : H
20 S 20 | IR 5
RS-232C i
RS-485 | H
To another : H
C20HB-TS i :
L
eedPinno. { 1] 4 15T 2131451213 F Pinno.] 114 i5]2}3¢-111415]21}3¢-

t {Name |OVIRDBIRDA|SDB|SDA| |OVIRDB|RDA[SDBISDAl: i| Name IOVIRDBIRDAISDBISDA] {OV/RDBIRDA[SDB|SDA

C20HB-TS : C20HB-TS
RS-485 interface : RS-485 interface

smssssenscscrens

strenssracenucy
asasnsucpumannnaned

8-3 RS-485 Interface Flags and Control Bits

There are certain flags and control bits that indicate or control the status of
the RS-485 interface.

RS-485 Communications This flag is turned on to indicate that error has occurred in RS-485 commu-
Error Flag (SR 25208) nications. When a communications error occurs, a code indicating the type of
error is output to AR 0400 to AR 0407.

RS-485 Communications This control bit is used to clear errors that have occurred in RS-485 commu-

Restart Bit (SR 25209) nications. When the Restart Bit is turned ON and then OFF, the RS-485 Inter-
face will be restarted and SR 25208, AR 0400 to AR 0407, and word AR 05
will be cleared.

RS-485 Communications When an error has occurred in RS-485 communications, the RS-485 Inter-

Error Code (AR 04) face Communications Error Flag is turned ON, and a code that indicates the
type of error is output to AR 0400 to AR 0407. These codes are in hexadeci-
mal and are as follows:

01: Parity error
02: Framing error
03: Qverrun error
04: FCS error

RS-485 Reception Counter ~ When a transmission is received on the RS-485 interface, the number of
characters is counted in hexadecimal up to 255 (FFpey) and then output to

154

RS-485 Communications Protocol Section 8-4

AR 0500 to AR 0507 (RS-485 Reception Counter) to assist the user in de-
bugging RS-485 interface communications. The counter automatically resets
to 0 when the count exceeds 255. The counter can be reset manually by
turning SR 25209 ON and then OFF.

RS-485 Transmission AR 0508 fo AR 0515 (RS-485 Transmission Counter) operates the same as
Counter AR 0500 to AR 0507, except that it operates for transmisions sent from the
PC through the RS-485 interface.

8-4 RS-485 Communications Protocol

The host computer has initial transmission priority. Data transfer between the
host computer and the Host Link System is, therefore, initiated when the
computer sends a command to a PC in the Host Link System.

A set of data in a fransmission is called a block. The data block sent from the
host computer to the PC is called a command block. The biock sent from the
PC to the computer is called a response block. Each block starts with a unit
number and a header, and ends with a Frame Check Sequence (FCS) code
and a terminator (% and CR). The terminator in the command block enables
the PC to send a response. The terminator in the response block enables the
host computer to send another command.

8-4-1 Block Format

| |
@ X ! X X X ((X X * I CR
xw) o] |) | |
\ A A\ A\ A /
Unit no. 00 to 31 Header Text FCS Terminator
FCS calculation range

A block is usually made up of one unit called a frame, but long blocks of data
(over 131 characters) must be divided into more than one frame before trans-
mission. The first frame can have up to 131 characters, and subsequent
frames can have up to 128 characters. The data must thus be divided into
more than one frame when there is a block consisting of more than 131 char-
acters. When multiple frames are used, the beginning and intermediate
frames end with a delimiter (CR), instead of a terminator (*CR).

8-4-2 Block Format With More Than One Frame

First Frame (131 Characters or Less)

@ X I X X ! X ((X ! X CR
X10' | X10° |)) |
\ /\ /\ /N AN /
Unit no. 00 to 31 Header " Textno. 1 (123 characters max.) FCS Delimiter
FCS calculation range

155

RS-485 Communications Protocol Section 84

Intermediate Frame(s) (128 Characters or Less)

()() X : X CR
\.] /N A /
Text no. 2 to M-1 (125 characters max.) FCS Delimiter
’ FCS calculation range

Last Frame (128 Characters or Less)

((
), | |

Text no. M (124 characters max.) FCS Terminator

FCS calculation range

Sending Commands To send a command biock with more than one frame from the computer, ini-
tially send only the first frame in the block. Do not send the next frame until
the host computer has received the delimiter which should have been sent
back from the PC. Do not separate data from a single word into different
frames for any write command.

Command block

First frame Intermediate frame End frame
§ 1S
e) D f. [}
2 o8 . 2 Jo £

w r— - m — - m
§ |Zi8| 5 |8|E 3 |OlE s |olE
S gL F &3 Fows F L E
2 |2 (=] =] 2
o

e
N
~

N/

g s
A
x 2 ol o . o
c g 2T ¥ |RE
par £ =8 © |QE
- S =@ F | E
8 a S|* 2
o
Next frame transmission Next frame transmission Response
enabled enabled block

156

RS-485 Communications Protocol Section 8-4

Receiving Commands To receive a response block consisting of more than one frame from the PC,
the host computer must send the carriage return code (delimiter) to the PC
after receiving the delimiter from the PC. This enables the PC to send the

next frame.
Next frame transmission Next frame transmission
Command block enabled enabled
e
2 . 5 - N
g 138 ¢ |oplE 2 2
s |28 3 |Ol€ E E
S |Ele F |LIE D]
g |2 @ o a
T
\ / \lntermediat% \
- First frame frame End frame
o
o b A 8
£ 28 < ol 5 |olE % |alg
-1 <l el & |O|E 5 |O|E o |Ol's
— Slel F L5 IS VL [v
W T b=
2] S o a 8
T

Response
block

8-4-3 Data Representation

Numerical data within a transmission is expressed in hexadecimal, decimal,
or binary format. Refer to the format example of each command in 8-5 Host
Link Commands and Responses for details. The appropriate range is indi-
cated in the following manner.

Hexadecimal Data

X168 X162 | X18'| X16°

In the above diagram, the elements X163 to X160 indicate that the data is
expressed in hexadecimal. Each digit can, therefore, be in the range from 0
(ASCIl 484¢c, binary 0000) to 8 (ASCII 494e¢, binary 1001), or A (ASCII
654ec, binary 1010) to F (ASCII 704ec, binary 1111).

Decimal Data
X103 | X102 | X101} X100
In this figure, X102 to X100 indicate that the data is expressed in decimal.
Each digit can, therefore, be in the range from 0 (binary 0000) to 9 (binary
1001).
Binary Data

o/ [on/ | on/ | on/
OFF | OFF | OFF | OFF

X23 { X22) X21i X0

In the above figure, the ON/OFF and X23 to X20 indicate that the data is
binary. Each box therefore represents either 0 or 1 as follows:

0 (ASCll 484¢c): OFF

1 {ASCI} 494ec): ON.

157

Commands and Responses

Section 8-5

Data Areas Data area codes must be entered in capital letters and must be 4 characters
wide. Names shorter than 4 characters must be followed by spaces (ASCII
324ec) to make up the 4 characters. Data areas valid for each command are
listed with the command.

8-4-4 FCS Calculation
The FCS is 8-bit data converted into two ASCII characters. The 8-bit data is
the result of an EXCLUSIVE OR sequentially performed between each char-
acter, from the first character in the frame to the last character of the text in
that frame.
@10 RH 00310001 58 *CR
Unitno. Header Text FCs Terminator
@ 0100 0000
XOR
1 0011 0001
XOR
0 0011 0010
XOR
R 0101 0010
0 0011 0000
XOR
1 0011 0001
0101 1000
Conversion
/ to ASCIl \
0011 0101 0011 1000
FCS

8-4-5 FCS Calculation Program Example
The following program is an example of how FCS calculation can be per-
formed on received data.

400 *FCSCHECK

405 L=LEN(RESPONSES) - - == ---ccmemaa i Transmit/receive data

410 0=0:FCSCKs=" -

415 A3=RIGHTS (RESPONSES, 1)

417 PRINT RESPONSES, AS,L

420 IF A3="%" THEN LENGS=LEN (RESPONSE3)=-3 ELSE LENCS=LEN(RESPONSES)=~2

430 FCSP3=MiDs (RESPONSES, LENGS#], 2)

440 FOR I=1 TO LENGS - --------=----mmcccmco Number of characters in FCS calculation range.

450 Q=ASC(MIDS (RESPONSES, I, 1)) XOR Q Recgive data contains an FCS, delimiter,

460 NEXT I terminator, etc. The ABORT command,
however, does not contain an FCS.

470 FCSDs=HEX3$(Q)

480 [F LEN(FCSD3)=1 THEN FCSD$="Q°"+FCSD$ ----~----- FCS calculation result

490 IF FCSD3<>FCSPs THEN FCSCKS="ERR™----------.. Receive FCS data

435 PRINT "FCSDs$=";FCSDs, "FCSP$=";FCSP$, "FCSCK3=";-- A space follows the semicolon if the

500 RETURN FCS reception is performed normally. If

Note: in this example, CR (CHR$(13)) is not included in RESPONSES.

8-5

158

itis not performed, ERR is displayed.

Host Link Commands and Responses

The host computer can both monitor and control the PC. The host computer
monitors the PC by sending commands to the PC requesting various types of

Commands and Responses Section 8-5

data: program data, I/O data, and error data. The host computer controls the
PC by writing various types of data: data that changes the PC operating
mode, program data, /O data, and memory area data. In either case it is the
host computer that initiates all communications.

Because the PC is passive is all communications, it cannot monitor host
computer errors, it can only check for communication errors existing in the
data it receives by checking the parity and frame check sequence of the
data.

The response time will vary in accordance with the transfer speed, the
amount of data, and the PC cycle time. The RS-485 interface servicing time
can be set in the System DM. The longer the servicing time, the faster the
response fime. Long service times will increase the cycle time, possibly caus-
ing inaccuracies in timers (see Section 6). If the servicing time is extremely
short, then the response time will be extremely slow. The foliowing data
shows the actual times required to read 10 words of DM data from a PC with
a cycle time of 30 ms for various settings of the servicing time.

0% servicing time: 7.0s
1% servicing time: 0.90s
2% servicing time: 0.28s

10% servicing time: 0.19s
50% servicing time: 0.14s
99% servicing time: 0.14s

The rest of this section describes the commands sent from the host computer
to the PC. Tables summarizing the complete set of instructions according to
their command ievel are included at the end of this section (see Section 8-6).

8-5-1 TEST

Transmits one block of data to the PC and then returns it, unaltered, to the
host computer. Each frame is treated as a block regardless of whether it
used a terminator or delimiter.

Command Format

N
@ Unit no. T S Any characters (122 max.) other than a carriage return FCS * CR
X10' | X100 | ; |

Response Format

N
@ Unit no. T s Any characters (122 max.) other than a carriage return FCS * CR
X10' | x10° | | |

159

Commands and Responses Section 8-5

8-5-2 STATUS READ

This command causes the PC to read the operating status of the PC.
Command Format

l I !
@ Unit no. M] FCS * I CR
X101 | X100 | i |
Response Format
l . ' T T 1 b ' l
; Response
@ | Unitno. Mo S oo e Status data sy Message FCS # CR
x101] X109 | x167 | x160| x163] x162] xi61 x16 0 | | « | 15 i |
\ A\ N y /
Fixed to 16 characters
AR EEEEEE {7lsefsfalsfafi]o]
1: Generation of 7 N -~
: s 0 0: PROGRAM mode — 0 00
FALS instruction 1 0. RUN mode 1
0 1 1: MONITOR mode
0 Program area ~ ~
size None: 0 O O
1: Error diagnosis in progress e 8kbytes:0 1 O
Y Program
0 area
RAM: 1
ROM: 0

8-5-3 ERROR READ

Reads and clears errors in the PC. Also checks whether previous errors have
already been cleared.

Command Format

] T ! I
@ Unit no. M F Error! clear FCS * CR
X10" | X100] X10'] X100 | |
' N/
00: Don't clear
01: Clear

160

Commands and Responses . Section 8-5

Response Format

N I R ! I ! l I LA
@ Unit no. M F eggggse e ErTOT (first word e—ple— ETTOr (second word) ..o
X10! | X10° | x16! | X180] X163 | X162| X161] X160] X168 |X16~°—’IX16‘l l X160 «
\ /\ /\. A\ s/ 4
{
D)) T]
FCS * CR)
Q 1]
)j
EHEEEBEIEIERE [15]1a]13f2f11]w0)s] s8]

1: Cycle time over (F8)

1: FALS (CPU stops)
1: END(01) instruction missing (FO)
1: Host Link transmission error

1: /O bus error (CO to 3)
1: Memory error (F1)

FAL, FALS No
s A KN I ICH N A R R

/ V N\
Cresie e o b— 0% 0%
9..89 9...%9

/ \ (Data from I/O bus)
0 0: Group 1 (control signal error)
0 1: Group 2 (data bus failure)
1 0: Group 3 (address bus failure)

1: FAL error

N\
0 0: CPU Rack
0 1: Expansion I/O Rack 1
1 0: Expansion {/O Rack 2
1 1: Expansion {/O Rack 3

COOO N

8-5-4 IR AREA READ

Reads the contents of the specified number of IR words, starting from the
specified word.

Command Format

I I ! | | !
@ Unit no. R R | Beginningword —plgee No.af%vords| S ECS * ICR

x1o1| X109 l X103 x1o2| X101] X109] X103 § ><102|x1o1 | X10° 1]

Response Format

{
T T T T e 1 T 7)
@ Unit no. R 'R Reggggse Data frc‘:nr’ll :)degmnmg Data fwg; dsecond
X1o1| X100 | x16'] x160] X163 X162 X16! | X160x16% § X162] X161] X169 ¢
Y
(4
Y 1 l
FCS * " CR
—q] |
P

161

Commands and Responses . Section 8-5

8-5-56 HR AREA READ

Reads the contents of the specified number of HR words, starting from the

specified word.
Command Format
. [L I | I | ! |
@ Unit no. R H |l Beginningword __le— No.ofwords .. | FCS * CR
X10‘I X100 I X103 1 X102| X101| X109 X102 | X102IX101 I X100 | I
Response Format
I | Resp'onse Data from beginr:ing Data from second %
Unit no. R H code word — wo s
x1o1| X109 | X186 | X16°] X163 1 X162 X16'] X160 X183 | X162| X161 | X189 ¢
@ P}
) T I
FCS * " CR
«] |
)]

8-5-6 AR AREA READ

Reads the contents of the specified number of AR words, starting from the
specified word.

Command Format

l ! I I 1 | !
@ Unit no. R J b= Beginning worJ e NO. Of WOIdS o FCS * [CR
x10' | X109 | x103) x109 x101] x109x108 | x102] 101 | X100 i |
Response Format
] I T T T T J T T ‘{;
; Response Data from beginning Data from second
@ Unit no. R J code fo— WOr e word
X101 I X109 I X161 | X160] X163 | X162} X161] X160} X163 § X162} X161 | X169 ¢
« v
¥ T
FCS %* CR
_Q 1 |
¥

8-5-7 LR AREA READ

Reads the contents of the specified number of LR words, starting from the

specified word.
Command Format
. I LN J ! | | ! |
@ Unit no. R L e Beginningword — e No.ofwords ol Fcs * 'CR
x10' | x109 l x10% | x109 x101] x109|x108 | x102] x101 | X100 | |
Response Format
! I Resp'onse Data from begim{ing Data from second ‘;’;
@ Unit no. R t code o= word word i
X10"| X109 l X161 | X169) X163 | X162 X18'] X160 X16° | X162] X16! | X18°% ¢
« Y
¥ T |
FCS * " CR
P I]
)

8-5-8 TC STATUS READ

Reads the status of the Completion Flags of the specified number of timers/
counters, starting from the specified timer/counter.

162

Commands and Responses Section 8-5

Command Format

i I " Beginning ot fmer | !
@ Unit no. R G timer/counter No. of timers/counters Fos * 'cp
X1O1| X109 X103 X102 X101] X109 X108 | x1o2|x1o1 X100 | |

Response Format

| ‘ ¥ T
@ | wiho | mlo | e [ow]ow res | ¢ ea
x101 | x109 | x161 | X160 { I |

L Datafrom second timer/counter

Data from beginning timer/counter

8-5-9 DM AREA READ

Reads the contents of the specified number of DM words, starting from the

specified word.
Command Format
A | LI | I } l ! I
@ Unit no. R D e Beginning word sl NoO. Of WOrds el FCS * ' cR
X101 I X100 l X103 | X102| X101| X1091 X103 | X10-”-’|X101 I X100 | }
Response Format
«
N 1 Response Data from beginning Data from second 4
@ | Unitno. R D code - word et word -
x101J %100 l X161 | X160 X163] X162 X161] X16%X16% | X162] X161] X169 ¢«
)
¢
)] T I
FCS * ° CR
_q l |
)]

8-5-10 PV READ

Reads the specified number of timer/counter PVs (present values), starting
from the specified timer/counter.

Command Format

! l | ! | 1 !
@ Unitlno. R C | Beginning TIMCNT ol Number ool ggs %* ICR

X101| X109 l X108 X102| X10‘l X109] X103 | X102| X10! l X10°]]

Response Format

«
I I Res' T T T, T T T)
; ponse Data from beginning Data from second
@ Unit no. R C code [timer/counter " timer/counter ¥
X101 l X109 | X161 | X169 X108 | X102 X10'| X109/ X10% | X102] X10" | X10% ¢
)]
(¢
¥ T |
FCS * CR
q 1 |
b))

8-5-11 SV READ 1

Reads the set value (a constant) of the specified timer/counter instruction.
Reads from the beginning of the program and may therefore require about 20
seconds or more to produce a response. Refer also to SV READ 2.

163

Commands and Responses Section 8-5

Command Format

T T T I T T T 1 T
@ Unit no. R # f—— TIWCNT ccctpgememe— NUmMbEr sl ECS * ! CR
x101 | x100 | x108] x102] x101 1x100 | x108] x102} x101] x100 i |
/ \/ \

T M - 0o 06 o0 o

T M H

C N T - : :

cC N T R 0 5 1 1

Note: Dashes represent spaces.

Response Format

. | Y I | i '
@ Unit no. R # Reggggse e Setvalue s FCS * ' CR
x10' | x100 | x181 | x160] x1021 x107 x101] xq00 I |

If the command is used more than once, the set value of only the first instruc-
tion will be read. If the second word (the operand) is not a constant, an error
response (16} will be returned.

8-5-12 . SV READ 2

Reads the set value (a constant, or data area and word) of the specified tim-
er/counter instruction. The timer/counter instruction is designated by program

address.
Command Format
[id
i | | } | 'J/ | I L i ¥
@ Unit no. R § je—— Address ————sfamm TIM/CN Tt NUMDET]
x10" | x100 | x10% [x102 | x101 x100 | x108] x102] x101] X100 X102] X102 X101] X100} 4
)
55 T T / \/~ \
T I M - 0 0 0 0
FCS * CR T | M H : :
q | 1 c N T - : :
s c N T R o0 5 1 1
Note: Dashes represent spaces.
Response Format
1 | ; i]] i | | !
@ Unit no. R % Reégggse e D13 2108 sttt S0t VAIUE] FCS * ' CR
x101 | x109 | x16' | x16°] oP1 Jor2 | ops [or4 | x103] x10d Xx10' | X101 I |
/
C | o} —..JRarea
L R - —...LR area
H R - —..HR area
A R - —...AR area
D M - —..DM area
D M % —...¥xDM area
C (o] N —...Constant

Note: Dashes represent spaces.

8-5-13 STATUS WRITE

Changes the operating mode of the PC according to the information input
into digit x16°,

164

Commands and Responses i} Section 8-5

Command Format

1 i
@ Unitlno. s ‘ c Mode data FCS * I CR
| x10t | x100 X181] X160 I
o/
X161 X162
/ N\ N
716 |s5lalalal1]o

0 0: PROGRAM mode
1 0:MONITOR mode
1 1:RUN mode

Response Format

N I Response !
@ Unit no. s € code FCS *¥ CR
x101 | x109 X161 | X160 I |

8-5-14 IR AREA WRITE

Writes data to the IR area, starting from the specified word. Writing is done
word by word.

Command Format

g
— T . S — . r T %
@ Unit‘no. W] R L— éeglnmngword R Datafo\;gr inning ___ Datafx;éecond
x1o1l X100 | x103l x102| X101 X100} X163 | X162 X161} X169 X163 | X162] X161] X169 ¢
« 1)
) i I
FCS * ' CR
[({] |
N
Response Format
| I Response !
@ Unit no. W R code ECS * ICR
x10' | x100 | X186 | X160 i]

8-5-15 HR AREA WRITE

Writes data to the HR area, starting from the specified word. Writing is done
word by word.

Command Format

: g
l] ,l l ¥ ¥ . W ¥ T, L ¥]
@ Unitro. W | i b éegmmngword — Datafo\;lg:a inning __| Datatfc;gsjecond
x1o1| X109 I X108 x102| X101} Xx100] X168 | X162] X161 | X160) X163] X168} X161] X160 ¢«
- &
)]] I
FCs * CR
q I]
1)

Response Format

1 | 0 J
@ Unit no. W H Reggggse ECS %* | CR
x10' | x100 X16' | X160 L]

165

Commands and Responses Section 8-5

8-5-16 AR AREA WRITE

Writes data to the AR area, starting from the specified word. Writing is done
word by word.

Command Format

g
T — T , e . 1 . B
@ | unitno. W | J b éegmmngword . Datafovrv(t;r inning ___ Data{%fdecond
x1o1| X100 | x103| x1o4 X101} X109 X163 | X162] X161 | X160] X163 | X162] X167} X16°] ¢
e b2
& 1 l
FCS * 'CR
a]]
P

Response Format

| 1 n !
@ Unit no. w Reggggse FCS * ! CR
x101 | x100] x16! | X160 | |

8-5-17 LR AREA WRITE

Writes data to the LR area, starting from the specified word. Writing is done
word by word.

Command Format

a
— : x T . r . 5
@ Unitlno. W i L be— éeglnmngword — Data fov;g? inning _| Data fvegffcond
x1o1| X109 | X103| x102[X101} X109 X163 | X162 x16' | X180} X163 | X162| X161 | X160] ¢
o &
P] I
FCs * CR
& i |
» N

Response Format

T T d T
@ | untno. | W L | R pog * ' cn
x101 | x100 | X161 | X160]]

8-5-18 TC STATUS WRITE

Writes the status of Completion Flags to the TC area, starting form the speci-
fied timer/counter.

Command Format

«
| I I T ON/ |oN/ | 7 !
@ Unit no. W G e Tlrner/&)ounter —1 oFf | OFF FCS % I CR
x10'| x100 | x103] x104 x101] x100 « | |
N / xE/ “
Status of second timer/counter 0: OFF
Status of beginning timer/counter 1: ON
Beginning timer/counter
Response Format
; | i Response !
@ ! unitno. w G code FCS x| CR
0t | x100 l X16' | X160 |]

166

Commands and Responses Section 8-5

8-5-19 DM AREA WRITE

Writes data to the DM area, starting from the specified word. Writing is done
word by word. If the write enable switch is set to OFF, the the writing range
only extends up to DM 0999.

Command Format

q
i | -1 T ! PR y v v %
@ Unit no. W D e éeglnmng Word ——ele— D22 f°vr',gr inning Data fv?:n%eoond
x1o1| X109 | X108 x1oz| X101 X100 X162 | X162] X161] X169 X163 | X162| X161] X169 @«
.)
b T I
FCS * CR
« |
P

Response Format

i 1 Response !
@ | Untno. | W D abde FCS * ' oR
x10' | x100 | x16! | x18° | |

8-5-20 PV WRITE

Writes the PVs (present values) of timers/counters starting from the specified

timer/counter.
Command Format
l : e e e 4
@ Unit no. W C = éeginning WOrd —efe D212 f°‘;lgf nning | Datal;egfciecond
X101] X109 l X103 x102| X101] X109 X108 | X102} X101} X109 X108 | X102} X101} X100} ¢«
o 8
3 T
FCS * CR
«] |
)
Response Format
] | Response L
@ Unit no. w ¢ cgge FCcs * ICR
x10' | x100 | x16! | x160 |]

8-5-21 SV CHANGE 1

Changes the set value (constant only) of the specified timer/counter instruc-
tion. Reads from the beginning of the program and may therefore require up
to about 20 seconds to produce a response. Refer also to SV CHANGE 2.
Command Format

I T T l T l |
@ Unitno. | W # -—l Tlrvl/cNTI ——— NumLer . o Llewsetvalue—- FCS % OCR
x10*| X109 | 11 Ix03] x102] x10t] x109] x102] x107] X101 x109 __§ |
v 1 M -Yo o o oYo o o o0°

T | M H
c N T -
c N T R O 5 1 1 9 9 9o 9

Note: Dashes represent spaces.

Response Format

| > !
@ | unitno. wo g | Response | g * ICR
x10' | X100 | X161 | X160 | |

167

Commands and Responses ~ Section 8-5

8-5-22 SV CHANGE 2

Changes the set value (a constant, or data area and word) of the specified
timer/counter instruction. The instruction is specified by program address.

Command Format

a
T | | 1 L
@ | Unitro. | W' $ j— Address — S T TIMENT " Jo T Numbor
x10' | x109 | x10¢] x10d xt01y x100 I | l x10 | x10 x101] x109 ¢
o
Ve
T &+ M 70 o o o
T | M H : :
C N T - :
C N T R 0 5 1 1
14
)} i I | i |] i
o Dataarea we—slio—ee. New setvalue s FCS * ' CR
q I | | X103 l x1o2| x1o1| X109 1 |
)
7
C | (o] —....|R area
L R - -...LRarea
H R - —....HR area
A R - -....AR area
D M - —..DM area
D M X ~....%xDM area
C o} N —....Constant
Note: Dashes represent spaces.
Response Format
1 Response !
@ Unitlno. W o $ cgde FCs * ICR
x10' | X100 | x16' | X160 I |

8-5-23 FORCED SET

Forced sets a bit in an IR, LR, HR, AR, or TC area. Bits need 1o be force set

one at atime.
Command Format
1] i i i | | I T |
@ Unit no. K S |t Dald ared ————phtmmee— Word g Bit g FCS * 'CR
x10' | x100 | I x108 | x102lx10t | x100] 101 | x100 |]
/ N\
o] I 0 -1Rarea
L R - —....LRarea
H R - -HRarea
A R - -~ARarea
T I M -
g 'N 'IM T } TC area
C N T R
Note: Dashes represent spaces.
Response Format
i 1 : {
@ | unitno. | K s | Reshense | oo * _I CR
x10' | x109 X161 | X160 | |

168

Commands and Responses

8-5-24 FORCED RESET

Force resets a bitin an IR, LR, HR, AR, or TC area. Bits can only be force
setone at a time. If an attempt is made to simultaneously force reset more
than one bit, none of the bits will reset.

Command Format

Section 8-5

T T 1 I i i]
@ Unit no. e Dataarea wmspporeee WOId o—eptgenm Bit —msl g % ' CR
x101 | X109 i x108] x102lx101 | x100] x101 | x100 f]
/ N\
o] ! (o] -|Rarea
L R - —LRarea
H R - -HRarea
A R - —ARarea
T | M -
| M
-g N T B} TC area
c N T R
Note: Dashes represent spaces.
Response Format
i 1 ; !
Unit no. K R | Peee | res x| CR
x10t | X109 X16' | X160 I |

169

Commands and Responses Section 8-5

8-5-25 MULTIPLE FORCED SET/RESET

This command force sets or resets bits in the IR, LR, HR, AR, or TC areas.
All forced status will be lost if the PC is switched to RUN mode.

Command Format

{
.I I I ! ! I | I 1 I | |)
@ Unit no. F K oo Data aread et WOrl el - Foreed set/reset/data clear
x10 | x100 | 1 x10t] x10dx10' | x109] x169] xted x160] x16d
Bit15 14 13 12)
¢ 1 0 -.)MRarea
L R - -LRarea
H R - ~HRarea
A R - -ARarea
T I M -
T I M H i1
c N T - TC area]
c N T R
Note: Dashes represent spaces.
(
) J |
5 ! l ! FCs 4+« CR
| x189| x160 | x160 i
)

2 1 0

I
Py

0 0 O O..lgnored
0 0 1 O..Data“0"
0 0 1 1..Data*1"
0 1 0 O0..Forcedreset
0 1 0 1.Forcedset
1 -0 0 O..Forced set/reset clear
Response Format
| I) !
@ Unit no. F K Re:gggse FCS %* I CR
xt0t] x100 | X161 | X169 1 |

8-5-26 MULTIPLE FORCED SET/RESET STATUS READ

Reads the forced set or forced reset status of the PC.

Command Format

|
x10'| x100 ! [

170

Commands and Responses Section 8-5

Response Format

{
| 1 L i ! l 1] ! { | |)
@ Unit no. F R e Datd area cemtrioe Word —ate= Forced set/reset status
x1o1| X109 | X161 | X16°} OP1 l 0P2|0P3 | OP4 x103| x102|x1o1 l X10°1 on | 0/1| o/1 | 0/1| -}
| I ’
Bit15 14 13 12
¢ 0 -.). Raea l I l I
L R - -—....LRawea (
H R - —....HRarea L Y
A R - ~ARarea Forced set/reset status
T | M - 1: Forced setreset
T | M H 0: Not forced set/reset
c N T - TC area
c N T R
Note: Dashes represent spaces.
({
)] |] | { | | | | I ¥ | '
¢ Dataarea ——sfgee——— Word —se=— Forced set/reset status —a fpCS % CR
D Jon]otl s | o1 ore] opsy ora |x103] x10dxtot | x10 o1 | o] g | on] | |
b}
) Bit1 0 e/ /

. I I Delineator Only when applicable

8-5-27 FORCED SET/RESET CANCEL

Cancels all forced set and forced reset bits (including those achieved via
MULTIPLE FORCED SET/RESET.

Command Format

| 1 !
@ Unit no. K C FCS * Icn
x101 | x100 | |
Response Format
T T T T
@ | untno. | K C | ReSESI 1 pog * cn
x101 | x100 | x16! | X160 I]

8-5-28 PC MODEL READ
Reads the model type of the PC.

Command Format

K
@ Unit no. M ! M FCs * ! CR
X101t | X100] 1 |

Response Format

| | Response | PC model !
@ Unit no. M M code code FCS %* ! CR
x10' | x109 | x16' | x16°| x16' | X160 1 |

1 ;\ C20HB-TS or Mini H-type PCs

8-5-29 ABORT and INITIALIZE

The ABORT command is used to abort the process being performed by the
Host Link function and to then enable reception of the next command. The
INITIALIZE command initializes the transmission control procedure of all the
PCs connected to the host computer. Neither command receives a response.

171

Commands and Responses Section 8-5

A processing time of 100 ms is required between reception of the ABORT or
INITIALIZE commands, and reception of the next command. If INITIALIZE is
used in a single-link system, it will be regarded as undefined.

ABORT Command Format

|
@ Unit no. X 2z FCs * ! CR
x10' | X100 | 1 |

INITIALIZE Command Format

@ * *ICR

8-5-30 Response to an Undefined Command

This response is sent if the PC cannot read the command’s header code, or if
the specified command is not valid for the command level or model of PC. If
this response is received check the header code, command level, and PC
model, then execute the correct command.

Response Format

I]
@ Unit no. ! ! c FCS * ! CR
X101 | X100 | | |

8-5-31 Response Indicating an Unprocessed Command

This response is sent when the PC cannot process a command. The type of
error encountered by the PC can be identified via the response code. (See

Section 8-5-36.)
Response Format
1 I Response ' |
@ Unit no. HeadTr code code FCS * ' CR
x101 | x100 X16! | X160 | |

The header code varies according to the command which was sent. The

headers of some commands include subheader codes (e.g., /0 REGISTER,
I/0 READ, and DM SIZE CHANGE).

8-5-32 PROGRAM READ

Transmits the contents of the PC program memory.
Command Format

[| !
@ | Unitno. R P FCs * ! CR
X10' | X109 | I |
Response Format
| : | I :)r’ !
Response
@ Unitlno. R P cgde S—— Lrogram FCS * CR
X101| X100 ' X161 I X160 X161! X16°l X16’l X16°| « | |
N s
)]
Memory size

8-5-33 PROGRAM WRITE

Writes the received program into the PC program memory.

172

Commands and Responses Section 8-5
Command Format
T | [T T]
@ Unit no. W P L Program ECs * 'CR
x101 | x100 xi6' | x1e9 x181| x169d ¢ 1 | |
\ ¢ Y/
Up to maximum memory capacity
Response Format
| Response !
@ Unit no. w P code FCS * lCR
x10' | x100 x161 | X160 \ |

8-5-3¢ 1/O REGISTER

Registers the IR, LR, HR, AR, or TC area bit, or the DM word that is to be
read via /O READ (described in the next subsection). Registered data is re-
tained until new data is registered, or the power is turned OFF.

Command Format

I I 1 i P,]
@ Unit no. o' ol m 'R b— Damaea — b Wod il B‘W:r’d"r -
x10' | x100 |] OP1 l opel OP3 | OP4{ X103 | x1o’c‘l x10! I X10°)OR1 | OR2| ! | g
\ L /\ / NEVE
Subheader c | o} —....R area Delinea-
code L R - —..lRarea tor
H R - ~...HR area 0 0
A R - -....ARarea 0 1
T | M - . . .
: : Bit no.
T | M H T .
C area :
c N T - 1 5
C N T R
D M - ~...DMarea c H Word
‘setting
Note: Dashes represent spaces.
(.(, T | T I T T T |
Data area Word ————sle B‘Wg_a”- FCS * 'CR
¢ | 5 lopi| opelops | opalxios | xi0e xi0t | 100l oRr1] ord | |
i —
Delineator
Setting Table
Data Area Word Address Bit or Word Setting Response
Bit IR 0000 to 0255 00to 15 ON/OFF
LR 0000 to 0063 00to 15 ON/OFF
HR 0000 to 0099 00to 15 ON/OFF
AR 0000 to 0027 00to 15 ON/OFF
TIM/CNT 0000 to 0511 Anything other than CH ON/OFF
Wd IR 0000 to 0255 CH Word data
LR 0000 to 0063 CH Word data
HR 0000 to 0099 CH Word data
AR 0000 to 0027 CH Word data
TIM/CNT 0000 to 0511 CH ON/OFF and PV
DM 0000 to 1999 Any character Word data

The maximum number of data items is 128. Count the TC area word specifi-

cation as two items.

173

Commands and Responses Section 8-5

The data is registered in the same sequence in which it was specified.
Response Format

.l | I Response ! I
@ Unit no. Q Q| M R code FCcs * CR
x10' | x100 | | x16! | X160 |- |
Subheader
code

8-5-35 /O READ

Reads the data specified by /O REGISTER.
Command Format

] | I | i
@ Unit no. Q Q 1 R FCS * " CR
x10! | X109 [I I |
Subheader code
Response Format
i |) I] 1 (‘(’
@ Unitlno. Q Q | R Reggggse 8:;‘1/: e Prosent value e
x101 | x109 | | X16! | X160 x103 | x102l x101 | x100l 5 | ¢«
\ A 7
Subheader code For TIM/CNT status read Delineator
S(' {)5 I 1] 1
8{;1;/: e Read word data ——sf £eg % I CR
Q) s 1« s | xie7] x162] x161 | x169 | |
N \ / b))
Read bit status
0: OFF
1: ON

174

Commands and Responses Section 8-5

8-5-36 Response Code List

X161

X169

Description

Normal Completion

Not executable in RUN mode

Not executable in MONITOR mode

Address over {data overflow)

Not executable in PROGRAM mode

Parity error

Framing error

Overrun

FCS error

Format error (parameter length error)

Entry number data error (parameter error, data code error, data length error)

Instruction not found

Frame length error

Not executable {due to unciearable error, memory error, unwriteable EEPROM, missing l/O table, etc.)

User memory is write-protected

Aborted due to parity error in transmit data

Aborted due to framing error in transmit data

Aborted due to overrun in transmit data

Abonrted due to format error in transmit data

Aborted due to entry number data error in transmit data

|tV |OjWIOjojoji|d|lO|IN]=IOlm][d|NM|—=]|O

Aborted due to frame length error in transmit data

=3
[0]

Probably produced by noise. Execute command again.

175

Command Levels

Section 8-6

8-6

Command Levels

There are three levels of Host Link Unit commands. These different operating
levels allow the user to establish hierarchical protocols to give more sophisti-

cated control.

Level 1
Header Code Name PC Mode
RUN MONITOR PROGRAM

TS TEST Valid Valid Valid
MS STATUS READ Valid Valid Valid
MF ERROR READ Valid Valid Valid
RR IR AREA READ Valid Valid Valid
RH HR AREA READ Valid Valid Valid
RJ AR AREA READ Valid Valid Valid
RL LR AREA READ Valid Valid Valid
RG TC STATUS READ Valid Valid Valid
RD DM AREA READ Valid Valid Valid
RC PV READ Valid Valid Valid
R# SV READ 1 Valid Valid Valid
R$ SV READ 2 Valid Valid Valid
SC STATUS WRITE Valid Valid Valid
WR IR AREA WRITE Not Valid Valid Valid
WH HR AREA WRITE Not Valid Valid Valid
wWJ AR AREA WRITE Not Valid Valid Valid
WL LR AREA WRITE Not Valid Valid Valid
WG TC STATUS WRITE Not Valid Valid Valid
WD DM AREA WRITE Not Valid Valid Valid
WC PV WRITE Not Valid Valid Valid
Wi SV CHANGE 1 Not Valid Valid Valid
Ws SV CHANGE 2 Not Valid Valid Valid
KS FORCED SET Not Valid Valid Not Valid
KR FORCED RESET Not Valid Valid Not Valid
FK MULTIPLE FORCED SET/RESET Not Valid Valid Not Valid
FR MULTIPLE FORCED SET/RESET STATUS READ | Not Valid Valid Not Valid
KC FORCED SET/RESET CANCEL Not Valid Valid Not Valid
MM PC MODEL READ Valid Valid Valid
IC Undefined command (response only) Valid Valid Valid

Unprocessed command (response only) Valid Valid Valid
XZ ABORT (command only) Valid Valid Valid
Level 2

Header Code Name PC Mode
RUN MONITOR PROGRAM
RP PROGRAM READ Valid Valid Valid
WP PROGRAM WRITE Not valid Not valid Valid
Level 3
Header Code Name PC Mode
RUN MONITOR PROGRAM

QQ /O REGISTER Valid Valid Valid
QQ /O READ Valid Valid Valid

176

SECTION 9
Troubleshooting

The C20HB-TS provides self-diagnostic functions to identify many types of abnormal system conditions. These func-
tions minimize downtime and enable quick, smooth error correction.

This section provides information on hardware and software errors that occur during PC operation. For information on
displaying errors, see 7-1 Displaying and Clearing Error Messages. For information on error flags which can be used in
troubleshooting, refer to 3-3 SR Area and 3-4 AR Area. For information on errors which can occur when inputting the
program, refer to 4-6-3 Checking the Program.

-1 Alarm INAICAI0TS o vttt er e e eneraneer st tearonesaesoarossasssacaneaaansasnas 178
9-2 Programmed Alarms and Emror Messagesovvviiiiiiiiiin it 178
9-3 Reading and Clearing Errors and Messages . .. cvvvevriiieiiiineninonenannnnenss 178
L 3 () Y 37 .1 179
9-5 Error HiStory FUNCHOM ..t vtert ittt ittt enrenntretseeseasnannnasnansss 181
0-6 HostLink Error Processingccvviiiiinn ittt iiinnesrnreresnnnanass 181
9-6-1 Eror Control s ettt e s 181
9-6-2 Invalid ProCesSINg . . vvvveeeneennnaneciietieeaenaataoraseesaaanannnn 182
9-6-3 ProcessINterruptionottt i e 182
9-6-4 TiMe MODIOTINEvvint e iee e ieeeieinaen s eeecesannanaoananan 182
L T 2 1 17 182

177

Reading and Clearinjg Errors and Messages Section 9-3

9-1

9-2

9-3

178

Alarm Indicators

ACaution

There are two indicators on the front of the CPU that provide visual indication
of an abnormality in the PC. The error indicator (ERR) indicates fatal errors
(i-e., ones that will stop PC operation); the alarm indicator (ALARM) indicates
nonfatal ones. These indicators are shown in 2-1 Indicators.

The PC will turn ON the error indicator (ERR), stop program execution, and turn
OFF all outputs from the PC for most hardware errors, for certain fatal software
errors, or when FALS(07) is executed in the program (see table on page 180).
PC operation will continue for all other errors. It is the user’s responsibility to take
adequate measures to ensure that a hazardous situation will not result from
automatic system shutdown for fatal errors and to ensure that proper actions are
taken for errors for which the system is not automatically shut down. System
flags and other system and/or user-programmed error indications can be used
to program proper actions.

Programmed Alarms and Error Messages

FAL(06) and FALS(07) can be used in the program to provide user-pro-
grammed information on error conditions. With these instructions, the user
can tailor error diagnosis to aid in troubleshooting.

FAL(06) is used with a FAL number other than 00, which is output to the SR
area when FAL(06) is executed. Executing FAL(06) will not stop PC operation
or directly affect any outputs from the PC.

FALS(07) is also used with a FAL number, which is output to the same loca-
tion in the SR area when FALS(07) is executed. Executing FALS(07) will stop
PC operation and will cause all outputs from the PC to be turned OFF.

When FAL(06) is executed with a function number of 00, the current FAL
number contained in the SR area is cleared and replaced by another, if more
have been stored in memory by the system.

The use of these instructions is described in detail in Section 5 Instruction
Set.

Reading and Clearing Errors and Messages

System error messages can be displayed onto the Programming Console or
any other Programming Device.

On the Programming Console, press the CLR, FUN, and MONTR keys. If
there are multiple error messages stored by the system, the MONTR key can
be pressed again to access the next message. If the system is in PROGRAM
mode, pressing the MONTR key will clear the error message, so be sure to
write down all message errors as you read them. (It is not possible to clear
an error or a message while in RUN or MONITOR mode; the PC must be in
PROGRAM mode.) When all messages have been cleared, “ERR CHK OK”
will be displayed.

Details on accessing error messages from the Programming Console are
provided in 7-2 Monitoring Operation and Modifying Data. Procedures for the
LSS and FIT are provided in the relevant operation manuals.

Error Messages
S

Section 9-4

9-4

Non-fatal Operating Errors

Error Messages

There are basically two types of errors for which messages are displayed:
non-fatal operating errors and fatal operating errors. Most of these are also
indicated by FAL number being transferred to the FAL area of the SR area. In
addition, there are errors which can occur when inputting the program. For
information on these, and their message displays, refer to 4-6-3 Checking the
Program.

The type of error can be quickly determined from the indicators on the CPU,

-as described below for the three types of errors. If the status of an indicator is

not mentioned in the description, it makes no difference whether it is lit or not.

After eliminating the cause of an error, clear the error message from memory
before resuming operation.

Asterisks in the error messages in the foliowing tables indicate variable nu-
meric data. An actual number would appear on the display.

The following error messages appear for errors that occur after program execu-
tion has been started. PC operation and program execution will continue after
one or more of these errors have occurred. For each of these errors, the POW-
ER and RUN indicators will light and the ALARM/ERROR indicator will flash.
The RUN output will be ON.

Error and message FAL no. Probable cause Possible correction

FAL error 01to 99 FAL(086) has been Correct according to cause
i - = executed in program. indicated by FAL number (set by
=% FAIL FAL Check the FAL number to | user).

determine conditions that
would cause execution
(set by user).
9E Checksum Flag (AR Check Parameter and Parameter
1315) is ON. Backup areas. Set and back up
parameters with system .
command.

Cycle time overrun F8 Watchdog timer has Program cycle time is longer than
oL y . exceeded 100 ms. recommended. Reduce cycle time
SCAM TIME OUER f pocaible

Host Link Error None e Error exists between e Check link set-up and
host computer and requirements.
: built-in Host Link
No message Interface.

179

Error Messages

Section 9-4

Fatal Operating Errors

The following error messages appear for errors that occur after program execu-
tion has been started. PC operation and program execution will stop and all out-
puts from the PC will be turned OFF when any of the following errors occur. All
CPU indicators will not be lit for the power interruption error. For all other fatal
operating errors, the POWER and ALARM/ERROR indicators will be lit. The
RUN output will be OFF. For power interruptions, all indicators will not be lit.

Error and message FAL no. Probable cause Possible correction
Power interruption None Power has been Check power supply voltage and
interrupted for at least 10 | power lines. Try to power-up
No message ms. again.
CPU error None Watchdog timer has Restart system in PROGRAM
exceeded maximum mode and check program. Reduce
No message setting (default setting: cycle time or reset watchdog timer
130 ms). if longer time required. (Consider
effects of longer cycle time before
resetting.)
Memory error F1 Checksum ertor has Perform a Program Check
- cccurred or incorrect Operation to locate cause of error.
MEMOREY ERRE instruction exists. If error not correctable, try

inputting program again.

No END(01) instruction

Fo END(01) is not written Write END(01) at the last address

HO EHMD IHST

anywhere in program. of the program,

/O bus error

Coto C2 Error has occurred in the | Check cable connections between
bus line between the Units.

1.0 BUS EREE

Rack no.

Units.

FALS error

0110 99 FALS has been executed | Correct according to cause

SYS FRAIL FAL#®#

by the program. Check indicated by FAL number.-if FAL
the FAL number to number is 9F, check watchdog
determine conditions that | timer and cycle time, which may

would cause execution be too long.
{Set by user or by

system). .
oF The cycle time is over 9F will be output when FALS(07) is
120 ms. executed and the cycle time is

over 120 ms. Check the program.

180

Host Link Error Processing Section 9-6

9-5 Error History Function

If the Error History Enable Bit (AR 0715) has been turned ON the FAL no. is
sent o the System DM when an error occurs.

9-6 Host Link Error Processing

This section describes errors that can occur in a computer-linked system em-
ploying the RS-485 interface, including errors processed by the host comput-
er (see 9-6-1 Error Control and 8-4 Host Link Communications Protocol).

+l=

Send command.

!

Start timer.
s

Response?

Time
expired?

ERROR?

Tries=m?

Process
response.

!

Timeout
Next command.] processing

Error processing

9-6-1 Error Control

The host computer is responsible for ensuring system recovery after errors
occur in the Host Link System.

The host link interface runs the following checks to detect errors:

1,2, 3... . Parity check

. Framing check

. Overrun check

. Format check

. Entry data check (The start word, read word, etc., in the command format.)

. FCS (An Exclusive OR check is performed on all command or response
data, from the unit number to the end of the text.)

Of the above commands, 1 to 3 are performed on a character by character
basis. Checks 4 to 6, however, are performed on each block (frame).

DU N -

181

Host Link Error Processing Section 9-6

Transmit data in a multiple-fink system is checked by means of a parity check
and a Frame Check Sequence (FCS). The FCS check is not performed in
single-link systems.

9-6-2 Invalid Processing

If the host link interface detects an error in a single-frame command or the
first frame of a command block, it will regard the command as invalid. The
command will not be processed and, after the terminator is received, an error
response will be sent to the host computer.

9-6-3 Process Interruption

If the host link interface detects an error in an intermediate frame, the com-
mands up to that point will be processed normally. Those following the erro-
neous frame, however, will not be processed. After the host link interface has
received the terminator of the erroneous block, it responds with a response
code that informs the host computer of the process interruption.

9-6-4 Time Monitoring

If the host link interface does not receive a delimiter or terminator, it cannot
send a response to the host computer. Similarly, if the computer does not
receive a delimiter or terminator, it cannot transmit further commands to the
host link interface. To allow transmission to alternate smoothly between the
computer and the host link interface, the process times need to be moni-
tored. It is therefore necessary to have a time-monitoring program on the
host computer side. Its purpose is to initiate remedial action if the right to
transmit is not transferred quickly enough.

9-6-5 Retries

An error response will be returned to the originating device if the host link
interface detects any communications line data that has been destroyed
(e.g., by noise). If, however, the Unit number has also been lost, no response
will be made at all. It is therefore necessary to have response monitoring and
retry processing in the host computer to check for error responses.

182

Appendix A
Error and Arithmetic Flag Operation

The following table shows the instructions that affect the ER, CY, GT, LT and EQ flags. In general, ER indi-
cates that operand data is not within requirements. CY indicates arithmetic or data shift results. GT indicates
that a compared value is larger than some standard, LT that it is smaller, and EQ, that it is the same. EQ also
indicates a result of zero for arithmetic operations. Refer to Section 5 Instruction Set for details.

Vertical arrows in the table indicate the flags that are turned ON and OFF according to the resuit of the in-

struction.

Although ladder diagram instructions,TIM, and CNT are executed when ER is ON, other instructions with a
vertical arrow under the ER column are not executed if ER is ON. All of the other flags in the following table

will also not operate when ER is ON.

Instructions not shown do not affect any of the flags in the table. Although only the non-differentiated form of
each instruction is shown, differentiated instructions affect flags in exactly the same way.

Instructions

25503 (ER)

25504 (CY)

25505 (GR)

25506 (EQ)

25507 (LE)

TIM

CNT

{

Unaffected

Unaffected

Unaffected

Unaffected

END(01)

OFF

OFF

OFF

OFF

OFF

CNTR(12)

TIMH(15)

WSFT(16)

Unaffected

Unaffected

Unaffected

Unaffected

CMP(20)

Unaffected

i

$

MOV(21)

MVN(22)

BIN(23)

BCD(24)

Unaffected

Unaffected

Unaffected

ASL(25)

ASR(26)

ROL(27)

ROR(28)

Unaffected

Unaffected

COM(29)

Unaffected

Unaffected

¢

ADD(30)

SUB(31)

¢

Unaffected

Unaffected

MUL(32)

DIV(33)

ANDW(34)

ORW(35)

XORW(36)

XNRW(37)

INC(38)

DEC(39)

Unaffected

Unaffected

Unaffected

STC(40)

Unaffected

ON

Unaffected

Unaffected

Unaffected

CLC(41)

Unaffected.

OFF

Unaffected

Unaffected

Unaffected

183

Appendix B
Word Assignment Recording Sheets

This appendix contains sheets that can be copied by the programmer to record I/O bit allocations and terminal
assignments, as well as details of work bits, data storage areas, timers, and counters.

185

I/O Bits

Programmer: Program: Date: Page:
Word: Unit: Word: Unit:

Bit Field device Notes Bit Field device Notes
00 00

01 01

02 02

03 03

04 04

05 05

06 06

07 07

08 08

09 09

10 10

11 11

12 12

13 13

14 14

15 15

Word: Unit: Word: Unit:

Bit Field device Notes Bit Field device Notes
00 00

01 01

02 02

03 03

04 04

05 05

06 06

07 07

08 08

09 09

10 10

11 11

12 12

13 13

14 14

15 15

186

Work Bits

- S e
Programmer: Program: Date: Page:
Area: Word: Area; Word:

Bit Usage Notes Bit Usage Notes
00 00

01 01

02 02

03 03

04 04

05 05

06 06

07 07

08 08

09 09

10 10

11 11

12 12

13 13

14 14

15 15

Area: Word: Area: Word:

Bit Usage Notes Bit Usage Notes
00 00

01 01

02 02

03 03

04 04

05 05

06 06

07 07

08 08

09 09

10 10

1 11

12 12

13 13

14 14

15 15

187

Data Storage

Programmer:

Program:

Date:

Page:

Word

Contents

Notes

Word

Contents

Notes

188

Timers and Counters

Programmer:

Program:

Date:

Page:

TC address

TorC

Set value

Notes

TC address

TorC

Set value

Notes

189

Appendix C
Program Coding Sheet

The following page can be copied for use in coding ladder diagram programs. It is designed for flexibility, al-
lowing the user to input all required addresses and instructions.

When coding programs, be sure to specify all function codes for instructions and data areas (or # for constant)

for operands. These will be necessary when inputting programs though a Programming Console or other Pe-
ripheral Device.

191

Program Coding Sheet

Programmer:

Program:

Date:

Page:

Address

Instruction

Operand(s)

Address

Instruction

Operand(s)

Address

Instruction

Operand(s)

192

Appendix D

Data Conversion Table

Decimal BCD Hex Binary
00 00000000 00 00000000
01 00000001 01 00000001
02 00000010 02 00000010
03 00000011 03 00000011
04 00000100 04 00000100
05 00000101 05 00000101
06 00000110 06 00000110
07 00000111 07 00000111
08 00001000 08 00001000
09 00001001 09 00001001
10 00010000 0A oooo1010
11 00010001 0B 00001011
12 00010010 oC 00001100
13 00010011 oD 00001101
14 00010100 OE 00001110
15 00010101 OF 00001111
16 00010110 10 00010000
17 00010111 11 00010001
18 00011000 12 00010010
19 00011001 13 00010011
20 00100000 14 00010100
21 00100001 15 0oo10101
22 00100010 16 00010110
23 00100011 17 00010111
24 00100100 18 00011000
25 00100101 19 00011001
26 00100110 1A 00011010
27 00100111 1B 00011011
28 00101000 1C 00011100
29 00101001 1D 00011101
30 00110000 iE 00011110
31 00110001 1F 00011111
32 20 00100000

00110010

193

Appendix E

Parameter Area Coding Charts

This appendix is provided for you to use in determining and inputting settings into the parameter area of Sys-
tem DM. The default settings are given for convenience. Only those settings which differ from the defaults
need to be noted. DM addresses not in parentheses are those in the parameter area; those within paren-

theses are those of the corresponding words in the parameter backup area.

Word and parameter Default Setting
Bit Content/Meaning
DM 0900 (DM 1900): PC Mode on Startup Key switch: 0000
00to 07 | 00: PROGRAM 01: MONITOR 02: RUN 00
08 to 15 | 00: As set on Programming Console key switch 00
01: Mode when PC was last turned off (in AR 15)
02: Mode set in bits 00 to 07, above
DM 0901 (DM 1201): Cycle Time Limit 100 ms: 1001
00 to 07 { Cycle time limit in units of ten milliseconds. Set between 00 and 99 in 10
BCD for cycle time limits between 000 and 990 ms, respectively.
08to 15 | 00: Bits 00 to 07 disabled (i.e., cycle time limit is 100 ms) 01
01: Bits 00 to 07 enabled
DM 0902 (DM 1902): Peripheral Device Service Time 5%: 0000
00 to 07 | Percent of cycle time allocated to Device servicing (00 to 99). 00
08 to 15 | 00: Bits 00 to 07 disabled (i.e., servicing set to 5%) 00
01: Bits 00 to 07 enabled
DM 0903 (DM 1903): Host Link Service Time 5%: 0000
00 to 07 | Percent of cycle time allocated to Host Link servicing (00 to 99). 00
08 to 15 | 00: Bits 00 to 07 disabled (i.e., servicing set to 5%) 00
01: Bits 00 to 07 enabled
DM 0904 (DM 1904): Programming Console Message Language Bits English:
08to 15 I 00: English 01: Japanese 0000
DM 0905 to DM 0919 (DM 1905 to DM 1919) Not used. 0000 0000
DM 0920 (DM 1920) 0000
00 to 07 | Host Link Communications Format Selection Standard: 00
00: Standard (1 start bit, 7-bit data, even parity, 2 stop bits, 19,200 bps)
01: Custom settings (i.e., according to contents of DM 0921)
0810 15 | Not used. 00
DM 0921 (DM 1921) 0000
00 to 07 | Baud Rate (if DM 0920 bits 00 to 07 are 01) 19,200 bps: 06
00: 300 bps 01: 600 bps 02: 1,200 bps 03: 2,400 bps
04: 4,800 bps 05: 9,600 bps 06: 19,200 bps
08 to 15 | Data Format (if DM 0920 bits 00 to 07 are 01) 1 start bit, 7-bit
00: 1 start bit, 7-bit data, 2 stop bits, even parity data, 2 stop bits,
01: 1 start bit, 7-bit data, 2 stop bits, odd parity even parity: 00
02: 1 start bit, 8-bit data, 1 stop bits, no parity
03: 1 start bit, 8-bit data, 2 stop bits, no parity
04: 1 start bit, 8-bit data, 1 stop bits, even parity
05: 1 start bit, 8-bit- data, 1 stop bits, odd parity
DM 0922 (DM 1922) 0000
00 to 07 | Host Link Transmission Delay 0 ms: 00
In tenths of milliseconds between 00 and 99 *
(BCD, correspond to 000 and 990 ms delays, respectively)
08to 15 | Not used. 00
DM 0923 to DM 0929 (DM 1923 to DM 1929) Not used. 0000 0000

195

Revision History

The following table outlines the changes made to the manual during each revision. Page numbers refer to the
previous version.

Revision code Date Revised content
1 November 1994 | Original production based on the Mini H-type PCs Operation Manual
(W176-E1-4) and the Mini H-type PCs Installation Guide (W175-E1-4).

197

OMRON CORPORATION

FA Systems Division H.Q.

66 Matsumoto

Mishima-city, Shizuoka 411-8511

Japan

Tel: (81)55-977-9181/Fax: (81)55-977-9045

Reglonal Headquarters

OMRON EUROPE B.V.

Wegalaan 67-69, NL-2132 JD Hoofddorp
The Netherlands

Tel: (31)2356-81-300/Fax: (31)2356-81-388

OMRON ELECTRONICS LLC

1 East Commerce Drive, Schaumburg, IL 60173
US.A.

Tel: (1)847-843-7900/Fax: (1)847-843-8568
OMRON ASIA PACIFIC PTE. LTD.

83 Clemenceau Avenue,

#11-01, UE Square,

Singapore 239920

Tel: (65)6835-3011/Fax: (65)6835-2711

MRON

/ 0
Authorized Distributor:

_ J

Note: Specifications subject to change without notice. Printed in Japan
0405-0.01M

This manual is printed on 100% recycled paper.

