SYSMAC
CV500-BSC11/21/31/41/51/61

BASIC Units

OPERATION MANUAL

OMmRoON

CV500-BSC11/21/31/41/51/61
BASIC Units

Operation Manual

Revised August 2003

Notice:

OMRON products are manufactured for use according to proper procedures by a qualified operator
and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this manual. Always heed
the information provided with them. Failure to heed precautions can result in injury to people or dam-
age to property.

&DANGER Indicates an imminently hazardous situation which, if not avoided, will result in death or
serious injury.

&WARNING Indicates a potentially hazardous situation which, if not avoided, could result in death or
serious injury.

&Caution Indicates a potentially hazardous situation which, if not avoided, may result in minor or
moderate injury, or property damage.

OMRON Product References

All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers
to an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation “Ch,” which appears in some displays and on some OMRON products, often means
“word” and is abbreviated “Wd” in documentation in this sense.

The abbreviation “PC” means Programmable Controller and is not used as an abbreviation for any-
thing else.

Visual Aids

The following headings appear in the left column of the manual to help you locate different types of
information.

Note Indicates information of particular interest for efficient and convenient operation
of the product.

1,2, 3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

© OMRON, 1992

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permis-
sion of OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is
constantly striving to improve its high-quality products, the information contained in this manual is subject to change
without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no
responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the informa-
tion contained in this publication.

TABLE OF CONTENTS
PRECAUTIONSt iiiiiiiiiiiiiiiiiiiiieennees xi

I'Intended Audience i xii
2 General Precautions e xii
3 Safety Precautions xii
4 Operating Environment Precautions i ... xiii
5 Application Precautions xiii

SECTION 1
Introductioncoeiiieieieeeeeenoecenenenna

[—

1-1 Features ..o 2
1-2 System Configurationot e 3
1-3 Nomenclature and Functionst 6
1-4 Precautionsttt e e e 12

SECTION 2
Getting Startedcoiiviiiiiinierennnccnnnnns 15

2-1 Installation 16
2-2 Switch Settingsot 18
2-3 Getting the Terminal Ready 19
2-4 Connecting the Terminal 20
2-5 Terminal Preparation 20
2-6 Memory Switches 21
2-7 Starting/Stopping Programs 21

SECTION 3
Memory Areas and Operationscovvveeennn. 23

3-1 MEMOTY ATEAS . .ottt ettt e et e e e e e 24
3-2 Data Transfer withthe CPU Unit 30
3-3 Memory SWItChes 33
3-4 Setting Memory Switches 42

SECTION 4
Programming Overviewcccoieeeeeeccnnns 45

4-1 BASIC Syntax and Operationsttt 46
4-2 Writing and Entering Programs 62
4-3 Program Execution and Debugging i ... 67
4-4 Saving and Loading Programs 71

SECTION 35

Dataand Filesottt ieeeeeeneenenennn 75

5-1 Data Operationsttt ettt e e e et 76
5-2 File Operationst e 84

SECTION 6
Advanced Programmingceeeeeeeeecccens 91

6-1 INEITUPLS . . .ottt 92
6-2 Multitasking 97
6-3 Machine Language 107
6-4 PC CommuniCationsttt e 120

SECTION 7

Peripheralsciiiiiiiiiiinnnnnnnnnneass 125

7-1 Peripheral Devices e 126
7-2 GP-IB Programming 130

vii

TABLE OF CONTENTS

SECTION 8
Troubleshooting and Maintenance 141

8-1 Troubleshooting 142
8-2 MAINteNanCettt e 147
Appendices

A Standard Models 151
B Specifications 153
C Hardware Interfaces 157
D Program Examples and Reserved Words 173
E BASIC INStruCtionsttt et e 187
F Machine Language Commands 195
G Reserved WOrds 205
H Controlling RS-232C Communications Lines 207
I Programming with Windows 95 HyperTerminal 209
J Setting Memory Switches e 213

GloSSaryvvviiiiiniinittnncscnnncnnncnnnnees 215
Indexovviiiiiiiiiiiiinniieeeseennnnsseanss 235
Revision Historyccvviiiiiiinnennnnnneeees. 241

viii

About this Manual:

This manual describes the installation and operation of the BASIC Unit and includes the sections de-
scribed below. The BASIC Unit is a CPU Bus Unit that connects to the CPU bus of a SYSMAC CV-series
Programmable Controllers. This Unit can be mounted to the CV500, CV1000, CV2000, or CVM1.

Note that this manual is not meant to be a substitute for a manual on BASIC programming. We suggest
that you read a manual on BASIC programming before attempting to operate the BASIC Unit.

Please read this manual completely and be sure you understand the information provide before attempt-
ing to install and operate the BASIC Unit.

Section 1 provides an introduction to the BASIC Units and describes the general features of the Units.
The system, hardware, and memory configurations are also provided.

Section 2 provides the basic steps to install a BASIC Unit and initiate operation for the first time. It also
explains the methods that can be used to start and stop program execution in the BASIC Unit.

Section 3 provides information relating to the memory areas of the BASIC Unit. The memory switch set-
tings and specifications are also provided for the proper operation of the Unit.

Section 4 provides an overview of BASIC programming and is not meant to provide a comprehensive
explanation of BASIC programming.

Section 5 provides information on data management and operations for the BASIC Units.

Section 6 advances further into BASIC programming and provides information on interrupts, multitask-
ing, and machine language for the purposes of advanced programming.

Section 7 information relating to the use and programming for the peripheral devices. The GB-IB Inter-
face programming is also provided for use with the peripherals.

Section 8 provides the error messages and indications required for troubleshooting as well as general
maintenance procedures for the BASIC Unit.

Appendix A provides the standard models of the BASIC Unit and its supporting options/peripherals.
Appendix B provides the specifications of the Unit.

Appendix C provides information on hardware interface connection and assembly.

Appendix D provides various programming examples for the BASIC Unit.

Appendix E provides a list of BASIC instructions.

Appendix F provides a description of machine language commands.

Appendix G provides a list of reserved words.

Appendix H provides information on controlling RS-232C communication lines.
Appendix I provides information on programming with Windows 95 HyperTerminal.

Appendix J provides information on setting memory switches.

&WARNING Failure to read and understand the information provided in this manual may result in
personal injury or death, damage to the product, or product failure. Please read each
section in its entirety and be sure you understand the information provided in the section
and related sections before attempting any of the procedures or operations given.

ix

This section provides general precautions for using the Programmable Controller (PC) and the BASIC Units.

PRECAUTIONS

The information contained in this section is important for the safe and reliable application of the PC and the BASIC
Units. You must read this section and understand the information contained before attempting to set up or operate a

PC system.

1 Intended Audience
2 General Precautions . . .
3 Safety Precautions

4 Operating Environment Precautions i,

5 Application Precautions

xii
Xii
xii
xiii
Xiii

xi

Safety Precautions

1

2

3

xii

Intended Audience

This manual is intended for the following personnel, who must also have knowl-
edge of electrical systems (an electrical engineer or the equivalent).

» Personnel in charge of installing FA systems.
¢ Personnel in charge of designing FA systems.
¢ Personnel in charge of managing FA systems and facilities.

General Precautions

/\ WARNING

The user must operate the product according to the performance specifications
described in the operation manuals.

Before using the product under conditions which are not described in the manual
or applying the product to nuclear control systems, railroad systems, aviation
systems, vehicles, combustion systems, medical equipment, amusement
machines, safety equipment, and other systems, machines, and equipment that
may have a serious influence on lives and property if used improperly, consult
your OMRON representative.

Make sure that the ratings and performance characteristics of the product are
sufficient for the systems, machines, and equipment, and be sure to provide the
systems, machines, and equipment with double safety mechanisms.

This manual provides information for programming and operating the BASIC
Units. Be sure to read this manual before attempting to use the software and
keep this manual close at hand for reference during operation.

It is extremely important that a PC and all PC Units be used for the specified
purpose and under the specified conditions, especially in applications that can
directly or indirectly affect human life. You must consult with your OMRON
representative before applying a PC System to the above mentioned
applications.

Safety Precautions

/N\ WARNING

/I\ WARNING

/\ WARNING

/\ WARNING

Do not attempt to take any Unit apart while the power is being supplied. Doing so
may result in electric shock.

Do not touch any of the terminals or terminal blocks while the power is being
supplied. Doing so may result in electric shock.

Do not attempt to disassemble, repair, or modify any Units. Any attempt to do so
may result in malfunction, fire, or electric shock.

Provide safety measures in external circuits (i.e., not in the Programmable
Controller), including the following items, to ensure safety in the system if an
abnormality occurs due to malfunction of the PC or another external factor
affecting the PC operation. Not doing so may result in serious accidents.

e Emergency stop circuits, interlock circuits, limit circuits, and similar safety
measures must be provided in external control circuits.

e The PC will turn OFF all outputs when its self-diagnosis function detects any
error or when a severe failure alarm (FALS) instruction is executed. As a coun-
termeasure for such errors, external safety measures must be provided to en-
sure safety in the system.

Application Precautions

5

e The PC outputs may remain ON or OFF due to deposition or burning of the
output relays or destruction of the output transistors. As a countermeasure for
such problems, external safety measures must be provided to ensure safety in
the system.

¢ When the 24-V DC output (service power supply to the PC) is overloaded or
short—circuited, the voltage may drop and result in the outputs being turned
OFF. As a countermeasure for such problems, external safety measures must
be provided to ensure safety in the system.

4 Operating Environment Precautions

&Caution

&Caution

&Caution

Do not operate the control system in the following locations:

e Locations subject to direct sunlight.

¢ Locations subject to temperatures or humidity outside the range specified in
the specifications.

o Locations subject to condensation as the result of severe changes in tempera-
ture.

o Locations subject to corrosive or flammable gases.

o Locations subject to dust (especially iron dust) or salts.
¢ Locations subject to exposure to water, oil, or chemicals.
o Locations subject to shock or vibration.

Take appropriate and sufficient countermeasures when installing systems in the
following locations:

o Locations subject to static electricity or other forms of noise.
¢ Locations subject to strong electromagnetic fields.

o Locations subject to possible exposure to radioactivity.

e Locations close to power supplies.

The operating environment of the PC system can have a large effect on the lon-
gevity and reliability of the system. Improper operating environments can lead to
malfunction, failure, and other unforeseeable problems with the PC system. Be
sure that the operating environment is within the specified conditions at installa-
tion and remains within the specified conditions during the life of the system.

5 Application Precautions

/N\ WARNING

Observe the following precautions when using the PC system.

Always heed these precautions. Failure to abide by the following precautions
could lead to serious or possibly fatal injury.

» Always ground the system to 100 Q or less when installing the Units. Not con-
necting to a ground of 100 Q or less may result in electric shock.

» Always turn OFF the power supply to the PC before attempting any of the fol-
lowing. Not turning OFF the power supply may result in malfunction or electric
shock.

¢ Mounting or dismounting Power Supply Units, 1/0 Units, CPU Units,
Memory Units, or any other Units.

o Assembling the Units.

» Setting DIP switches or rotary switches.

¢ Connecting cables or wiring the system.

» Connecting or disconnecting the connectors.

xiii

Application Precautions

5

xiv

&Caution

Failure to abide by the following precautions could lead to faulty operation of the
PC or the system, or could damage the PC or PC Units. Always heed these pre-
cautions.

» Fail-safe measures must be taken by the customer to ensure safety in the
event of incorrect, missing, or abnormal signals caused by broken signal lines,
momentary power interruptions, or other causes.

o Interlock circuits, limit circuits, and similar safety measures in external circuits
(i.e., not in the Programmable Controller) must be provided by the customer.

¢ Always use the power supply voltages specified in this manual. An incorrect
voltage may result in malfunction or burning.

» Take appropriate measures to ensure that the specified power with the rated
voltage and frequency is supplied. Be particularly careful in places where the
power supply is unstable. An incorrect power supply may result in malfunction.

« Install external breakers and take other safety measures against short-circuit-
ing in external wiring. Insufficient safety measures against short-circuiting may
result in burning.

¢ Do not apply voltages to the Input Units in excess of the rated input voltage.
Excess voltages may result in burning.

¢ Do not apply voltages or connect loads to the Output Units in excess of the
maximum switching capacity. Excess voltage or loads may result in burning.

¢ Disconnect the functional ground terminal when performing withstand voltage
tests. Not disconnecting the functional ground terminal may result in burning.

¢ Be sure that all the mounting screws, terminal screws, and cable connector
screws are tightened to the torque specified in this manual. Incorrect tighten-
ing torque may result in malfunction.

o Leave the label attached to the Unit when wiring. Removing the label may re-
sult in malfunction if foreign matter enters the Unit.

¢ Remove the label after the completion of wiring to ensure proper heat dissipa-
tion. Leaving the label attached may result in malfunction.

¢ Double-check all wiring and switch settings before turning ON the power sup-
ply. Incorrect wiring may result in burning.

» Wire correctly. Incorrect wiring may result in burning.
* Mount Units only after checking terminal blocks and connectors completely.

¢ Be sure that the terminal blocks, Memory Units, expansion cables, and other
items with locking devices are properly locked into place. Improper locking
may result in malfunction.

o Check the user program for proper execution before actually running it on the
Unit. Not checking the program may result in an unexpected operation.

« Confirm that no adverse effect will occur in the system before attempting any of
the following. Not doing so may result in an unexpected operation.

¢ Changing the operating mode of the PC.
» Force-setting/force-resetting any bit in memory.
e Changing the present value of any word or any set value in memory.

¢ Resume operation only after transferring to the new CPU Unit the contents of
the DM Area, HR Area, and other data required for resuming operation. Not
doing so may result in an unexpected operation.

¢ Do not pull on the cables or bend the cables beyond their natural limit. Doing
either of these may break the cables.

» Do not place objects on top of the cables or other wiring lines. Doing so may
break the cables.

¢ Use crimp terminals for wiring. Do not connect bare stranded wires directly to
terminals. Connection of bare stranded wires may result in burning.

Application Precautions 5

¢ When replacing parts, be sure to confirm that the rating of a new part is correct.
Not doing so may result in malfunction or burning.

» Before touching a Unit, be sure to first touch a grounded metallic object in order
to discharge any static built-up. Not doing so may result in malfunction or dam-
age.

XV

SECTION 1
Introduction

This section provides an introduction to the BASIC Units and describes the general features of the Units. The system, hard-
ware, and memory configurations are also provided.

1-1 Features

.. 2
[-2 System Configurationt e 3
1-3 Nomenclature and Functions it 6
[-3-1 Switch Settingsttt e 8
1-3-2 Hardware Configuration 10
1-3-3 Memory Configurationo.oniumininetin . 11
14 Precautionsottt e e e e 12

Features

Section 1-1

1-1 Features

Interfaces

BASIC Programming

Debugging

Storage of Variables

Machine Language

Multitasking

Program Control

Data Transfer

Clock

EEPROM

16 BASIC Units per PC

Choose from three different sets of interfaces to connect to the peripheral de-
vices required by your system.

RS-232C (two) and RS-422 Interfaces

CV500-BSC11 (without EEPROM) or CV500-BSC21 (with EEPROM)
RS-232C (two) and Centronics Interfaces

CV500-BSC31 (without EEPROM) or CV500-BSC41 (with EEPROM)
RS-232C (one) and GP-IB Interfaces

CV500-BSC51 (without EEPROM) or CV500-BSC61 (with EEPROM)

The BASIC Units employ a high-speed intermediate executable, interpret-
er-type BASIC, eliminating the need of compiling operations, so that program-
ming can be carried out easily and quickly. The Program area is divided into
three sections, each which can be programmed independently. The program
can be developed or edited from a commercially available terminal or computer
and then saved to memory cards in the CPU Unit.

Program execution can be traced by TRON instruction. Program execution can
be paused or resumed by STOP or CONT instructions. Program execution can be
stopped at or resumed from a specified line by BREAK or CONT instructions.

Data used in the program (variables) can be stored in memory and protected by
battery backup.

Program can be developed and executed in V25 machine language.

Up to 16 tasks can be processed in parallel by executing separate tasks to per-
form various arithmetic operations, data input/output from/to peripheral devices,
and data transfer with the CPU Unit.

Program can be started through key input from a terminal or by the snap switch
on the front panel. Also, a program can be automatically started on power appli-
cation or reset.

Data can be easily transferred back and forth between the BASIC Unit and the
PC’s CPU Unit. High-speed data transfer is possible from the BASIC program
without any programming in the CPU Unit. You can access data not only in the
local CPU Unit, but also in other BASIC Units or in Units located on local or re-
mote networks.

Data transfer can be controlled using one or more of the following methods.

Cyclic: A total of 384 input/output words of data can be transferred
when the I/O of the PC is refreshed.

CPU Bus Link: Data can be transferred with the CPU Unit or other CPU Bus
Units.

Event: The data in the CPU Unit can be read or data can be written to
the CPU Unit by using the instructions of the BASIC Unit even
when the program of the CPU Unit is not being executed.

The BASIC Unit uses the same clock the CPU Unit by transferring the time in the
CPU Bus Link Area. The time can be set from the BASIC Unit.

With BASIC Units equipped with EEPROM, the program can be saved to the EE-
PROM so that the Unit can be operated without a battery (however, variables still
require battery backup to be maintained during power interruptions).

Up to 16 BASIC Units can be mounted to the CPU Rack or Expansion CPU
Rack. The limit of 16 Units, however, includes all CPU Bus Units mounted to the
PC, so fewer BASIC Units will be available if any other CPU Bus Units are used.

System Configuration

Section 1-2

Network Communications

&Caution

The other CPU Bus Units are the SYSMAC LINK Unit, SYSMAC NET Link Unit,
and SYSMAC BUS/2 Remote I/O Master Unit.

PC READ and PC WRITE can be used to transfer data to/from other PCs on the
same or interconnected networks; PRINT and INPUT, to transfer data to/from
BASIC Units on other PCs on the same or interconnected networks. The BASIC
Unit also supports automatic processing for certain FINS commands trans-
mitted via PC networks.

The BASIC Unit is equipped with a hardware test program that is used for in-
spection and maintenance. When this program is executed, the entire program
area will be initialized. This program is not intended for customer use. Do not set
the unit number to 99, turn ON pin 2 of the front-panel DIP switch, and restart the
BASIC Unit or turn power on.

1-2 System Configuration

Models

Models with three different sets of interfaces are available, each of which is
available with or without EEPROM, making a total of six models of BASIC Units.
The appearance of these is shown below.

RS-232C (two) and RS-232C (two) and RS-232C (one) and
RS-422 Interfaces Centronics Interfaces GP-IB Interfaces
reen Y cv500-BSC11 == 1 cvs00-BSC31 [1 cv500-BSC51
e | (without EEPROM) v ‘ (without EEPROM) onrt wun .| (without EEPROM)
whe il cvs00-BSC21 mow 1 cv500-BSCH e 1| CV500-BSC61
m2 :| (with EEPROM) i s| (with EEPROM) i ¢| (with EEPROM)
:To’@ @nu' ;:Iu' @xm’ :ow‘@ @xm‘
RUM A_‘ 2un ﬁ RUN ‘ "‘
sTop StOP, srurg 1
onr i e
ey
[—] =3

Peripheral Devices

The following peripheral devices can be connected to the BASIC Unit. Note that
the peripheral device model that can be connected to the BASIC Unit depends
on the BASIC Unit Model.

System Configuration Section 1-2
-
Interface BSC11/BSC21 BSC31/BSC41 BSC51/BSC61
Port 1 Computer (with terminal mode), Computer (with terminal mode), | Computer (with terminal mode),
(RS-232C) | display terminal, printer, display display terminal, printer, display | display terminal, printer, display
Port 2 NA
(RS-232C)
Port 3 Host Link Unit (C500-LK203, NA
(RS-422) C500-LK201-V1, C200H-LK202, and
C120-LK202-V1)
E5AX-AL] Temperature Controller
Centronics | NA Printer, display
GP-1B NA Intelligent Signal Processor

Simple System
Configuration

Expanded System
Configuration

Following is an example of a simple system configuration where only one BASIC
Unit is mounted to the CPU Rack.

CPU Unit

[}
P B
B

4 E

Rig
s

F_—:{l::!
r-

Power supply

CPU Rack

BASIC Unit

[

The personal computer is directly connected to the BASIC

RS-232C

Unit with RS-232C.

=

Computer with
terminal mode.

The system can be expanded by using Link Units to create a network, thus allow-
ing the BASIC Unit to communicate not only with local BASIC Units and the local

PC, but also with remote BASIC Units and PCs. The following is an example of
such an expanded system. In this system, the computer can be connected to

System Configuration

Section 1-2

Unit

Link Unit

I/0 Control \

either CPU Unit to access any of the BASIC Units via the optical link between the
Link Units and/or the CPU Bus connection to the Expansion CPU Rack.

BASIC) Power
Unit CPU BASIC Unit Link Unit ~ CPU supply

H—j_
\ (_

kL

CPU
Rack

1 /dnit \ Urlt /

s ||] Pover L}

] 1[
o CPU Rack Er

]

[l peomraz

Optical fiber

cable

I/O Interface Unit

1

RS-422 Connect to either CPU Unit.

Expansion CPU
Rack

Power
=L
Computer with

- terminal mode.

Kl R X BT |
— {8 Enemehl

BASIC Unit

Nomenclature and Functions

Section 1-3

1-3 Nomenclature and Functions

Front

Ports

Indicators

Unit No. switch

RUN/STOP
switch

RS-232C

connector (Port 1)

RS-232C

connector (Port 2)

RS-422

connector (Port 3)

Battery com-
partment where
C500-BATO08 is
stored. To re-
move the cover,
slide it down.

DIP switch
(inside the cover)

UKIT RUN 0
— |sasic run 1
£RROR 2
BATLOY 3
MEM PROT a
7R 1 5
7R 2 s
3 7

—_— ¥o,
x10' x10°

| ——

DNIT RUN
AASIC RUN
ERROR
BATLOY
MEM PROT
TR
R2
R

a4 A Wn O

RUN Q
STOP
PORT ¢
jes-232

(o]
PORT 2
RS-232

0]

i !
//

/ CV500-BSC11

CV500-BSC21

RS-232C

Centronics
connector

PRT

CV500-BSC31
CV500-BSC41

GP-1B

connector

UNIT 2UN 1]
BASIC RUX b
ERROR 2
BATLOW 3
MEM PROT 4
7R 5
e 6
/83 7

UKIT @
x10

RUN

stor
PORT 1

GP-18

R§-232

@xw‘

CV500-BSC51
CV500-BSC61

Connects a terminal for programming or a display, printer, and bar code reader.
The line length is 15 m max.

RS-422

Connects a terminal or peripheral device at a greater distance than for the
RS-232C. The total line length is 500 m max.

Centronics

Connects a printer or display.

GP-IB

Connects a GP-IB device, such as an Intelligent Signal Processor.

Nomenclature and Functions Section 1-3

Indicators

Indicator Meaning

Name Color | State

UNIT RUN |Green |ON Lit after the Unit has been initialized.

OFF Lit when the Unit has been reset by the PC during a power interruption, or when an
error has occurred in the Unit (when the watchdog timer operates).

BASIC RUN | Green |ON Lit while the program is executed.

Flashing | Flashes slowly while the program is stopped and can be edited; flashes quickly while
the program is executed or while the Unit is waiting for input from a port.
OFF Goes off when the program is stopped.

ERROR Red ON Lit if a significant error (such as user memory check error, area overflow, or
executable intermediate code generation error) has occurred while the program is
developed or executed.

OFF Not lit when no error has occurred.

BAT LOW Red ON Lit if the supply voltage of the battery has dropped below a specific level.
OFF Not lit when the battery voltage is at the normal level.

MEM PROT | Orange | ON Lit when the user program area is write-protected.
OFF Not lit when the user program area is not write-protected.

T/R 1 Orange | Flashing | Flashes while the corresponding port T/R 3 indicator of the BSC31 and BSC41

T/R2 (port 1 to 3) transfers or receives data. does not flash.

TR3 OFF Not lit when the corresponding port is not | T/R 2 and T/R 3 of the BSC51 and
exchanging or receiving data. BSC61 do not flash.

Oto7 Orange | --- These indicators are turned ON/OFF by the user with system calls.

UNIT No. Setting Switch

RUN/STOP Switch

DIP Switch

Sets the unit number of the BASIC Unit. Refer to 7-3-1 Switch Settings for de-
tails.

Executes or stops the user program. This switch is used in combination with a
memory switch set for the BASIC Unit. Refer to 1-3-1 Switch Settings for details.

This switch specifies whether the user program memory is write-protected,
whether the memory switches are enabled, and whether the termination resis-
tance for RS-422 communications is connected. Refer to 1-3-1 Switch Settings
for details.

Nomenclature and Functions

Section 1-3

Rear View

R

1-3-1 Switch Settings

Unit Number Switch

Mounting screw
Fixes the BASIC Unit
to the Backplane.

BASIC Unit connector
Connects the BASIC
Unit to the Backplane.

Mounting screw
Fixes the BASIC Unit
to the Backplane.

The BASIC Unit is provided with three switches: unit number, run/stop, and DIP

switches.

This switch specifies the unit number of the BASIC Unit. Set this switch to any-
where between 00 and 15 using a small flat-blade screwdriver. Do not specify a
unit number that has already been set for another CPU Bus Unit, i.e., other BA-
SIC Units, SYSMAC LINK Units, SYSMAC NET Link Units, and SYSMAC
BUS/2 Remote I/0 Master Units.

Nomenclature and Functions Section 1-3

Run/Stop Switch Starts or stops the program of the BASIC Unit. This switch is used in combination
with a memory switch shown below. The memory switches are contained in the
PC and are used to set operating parameters for the BASIC Unit. Refer to 2-2
Memory Switches for details.

State Function

RUN/STOP switch | Memory switch

RUN Manual start In this state, the BASIC Unit waits for input of a command after power
application or a restart. To start the program, enter RUN from the terminal.

Automatic start In this state, the program execution is automatically started when power is
turned on or the Unit is restarted.

STOP Manual start In this state, the program is not executed even when RUN has been input
from the terminal. To execute the program, set the switch to the RUN position,
and then input RUN from the terminal.

Automatic start The program is not executed in this state. To execute the program, set the
switch to the RUN position.

DIP Switch The DIP switch is used as follows:
Pin Function State Operation
1 Memory protect | OFF Enables the user program area to be written. Set this state when developing,
editing, and loading the program.
ON Disables writing to the user program area.
2 Memory switch | OFF Enables the current memory switch settings.
enable ON Uses the default memory switch settings regardless of the current memory switch

settings. The state of the memory switches, however, can still be changed.* Used
when a terminal cannot be connected because of incorrect memory switch

settings.
3 Not used
4 Termination OFF Disconnects the termination resistance of RS-422.
resistance ON Connects the termination resistance of RS-422. Turn this pin ON when the BASIC

Unit is connected as the last devices in a RS-422 communications line.

&Caution *Pin 2 of the DIP switch is also used to start the hardware test program, which is
used for inspection before shipment. When setting this pin to the ON position,
make sure that a correct Unit No. (00 to 15) has been set on the unit umber
switches. If the hardware test program is executed, the user program may be
erased.

Nomenclature and Functions Section 1-3

1-3-2 Hardware Configuration

Block Diagram

: 71 | | User program
! EEPROM I~ — (source code /Tj*l
! : area) ‘ l Battery
o ‘
L Variable area/ | }
[| non-volatile N~
variable area |
|
\
System
program] User program /vJ
PROM [— (execution
code area)
RS-232C RS-232C
interface (Port 1)
SYSMAC = c
: P — MPU o I
CV-series i interface el (V25) \
PC | RS-232C] RS-232C '
****** ‘ interface ‘
Builtin 0S| | (Port2)
Unit no. T T T T T T A
switch N
: RS-422 | | | Rs-422
‘ interface (Port3)
LED || [S ST
RUN/STOP| | Interface |—] pen:fronics - Cehtromcs !
switch [| Interface || (Printer)
DIP ! — :
switch : GP-IB - GP-IB :
; interface L |
BASIC Unit

Note Sections in dotted boxes depend on the model of the BASIC Unit as shown in the
following table.

Model EEPROM Port1 | Port2 | Port 3 | Centronics | GP-IB
CV500-BSC11 Yes Yes Yes
CV500-BSC21 Yes Yes Yes Yes -
CV500-BSC31 | --- Yes Yes Yes
CV500-BSC41 | Yes Yes Yes Yes
CV500-BSC51 --- Yes - - - Yes
CV500-BSC61 Yes Yes Yes

10

Nomenclature and Functions

Section 1-3

1-3-3 Memory Configuration

User Program Source Code

Area

Non-volatile Variable and
Variable Areas

User Program Executable

The user memory area of the BASIC Unit consists of the following areas:

This area stores the source code of the user program. The machine language
program is also stored in this area.

The user program source code area can be divided into three areas in each of
which can be stored an independent program. It is not possible to move between
these areas during program execution; if moving between programs is neces-
sary, you must write them all in one program area as a single program.

Each program area is given a program number to control which area is active. A
memory switch controls which program number is active when power is turned
on. The active area can be displayed or changed using the PGEN command.

ROMSAVE, ROMLOAD, ROMVERIFY, W, and R commands are preformed for all pro-
gram areas. LOAD, SAVE, and MERGE are performed only for the current program
area.

These areas store the variables used in the user program. The variable area and
the executable code area are approximately 110K bytes in total. The non-volatile
variable area must be within 32K bytes.

Non-volatile variable are preserved when the BASIC Unit is turned on or pro-
gram execution is restarted. They can be cleared using OPTION ERASE or by
starting execution with RUN, ERASE.

When the user program is executed, executable codes are created in this area

Code Area from the source code and executed.
The memory map of the BASIC Unit is shown below.
$00000 $00500
RAM (w/battery) | Program1 | User program
Program 2 source code area
$10000fp— — — ——+ I (S code)
$18000 (Vacant) $OFFFF Program 3
RAM (w/battery)
$20000—™m8m8 ™ —™MMM@M@M T _
sio00 Norvoite - vl
variable
bytes max.
$30000] RAM (w/battery) 620000 o by) area | Approx.
””””””” T S 110K

$40000 bytes

(Vacant)

User program execution
$50000 code area (E code)
RAM System

$60000 work area

EEPROM User program -1 Systemworkarea)
$70000 :?:éce code save (Approx. 50K bytes)

(Vacant) -t -
$78000 /O area $3FFFF
$80000— I/OH - 4 1/O interface area
$84000 MPU internal RAM register
$90000 (Vacant)
$A0000

ROM - System program area

$FFFFF

11

Precautions

Section 1-4

1-4 Precautions

Terminals

Programming

Program Areas

Memory Switches

PC Interface

12

A terminal or personal computer can be connected to the BASIC Unit and run
either in terminal mode (TERM) or via communications software. Terminals
must be VT-52, VT-100, or equivalents.

» Both insert and overwrite programming are available. The writing mode can be
set in the memory switches; the default is overwrite.

e Memory cards mounted in the PC’s CPU Unit can be treated as files to save
BASIC programs and data.

e Programs can be created and edited on any MS-DOS platform and then read
into the BASIC Unit. Program files must have a . BAS extension.

e The MERGE command can be used to join multiple programs into one, but line
numbers must be unique.

¢ Up to three independent programs can be stored in the program areas (S-code
areas), but only one of these programs can be executed at a time. You cannot
jump between the program areas.

» The current program number is designated in the memory switches and effec-
tive when program execution is begun. The PGEN command can be used to
change the current program number, and the PINF command can be used to
display it at the left of the monitor screen.

o All three programs areas are saved to, read from, or compared to EEPROM
when ROMSAVE, ROMLOAD, or ROMVERIFY is executed. Reads/writes can also
be performed to all three program areas regardless of the current program
designation.

¢ Only the current program area is loaded, saved, or merged when LOAD, SAVE,
or MERGE are executed for memory cards.

o Memory switch settings are saved in the PC’s CPU Unit in an area separate
from the normal PC memory map. The BASIC Unit reads these settings from
the PC when started and stores them in a work area for operation. All memory
switches are set to all-zeros when the Unit is shipped and must be changed
unless the default settings are desired.

* Memory switch settings can be changed in the BASIC Unit’s work area in ma-
chine language (MON). Memory switch settings can be changed in the PC via
the Esw-w command, or they can be changed via a Programming Device (e.g.,
CV-series GPC or CVSS) connected to the PC.

e Memory cards can be used to copy memory switch settings from one PC to
another.

o The DIP switch on the front of the PC’s CPU Unit can be used to return memory
switches to their default settings. This can be used if the memory switch set-
tings are unknown to enable connecting a terminal using the default commu-
nications parameters.

¢ PC memory can be accessed from the BASIC Unit even if the PC itself is not
programmed.

¢ Event, cyclic, and CPU bus link processing are available to interface with the
PC. Of these, event processing is the most commonly used.

¢ Event processing allows specific memory areas in the PC to be read or written
when necessary.

Precautions

Section 1-4

Programming

Execution

Cyclic processing allows specific portions of PC memory to be automatically
transferred between the PC and the BASIC Unit. A memory switch is also
available to disable cyclic processing to minimize time spent servicing CPU
Bus Units.

CPU bus link processing provides data links between the PC and CPU Bus
Units in the CPU Bus Link Area. These links can be used to synchronize pro-
cessing between CPU Bus Units and the PC. Data link processing does, how-
ever, place a load on the PC and is not the only way to synchronize processing.
Unless data links are specifically desired, they should be disabled in the PC
Setup of the PC.

The PC READ and PC WRITE commands can be used to transfer consecutive
words to and from the PC. Processing time can be used more effectively by
transferring more words with each command rather than splitting the same
number of words over multiple commands.

Only one CPU Bus Unit is serviced each cycle by the PC even if more than one
Unit has sent a write request. This can produce delays in executing pC
WRITE.

Data can be transferred to and from PCs and BASIC Units on local or remote
networks. Transfers to PCs are performed with PC READ and PC WRITE.
Transfers to other BASIC Units are performed with OPEN followed by PRINT
and INPUT.

Programs are manipulated in S-code (source code) when editing at the termi-
nal or when saving to or loading from EEPROM or memory cards. S-code must
be compiled into E-code (execution code) via RUN to be executed. Code is
compiled automatically when RUN is executed and can produce a delay for
large programs. If the program is not changed, however, code is complied only
once, i.e., the first time RUN is executed, increasing execution speed for subse-
quent RUNS.

Actual execution starts when RUN is input, when the RUN/STOP switch is set to
RUN, or automatically when the BASIC Unit is turned on and the memory
switches are set for automatic program execution. Refer to page 21 for details.

Memory switches can be set to automatically load, compile, and run a program
from a memory card or EEPROM when the BASIC Unit is turned on. Be sure to
allow for compiling time when using this method, which also eliminates the
need for a backup battery.

Character variable length is fixed to 18 characters by default. Garbage collec-
tion is not performed. Any changes to variable length must be declared before
PARACT 0 using OPTION LENGTH. Errors are not generated when substitut-
ing to character variables even if the fixed length is exceeded.

Non-volatile variables are supported and are backed up by a battery. Data is
such variables is maintained during power interruptions and between program
executions. Non-volatile variables are cleared when OPTION ERASE is
executed or when the program is started with RUN, ERASE.

TRON and TROFF by default display only the status of the current task. Use
TRON ALL to display the status of all tasks.

The communications error flags in word n+2 of the cyclic area will be turned ON
if a parity, overrun, or framing error occurs during serial data reception. De-
pending on the type of error, all data up to the character when the error oc-
curred will be lost.

13

Precautions

Section 1-4

Multitasking

Other

14

o Interrupts from input commands that are awaiting completion will not return to
the input command, but to the line following the input command, i.e., the input
command will not be completed. Input command variable substitution will not
be performed and data may be left in the input buffer. To see if an input com-
mand has not been completed, check INTRL (a variable containing the line
number of the interrupted command) on the line following the input instruction
to see if it contains the line number of the input instruction.

* The send and receive buffers at the RS-232/422 port are 512 bytes respective-
ly.

» Tasks are switched after each command, even for compound lines. Tasks are
switched in order of task number to the next task that is ready. Tasks that are
busy (e.g., awaiting I/O) are skipped.

e PARACT Nand END PARACT are required to separate tasks. Use PARACT 0
and END PARACT for a single-task program.

e The BASIC Unit does not support a clock, but the clock (RTC) in the PC can be
accessed or set from the BASIC Unit.

e The BASIC Unit contains a hardware test program that is used for inspection
and maintenance. Executing this program will clear the entire memory area.
The hardware test program is executed by setting the unit number to 99, turn-
ing ON pin 2 of the front-panel DIP switch, and turning on the power or reset-
ting. This program is not designed for user execution; never executed this pro-
gram without consulting with qualified service personnel.

SECTION 2
Getting Started

This section provides the basic steps to install a BASIC Unit and initiate operation for the first time. It also explains the meth-
ods that can be used to start and stop program execution in the BASIC Unit.

2-1

2-7

Installation

2-1-1 Mounting BASIC Unitst e e
2-1-2 Mounting DIimensionsttt

Switch Settings

Getting the Terminal Ready

Connecting the Terminal ..
Terminal Preparation
Memory Switches

Starting/Stopping Programs

16
16
17
18
19
20
20
21
21

15

Installation

Section 2-1

2-1

Installation

This section describes the minimal preparations necessary to set up a BASIC
Unit for programming. Refer to Appendix C Hardware Interfaces for information
on connecting other types of computers or peripheral devices. Refer to the CV-
series PC Installation Guide for details on general PC installation.

2-1-1 Mounting BASIC Units

16

I/O Control Unit

A BASIC Unit can be mounted to a CV-series CPU Rack or Expansion CPU
Rack. It cannot be mounted to an Expansion I/O Rack.

Up to 16 BASIC Units can be mounted to the CPU Rack and CPU Expansion
Rack as long as no other CPU Bus Units are mounted.

The Unit must be mounted to any of the rightmost 6 slots if the CVM1-BC103
CPU Backplane is used; the rightmost 3 slots if the CVM1-BC053 is used.

Be sure to securely tighten the mounting screws of the BASIC Unit.

CPU Unit

BASIC Unit

~

[=)

=l

CPU Rack

\ Power supply

]
-

T

Mounting screw

I/O Interface Unit

Expansion CPU Rack

Power supply

T é;g:;y;‘. ri

e
H

¥,
O

»
gl

7

|

BASIC Unit

Installation Section 2-1

2-1-2 Mounting Dimensions

When installing the BASIC Unit in a control box, determine the depth of the con-
trol box giving consideration to the connectors to be connected and the height of

Z Z Z
Z 7~ 7
Z Z a7
Z 7 Z
Z 4 7 Z
Z Z Z
Z Z Z
— A—»é — Aaé S— AHé
. - "7
_ Height (mm) BSC11/BSC21 | BSC31/BSC41 | BSC51/BSC61
G GPB somedorcoser o =

17

Switch Settings Section 2-2

2-2 Switch Settings

Set the following switches on the BASIC Unit as described below. Details on
switch setting are provided in Section 1 Introduction.

BSC31

UNIT RN
BASIC RUN
1L

1,2,3... 1. Seta Unit number in the range of 0 to 15. Do not set |,

the same Unit Number as those of the other CPU e
Bus Units.

I{:IV
xxh‘@
Run

STeabswn~o

<l

10’

5TOP

PDRY 1
RS-232

2. Set the RUN/STOP switch to the STOP position.

PORT 2
R5-232

oLl el

—

3. Open the battery compartment and set all the
switch pins of the DIP switch to the OFF position to
get the following settings:

Pin no. DIP switch setting

1 Memory write-protected (OFF)

2 Memory switches disabled (OFF)
3 Not used (OFF)

4 Termination resistance (OFF)

18

Getting the Terminal Ready Section 2-3

2-3 Getting the Terminal Ready

To use the BASIC Unit, the CPU Rack and a terminal for developing programs
are necessary. The terminal can be any of those illustrated below. A cable that
connects the BASIC Unit and the terminal is also necessary. Use CV500-CN228
as the cable connecting the computer (with terminal mode) and BASIC Unit.

BASIC Unit

[

[:] =
Connection Cable

Computer with
terminal mode.

Laptop computer Terminal

19

Terminal Preparation Section 2-5

2-4 Connecting the Terminal

Connect the terminal connecting cable to port 1 on the BASIC Unit, and securely
tighten the screws of the cable.

The selection of communication ports 1 through 3 used to connect the terminal is
specified by the memory switches in the CPU Unit. The default setting is port 1.
The terminal is therefore usually connected to port 1. To change the port, refer to
3-3 Memory Switches.

UNIT RUR
BASIC RUN
ERROR
BATLOY
MEM PROT
Ry
e e
7R3

Kt @ @ Mounting screws
Na.
x10* x10°

runy [2©
srng (J
PORT {
RS-232

[

J'OI:/ /

PORT2 m
R5-232

2-5 Terminal Preparation

First, turn on the power to the terminal. If the power to the PC is turned ON first,
the terminal may malfunction.

The defaults of ports 1 through 3 of the BASIC Unit are as follows. Set the com-
munications parameters of the terminal to match these.

Computer with
terminal mode.

L

/ RS-232C

oML W - O

Baud rate 9,600 bps

Data length 8 bits

Parity None

Stop bit 1 bit (or 2 bits)

Others Full duplex, no echo, XON/XOFF control, no automatic
carriage return

20

Starting/Stopping Programs Section 2-7

2-6 Memory Switches

After setting the terminal, turn ON the power to the PC and start the BASIC Unit.
If necessary, change the settings of the memory switches. The memory
switches are described in 3-2 Memory Switches.

Default Settings

If the default values are suited to the application, the memory switch settings do
not need to be changed. The default values are as follows:

System Parameters

Manual start Starts when RUN is entered from the terminal

Automatic program transfer Program is not automatically read from EEPROM or memory card
Program selection 1 Executes program 1

English error messages Displays error messages in English

Printer selection Does not print Kanji characters

Communications control using RTS/DTR signals is not possible for the ports set
as the terminal and printer ports. To perform communications control using RTS/
DTR signals, change the ports set as the terminal and printer ports to ports other
than the ones for which RTS/DTR control is to be used. This is done using
memory switch 3.

Terminal and Printer Ports The terminal and printer can be connected to the following ports:

BASIC Unit Terminal Printer
BSC11/BSC21 Port 1 Port 2
BSC31/BSC41 Port 1 PRT (Centronics)
BSC51/BSC61 Port 1
Terminal Specifications Baud rate 9,600 bps
Number of lines on 24 lines
terminal screen
Terminal type Display Terminal or commercially available terminals
with terminal mode
Editing mode Overwrite mode

Changing Memory Switch Settings
The memory switches can be changed if necessary. After changing the memory
switches, power to the PC must be turned OFF once and then back ON again to
enable the new settings.

The memory switches can be set from a terminal connected to the BASIC Unit or
from a Peripheral Device connected to the CPU Unit. Refer to 3-3 Setting
Memory Switches for details.

2-7 Starting/Stopping Programs
Once a program has been written to the BASIC Unit, it can be started/stopped in
any of the following three ways:
e From Terminal

This method is mainly used while the program is being debugged, and the pro-
gram is started or stopped by the key input from the terminal connected to the
BASIC Unit.

* RUN/STOP Switch

This switch is used to debug the program in a system configuration where the
terminal is not connected.

21

Starting/Stopping Programs

Section 2-7

¢ Automatic Starting

This is to automatically start the program on power application or restarting, and

is used to start the program after debugging has been completed.

Method

Preparation

Start

Stop

From terminal

Connect terminal.
Set RUN/STOP switch to RUN.
Set manual start mode in memory switches.

Input RUN and
carriage return
from terminal.

Input CTRL+X or CTRL+C from

terminal.

switches and supply power or restart.

RUN/STOP Set RUN/STOP switch to STOP. Set RUN/STOP Set RUN/STOP switch to STOP.
switch Set automatic start mode in memory switch to RUN. Input CTRL+X or CTRL+C if
switches, and supply power or restart. terminal is connected.
Automatic Set RUN/STOP switch to RUN. Use terminal Set RUN/STOP switch to STOP.
starting Set automatic start mode in memory mode. Input CTRL+X or CTRL+C if

terminal is connected.

22

Note Execution can be stopped from the keyboard by inputting CTRL-X or CTRL-C.
When CTRL-X is input, all execution, including 1/O processing, will be aborted
immediately and “Quit in ...” will be displayed. STEP and CONT cannot be used
after aborting execution with CTRL-X. When CTRL-C is input, execution is
stopped as soon as the current instruction has been executed. If “Break in ...” is
displayed, STEP and CONT can be used. If “Quit in ...” is displayed, STEP and

CONT cannot be used.

SECTION 3
Memory Areas and Operations

This section provides information relating to the memory areas of the BASIC Unit. The memory switch settings and specifica-
tions are also provided for the proper operation of the Unit.

3-1 MEMOTY ATCAS . . ot ittt ettt et e e e e e e 24
3-1-1 Cyclic Transfer Areasouiin ittt 24
3-1-2 Reading/Writing to the Cyclic Area Using PC READ/PC WRITE 25
3-1-3 CPUBusLink Area e 28
3-1-4 Restart Bitso e 30
3-2 Data Transfer withthe CPU Unit i 30
3-3 Memory SWItCheso 33
3-3-1 System Parameters 35
3-3-2 Automatic Transfer File Name i .. 36
3-3-3 Terminal and Printer Ports 37
3-3-4 Baud Rates 38
3-3-5 Terminal Specificationscuiiuiiuiinn i, 39
3-3-6 Cyclic Area Settingsottt it e e 39
3-3-7 GP-IB Settingottt 42
3-4 Setting Memory SWitches 42

23

Memory Areas

Section 3-1

3-1 Memory Areas

3-1-1 Cyclic Transfer Areas

Example

I/0 Memory

DM Area

EM Area

24

CPU Unit

Cyclic transfers allow data transfers between the PC’s CPU Unit and BASIC Unit
to be synchronized with the cyclic servicing of the CPU Unit. The memory words
in the CPU Unit that can be allocated for cyclic transfer include those in I/O
Memory, the DM Area, and the EM Area.

Up to six output areas (CPU Unit to BASIC Unit) and up to six input areas (BASIC
Unit to CPU Unit) can be designated. The combined total number of 1/0 words
must be 384 or less in all 12 areas.

Cyclic transfers are set either by default or by using the software switches in the
memory of the CPU Unit. For details, refer to 3-3-6 Cyclic Area Settings. Any
words in the 1/0 Memory (words without prefixes), the DM Area, and EM Area
can be set for cyclic transfer. (The EM Area is an option and is available only for
the CV1000 and CV2000.)

Data transferred by cyclic transfers to and from the CPU Unit are read and writ-
ten in the BASIC program using the PC READ and PC WRITE commands.

The first word of the first output area contains status output from the CPU Unit to
the BASIC Unit. This word is designated as word “n.” The first 3 words of the first
input area contain status input from the BASIC Unit to the CPU Unit. The first of
these three words is designated as word “m.” The remainder of the first I/O areas
and the remaining areas are for user applications.

BASIC Unit
———————— Output
Output area 1 b | status:
Wd
Output area 2 A
Output area 3
N Qutput area 4 |—:>
V Output area 5
Output area 6
Input area 1 -— ‘ | Input
| | status:
Input area 2 Wd mto
Wd m+2
Input area 3
Input area 4
Input area 5
Input area 6

* When the memory switch is not used to set a specific cyclic area, the following
type of allocations are used to receive cyclic data.
N = 1500 + unit number x 25

Memory Areas Section 3-1
Direction Word Bit Name Remarks
CPU Unit to BASIC N System Setup Data written from the
Unit CPU Unit to these
words can be read to
N+1to N+14 User area the BASIC Unit using
PC READ "@SQ....”
BA_SIC Unit to CPU N+15 00to 15 Task status display
Unit N+16 00 Memory overflow
01 Compilation error
(error code 000 to
255)
02 Compilation error
(error code 256 or
higher)
03 E code error
15 Battery error
N+17 00 to 07 Error code
08 Execution error
09 Port 1 error
10 Port 2 error
1 Port 3 error
15 BASIC RUN
N+18 to N+24 User area Data written using PC

WRITE "Sl...” from
the BASIC Unit is
output here.

The memory switch can be used to change the cyclic area allocations.

3-1-2 Reading/Writing to the Cyclic Area Using PC READ/PC WRITE

The method for reading from or writing to the cyclic area in the CPU Unit using
the PC READ and PC WRITE instructions in the BASIC program of the BASIC
Unit is described here.
Input the following codes as the subcommands to specify the cyclic area using
the PC READ and PC WRITE instructions in the BASIC program. (Refer to the
SYSMAC BASIC Units Reference Manual (W207—-E1-2) for information on the
format of the PC READ and PC WRITE instructions.)

Instruction Subcommand Area First transfer word Number of transfer
words

PC READ @SQ Cyclic output area 0 to (maximum 1 to maximum
(Direction: CPU Unit | number of words —1) | number of words
to BASIC Unit)

PC WRITE @Sl Cyclic input area 3 to (maximum 1 to maximum
(Direction: BASIC Unit | number of words —1) | number of words
to CPU Unit)

Example

This example is for a cyclic area as follows:
Output area (CPU Unit to BASIC Unit): DM 12000 to DM 12009
Input area (CPU Unit to BASIC Unit): DM 12010 to DM 12019

25

Memory Areas Section 3-1

¢ The memory switch setting to make the above areas cyclic areas is as follows:

ESW6-1 = 0082—2000-0001-0010
ESW6-7 = 0082-2010-0001-0010

No. of words
Upper address

Lower address
Area type (0082: DM Area)

Note All the values are set in decimal.

o The first transfer word for the cyclic area is specified as follows:

First transfer word Address in CPU Unit First transfer word Address in CPU Unit
using the PC READ using the PC WRITE
instruction instruction
0 DM12000 0 DM12010
1 DM12001 1 DM12011
2 DM12002 2 DM12012
3 DM12003 3 DM12013
4 DM12004 4 DM12014
5 DM12005 5 DM12015
6 DM12006 6 DM12016
7 DM12007 7 DM12017
8 DM12008 8 DM12018
9 DM12009 9 DM12019
The shaded areas indicate addresses that are used to display status informa-
tion, thus not allowing them to be used for user data.
Example
This example shows reading the contents of 10 words from DM 12001 to DM
12009 in the CPU Unit to the BASIC Unit and storing in the variables H, I, J, K, L,
M, N, Oand P.
PC READ "@SQ,;,Q{9H4“;H,I,J,K,L,M,N,O,P
9 words
First word (DM 12001) onwards
Example

This example shows writing values from the variables A, B, C, D, E, F, and G in
the BASIC Unit to 7 words from DM 12013 to DM 12019 in the CPU Unit.

PC WRITE "@SI,3,7,7H4“;A,B,C,D,E,F,G

7 words
Third word (DM 12013) onwards

26

Memory Areas

Section 3-1

Output Status Word (CPU Unit to BASIC Unit)

Word n is the first word of the first output area allocated to the BASIC Unit.

m = 1500 + unit number x 25

Word

Bit

Name

Function

00to 14

The contents of the first memory switch word set in the CPU
Unit.

15

System reserved bit

Cannot be used by user

The words from word m+1 onwards are for the user.

Input Status Words (BASIC Unit to CPU Unit)

Word m is the first word of the first input area allocated to the BASIC Unit.

n = 1515 + unit number x 25

Word Bit Name Function
m 00 Task 0 Status Flag Each_ flag of this area is turned QN when the corresponding
o1 [Tas St Fla ek hamar s BASKS Ok v S s
02 Task 2 Status Flag flags.
03 Task 3 Status Flag
04 Task 4 Status Flag
05 Task 5 Status Flag
06 Task 6 Status Flag
07 Task 7 Status Flag
08 Task 8 Status Flag
09 Task 9 Status Flag
10 Task 10 Status Flag
11 Task 11 Status Flag
12 Task 12 Status Flag
13 Task 13 Status Flag
14 Task 14 Status Flag
15 Task 15 Status Flag
m+1 |00 Memory Overflow Flag This flag turns ON when the user program executable code
area or variable area is exceeded. (See Note 2.)
01 Compile Error Flag This flag turns ON when an error whose error code is 255 or
lower has occurred. (See Note 2.)
02 Compile Error Flag This flag turns ON when an error whose error code is 256 or
higher has occurred. (See Note 2.)
03 E Code Error Flag This flag turns ON when execution is specified from the E
code, or if the E code is abnormal.
04 to 14 Vacant (These bits are undefined.)
15 Battery Error Flag This flag turns ON when the supply voltage of the battery has

dropped below a specific level. This flag turns OFF when the
program is edited and executed after the battery voltage
returns to normal.

27

Memory Areas Section 3-1
Word Bit Name Function
m+2 |00to07 Error Code These bits indicate the contents of the system variable ERR
in hexadecimal between 00 and FF. The Error Code is reset
to 00 when the program is executed again.

08 Fatal Error Flag This flag turns ON when an error that causes the BASIC Unit
to stop has occurred while the program is executed. This flag
is turned OFF when the program is executed again.

09 Port 1 Error Flag These flags turn ON when an error has occurred in the
corresponding ports. The possible causes that turn ON these

10 Port 2 Error Flag flags are incorrect usage of the port, parity errors, overrun
errors, and framing errors. These flags turn OFF when the

1 Port 3 Error Flag program is executed again.

12t0 14 Vacant (These bits are undefined.)

15 BASIC Unit Execution Flag This flag is turned ON when the BASIC Unit is executing a

program. It is also turned ON when executable codes are
being created or while a command is executed.

Words from word n+3 onwards are for the user.

Note 1. The error contents are the same as those displayed on the terminal con-
nected to the BASIC Unit. For details on error codes, refer to 8-1 Trouble-
shooting.

2. The Memory Overflow and Compiler Error Flags indicate the cause of errors
when commands are input or when program execution is not possible.
These flags can be turned OFF from the terminal with TROFF.

3-1-3 CPU Bus Link Area

28

The CPU Bus Link Area in the CPU Unit is used to automatically pass data back
and forth between the BASIC Unit and the CPU Unit or between the BASIC Unit
and another CPU Bus Unit. The default setting is for no CPU bus links. To use
CPU bus links, specify them using the computer with terminal mode.

e The CPU Bus Link Area is refreshed in the CPU Unit at 10-ms intervals.

¢ Words in the CPU Bus Link Area are allocated by the CPU Unit according to the
unit numbers of the CPU Bus Units.

* Data can be read from or written to this area by using the PC READ or PC
WRITE commands.

Memory Areas Section 3-1

All numbers are expressed in BCD:

G000 to G004| System information - - -- Gooo| CPU Unitstatus Minute/second: 00 o 5
| 288; g;::te Ez‘;‘:”d Date: 01 to 31, Hour: 00 to 23
‘ G003l Year Month Year: 00 to 99, Month: 01 to12
: Day: 00 to 06 (00 is Sunday.)
: G004| --- Day
: G005 to G007 are not used.
”””” = CPU Unit Status
G008 to G127 Not Bits indicate the following when ON:
allocated bo: CPU Unit mode, PROGRAM
b1: CPU Unit mode, DEBUG
b2: CPU Unit mode, MONITOR
b3: CPU Unit mode, RUN
b4: User program executing (RUN output status)
b5: Not used.
b6: Non-fatal error
G128to G135 Unit 0 b7: Fatal error
G136 to G143 Unit 1 b8tob10: Not used.
G144 to G151 Unit 2 b11: UM read/write-protected
G152 to G159 Unit 3 b12: Memory card write-protect switch ON
G160 to G167 Unit 4 b13: Not used.
G168 to G175 Unit 5 b14: Not used.
G176 to G183 Unit 6 b15: System protected via key switch
G183 to G191 Unit 7
G192 to G199 Unit 8 b15
G200 to G207 Unit 9 G216 b15 ... 0: Unit operating
G208 to G215 Unit 10 G217 1: Unit stopped
G216 to G223 Unit 11 G218
G224 to G231 Unit 12 G219
G232 to G239 Unit 13 G220
G240 to G247 Unit 14 G221
G248 to G255 Unit 15 G222
G223

Note 1. All Units can read any CPU bus link words.

2. The words that are not allocated (G008 to G127) can be used for any pur-
pose by the CPU Unit program.

3. Words and bits specified as “Not used.” cannot be used for any purpose.

4. Bit 15 of the first word allocated to Units 0 through 15 is the Stop Flag for that
Unit and indicates whether the Unit is operating or not. All other bits and
words allocated to each Unit can be used as required by the user.

5. The system information (G000 to G004) can be read at any time.

29

Data Transfer with the PC Section 3-2

3-1-4 Restart Bits

A Restart Bit is turned ON to restart a BASIC Unit. AO0O1 contains Restart Bits for
the CPU Bus Units. To restart a BASIC Unit, turn the corresponding bit of this
area ON, and then back OFF again. These bits can be manipulated using the
SET(016) ladder-diagram instruction or from a Programming Device. The bit
number within this word corresponds to the unit number as shown below.

Unit no. 0 Restart Bit
L—— Unit no. 1 Restart Bit
Unit no. 2 Restart Bit
Unit no. 3 Restart Bit
Unit no. 4 Restart Bit
Unit no. 5 Restart Bit
Unit no. 6 Restart Bit
Unit no. 7 Restart Bit
Unit no. 8 Restart Bit
Unit no. 9 Restart Bit
Unit no. 10 Restart Bit
Unit no. 11 Restart Bit
Unit no. 12 Restart Bit
Unit no. 13 Restart Bit
Unit no. 14 Restart Bit
Unit no. 15 Restart Bit

Note Unit numbers or memory switch setting cannot be changed by restarting a BA-
SIC Unit using its Restart Bit. To change the unit number of memory switches,
restart the Unit by resetting the CPU Unit.

&Caution When routing tables are transferred to the CPU Unit, the corresponding Restart
Bit will turn ON and the BASIC Unit will stop.

3-2 Data Transfer with the CPU Unit

To transfer data between the BASIC Unit and CPU Unit, the following three
methods are available. With each method, data is read and written using the pC
READ and PC WRITE commands from the BASIC Unit. Programming the CPU
Unit is not necessary. When desired, programming is also possible from the

CPU Unit.
Data transfer Application
Cyclic Specified words in the CPU Unit, set in advance using the

software switches in the CPU Unit, are read or written during
cyclic servicing. Since different areas can be simultaneously read
and written, this method is used to transfer data when the same
data needs to be transferred repeatedly. The output status from
the CPU Unit to the BASIC Unit and the input status from the
BASIC Unit to the CPU Unit is transferred or received using cyclic
transfer. Software switches can be set to disable cyclic transfers.

Event Specified data is read from or written to the CPU Unit when
required. This method is most frequently used to transfer data.

CPU bus links CPU bus links can be used to transfer small quantities of data
with another BASIC Unit or the CPU Unit at high speeds. This
method is used to operate the BASIC Unit in synchronization with
another BASIC Unit or the CPU Unit, or to broadcast data to all
other Units and the CPU Unit. CPU bus links are disabled in the
default settings, but time information in the CPU Bus Link Area
can be accessed. To specify CPU bus links, use the computer
with terminal mode.

30

Data Transfer with the PC Section 3-2

Data Flow
The following figure illustrates the areas to/from which data can be written/read
by the three data transfer methods described previously, and examples of the
BASIC commands used for the transfer. The data transfer method is determined
by the suboperand of the PC READ or PC WRITE command.
CPU Unit Z BASIC Unit
I/O Area :
Work Areas |
SYSMAC BUS :
and SYSMAC '
BUS/2 Areas X
, Memory Areas Programing Example
Link Area X
) Cyclic Transfers
Holding Area '
; R — PC READ ”@SQ,0,3,3H4”;A,B,C
CPU Bus Unit .
Area | w <— PC WRITE “@SI,4,1,H4";D
DM Area i
EM Area X
\ Event Transfers
Transition Area - . —> PC READ "@R,100,50,S50,H4";
, R X(0)
Step Area : «— PC WRITE "@D,30,20,520,H4";
— W Y (0)
T|mer Area : i TIME$ = 712:34:56"
| CPU Bus Links
Counter Area '
/ R —= PRINT TIMES
-1 — PC READ "@SG,128,3,3H4";
CPU Bus Link g R LM, N
Area B e W <-— PC WRITE ”@SG,137,2,2H4";

P,0Q

: R: Read area
: W: Write area

31

Data Transfer with the PC

Section 3-2

Data Transfer/Reception Timing

CPU Unit Operation

Data is transferred/received during the CPU Bus Unit service interval of the CPU
Unit for both the cyclic and event transfer methods. The cycle at which this serv-
icing is executed differs depending on whether the CPU Unit is operating syn-
chronously or asynchronously. For details, refer to the CV-series PC Operation
Manual: Ladder Diagrams.

Operation cycle
Host link Basic CPU Bus Unit | Device servic- Host link Basic CPU Bus Unit
servicing processing servicing ing servicing processing servicing
!
Unit No. cyclic Unit No. 0 event Unit No. cyclic Unit No. 0 event Unit No. 0 event
processing processing processing processing processing

Cyclic Transfers

CPU Unit

BASIC Unit

Event Transfers

%

CPU bus links are refreshed via interrupts every 10 ms.

Cyclic processing period

! i

Pass Pass

v B B %

T
1)
PC READ

Note

Event processing

Completion

T (5)
) 4
PC WRITE Completion

()

Timing (1) and (2)

If the BASIC Unit has executed the PC READ instruction when the cyclic pro-
cessing period arrives, the CPU Unit will process data transfer/reception.
Timing (3), (4), and (5)

The PC WRITE instruction writes data to the internal area of the BASIC Unit and
then ends immediately. Data transfer to the CPU Unit is executed during the next
cyclic processing period.

If neither the PC READ northe PC WRITE instruction is executed, output status
from the CPU Unit to the BASIC Unit and input status from the BASIC Unit to the
CPU Unit will be transferred every 100 ms.

Event processing

| PK Pass Pass | | Pass Pass
] — , — — - — —
CPU Unit / o V 7 V)
BASIC
(1) &) ®3) (4) () @) (8)
PC READ or Completion PC READ Completion PC READ or Completion Completion

PC WRITE

32

or PC PC WRITE of (5) of (6)
WRITE

PC READ or

PC WRITE

Memory Switches

Section 3-3

CPU Bus Link Transfers

Timing (1) to (2) and (3) to (4)

If the PC READ or PC WRITE instruction is executed by the BASIC Unit immedi-
ately before the event processing period, the CPU Unit transfers/receives the
data immediately.

Timing (5) to (7) and (6) to (8)

If more than one PC READ or PC WRITE instruction is executed before the pro-
cessing of one event, any subsequent instructions are kept pending until the
next event processing.

For CPU bus links, the CPU Unit reads data from each CPU Bus Unit each 10
ms, and then writes the entire CPU Bus Link Area to all the Units.

10 ms 10 ms

CPU Unit

/7 /

BASIC

T
(1)
PC READ

&) (3) 4
Completion PC WRITE Completion

Timing (1) to (2) and (3) to (4)

When pPC READ is executed, data written from the CPU Unit is read when the
next CPU bus link servicing is performed. When PC WRITE is executed, data is
read into the CPU Unit and other CPU Bus Units (such as other BASIC Units)
when the next CPU bus link servicing is performed.

3-3 Memory Switches

Memory switches are software switches containing operating parameters that
control BASIC Unit operation. These parameters are kept in the CPU Unit and
are transferred to the BASIC Unit whenever the system is turned ON or re-
started. Each BASIC Unit has its own memory switches. (The memory switches
are collectively called the CPU Bus Unit System Setup.)

The memory switches for each BASIC Unit consist of a pointer to the memory
switches for the Unit and the settings of the memory switches. The default set-
ting can be changed to alter BASIC Unit operating parameters. To write data to
the memory switches, use a terminal connected to the BASIC Unit or a Graphic
Programming Console with a CV-series Memory Cassette connected to the
CPU Unit.

The memory switch settings can be momentarily returned to their default set-
tings without changing the actual settings by turning ON pin 2 on the DIP switch
on the front of the BASIC Unit. This is useful if a terminal cannot be connected
because of unknown memory switch settings.

33

Memory Switches Section 3-3

The memory switches consist of the following parameters. The area for each
BASIC Unit occupies 60 words. Each parameter is described in detail in the fol-
lowing sections.

Note The Extended PC Setup in the CPU Unit, which includes BASIC Unit memory
switch settings, can be transferred to and from Memory Cards. Refer to memory
card operations in the CVSS: Online Operation Manual for details.

Byte 1 Memory Switch Parameters

address
+0 - - - System parameters
Start method

) +1 Automatic transfer setting
Pointers Program No. setting
Unit 0 File name . Error message selection

. Kaniji printer setting
Unit 1 . . !

Automatic transfer file name

Unit 2 +7 | Terminal Printer - - - Terminal/printer port selection
Unit 3
Unit 4 +8 Port 1 Port 2 Port 3 - - - Baud rate for each port
Unit 5 +9 | Edit mode | Model Number of digits on - - - Terminal specifications
Unit 6 screen

- +10
Unit 7

Qutput area

Unit 8 (CPU Unit to BASIC
Unit, 24 words) '
Unit 9 .

Unit 10 //—w \\

Unit 11 '
Unit 12 +34 - Cyclic area settings
Unit 13 K

- Input area ,
Unit 14 (BASIC Unit to CPU '
Unit 15 Unit, 24 words)

“

+58 | Master/Slave Address -~ - GP-IB settings
+59 “ " Not
used.
MSB LSB

34

Memory Switches Section 3-3

3-3-1 System Parameters

The system parameters of the memory switch set the basic items related to the
operation of the BASIC Unit. The following figure illustrates the bit configuration
of the system parameters. Set the bits shaded in this figure to 0.

Memory Switch: ESW1

ESW1= S5 FE (when set from terminal)
+0 +1

Byte address b7 b0
+1
\

\:]- - - - Starting Mode

@ ------- Automatic Transfer

b6 b5 b4

This system parameters are initially set to 0000, i.e., manual start, manual
transfer, program 1, English, and no Kaniji printer.

b0: Starting Mode

Setting Function

0 Manual start The user program is started when RUN is input from the terminal after the
version has been displayed by inputting CTRL-X. The RUN/STOP switch
must be set to RUN to manually start program execution.

1 Automatic start The user program is automatically started on power application or
restarted with the RUN/STOP switch set to the RUN position. If the
RUN/STOP switch is set to the STOP position, the program is started
when the RUN/STOP switch is set to the RUN position.

b6, b5, b4: Automatic Transfer

Setting Function
000 Manual transfer Automatic transfer is not executed.
100 EEPROM automatic transfer The user program is automatically transferred from the EEPROM to the

source code area on power application or restarting (only models with
EEPROM). Write the necessary program to the EEPROM in advance by
using ROMSAVE.

101 File automatic transfer 1 The user program is automatically transferred from the memory card in the
CPU Unit to the source code area on power application or restarting. The
file name is specified by the following words in the memory switches. A
memory card must be mounted to the CPU Unit.

35

Memory Switches

Section 3-3

Byte address b7 b0
+0
AL
Eﬁ/ Program No.
b5 b4
EZLE/ --------- Error Message Language

I Kaniji Printer
b1, b0: Program No.
Setting Function
00 Program 1 Sets program 1 as the user program to be edited on power application or
01 resetting.
10 Program 2 Sets program 2.
11 Program 3 Sets program 3.

b4: Error Message Language

Setting Function
English Error messages are displayed in English.
Japanese Error messages are displayed in Japanese.

b5: Kanji Printer

Setting

Function

Not used

Not compatible with Kaniji printer.

Used

Specifies KI/KO processing. (K1 = 1B4B, KO = 1B48)

3-3-2 Automatic Transfer File Name

36

When automatic program transfer is specified in the automatic transfer setting of
the system parameters, the name of the file to be transferred must be specified.
If the file is specified to be manually transferred, the file name does not need to
be specified.

The file name may consist of up to 8 characters of ASCII followed by a file type
(extension) delimited by a period from the file name. The file name must consist
of alphanumeric characters starting with an alphabetic character. The file exten-
sion is BAS.

Memory Switch: ESW2
ESW2=x x sk sk % x
01 23 456

% %k %k %k sk (when set from terminal)
7 8 9 1011

Byte address b7 b0

+2
+3
+4
+5
+6 Name
+7

+8

+9

+10
+11
+12
+13
+14

Extension

Memory Switches Section 3-3

Example: File Name ABC1234.BAS

1@1) | - File name is set starting from
first bit

eE) | - - File name is followed by a period
(2E in hexadecimal)

8) N N Period is followed by file type

o0) | ------- Excess area is 00.

Inputting 00 is unnecessary when this
area is set via the machine language de-
bug command Esw2, because 00 is auto-
matically set.

Note Any file can be read and used as a user program by using the automatic file
transfer function. However, if automatic transfer is specified, a certain amount of
time is required to read the program from the file and create executable codes
before the program is actually started.

3-3-3 Terminal and Printer Ports

This area of the memory switch specifies the ports to which the terminal and
printer are connected. Set a BCD number from 01 to 04 in this area, by referring
to the following illustration:

Memory Switch: ESW3

ESW3= -5 E (when set from terminal)
+14 +15

Byte address b7 b0
+15 :E - - - - Selecting Printer Port

Selecting Printer Port

Setting Function
01 RS-232C 1 Selects top RS-232C (port 1) port as printer port.
02 RS-232C 2 Selects bottom RS-232C (port 2) port as printer port.
04 Centronics Selects Centronics port as printer port. With the BSC11/21, this sets the
Unit as having no printer port.
FF None No printer port set.
Note: This setting is only possible with system ROM versions 1.23 or
higher.
Byte address b7 b0

+14 :D - - - - Selecting Terminal Port

Selecting Terminal Port

Setting Function

01 RS-232C 1 Selects top RS-232C (port 1) port as terminal port

02 RS-232C 2 Selects bottom RS-232C (port 2) port as terminal port

03 RS-422 Selects RS-422 (port 3) port as terminal port

FF None No terminal port set. If it becomes necessary to use a terminal, disable the
memory switch settings using pin 2 of the DIP switch.
Note: Ihlﬁ setting is only possible with system ROM versions 1.23 or

igher.

37

Memory Switches

Section 3-3

Note The defaultis 0000. Consequently, the following printer and terminal ports are
selected:

BSC11/BSC21: 0102 (port 1 as terminal port and port 2 as printer port)
BSC31/BSC41: 0104 (port 1 as terminal port and Centronics as printer port)
BSC51/BSC61: 0100 (port 1 as terminal port and no printer port)

* The system ROM version is displayed on the BASIC initial screen on the termi-
nal.

e Communications control using RTS/DTR signals is not possible for the ports
set as the terminal and printer ports. To perform communications control using
RTS/DTR signals, change the ports set as the terminal and printer ports to
ports other than the ones for which RTS/DTR control is to be used. This is done
using memory switch 3. Also, if the system ROM version is 1.23 or higher, it is
possible to not set a printer port and terminal port by setting the relevant bytes
to FF.

3-3-4 Baud Rates

38

This area sets the baud rates of RS-232C ports (ports 1 and 2) and RS-422 port
(port 3). Set a BCD number from 0 to 7 to the area corresponding to each port by
referring to the following illustration:

Memory Switch: ESW4

ESW4= 0 _HE (when set from terminal)
+16 +17

Byte address b7 b0
+17
Port2 Port 1
b7 b0

+16 \:l: - - - - Transfer Rate Setting

Port 3

Transfer Rate Setting

Setting Function
Sets the baud rate to 9,600 bps (default).
Sets the baud rate to 300 bps.

Sets the baud rate to 600 bps.

Sets the baud rate to 1,200 bps.

Sets the baud rate to 2,400 bps.

Sets the baud rate to 4,800 bps.

Sets the baud rate to 9,600 bps.

Sets the baud rate to 19,200 bps.

N |u bW IN RO

Note 1. The defaultis 0000, i.e., the transfer rate of all the ports is 9,600 bps.
2. Be sure to clear the bits shaded in the previous figure to 0.

3. The RUN echoback will overlap with the port initialization display if program
execution is started from a terminal connected to a port set to 300 bps. Al-
ways set the port connected to the terminal to 600 bps or greater if you are
going to use the terminal to start program execution.

Memory Switches

Section 3-3

3-3-5 Terminal Specifications

This memory switch sets the model of the terminal and the number of display
digits for the terminal connected to the BASIC Unit.

Memory Switch: ESW5

ESW5= E (when set from terminal)
+18 +19

Byte address b7 b0
+19 :E - - - - Number of Display Digits

Number of Display Digits

This byte sets the number of display digits of the terminal in 2 BCD digits. When
this byte is set to 00, 24 digits, which is the default value, is assumed.

Byte address b7 b0
+18
1 Leeo-- Model
s Editing Mode
Model
Setting Function
Terminal mode Specifies terminal mode.
VT-52 (VT-52 mode) Specifies VT-52 or equivalent.
VT-100 (ANSI mode) Specifies VT-100 or equivalent.
Editing Mode
Setting Function
Overwrite | Sets overwrite mode for program editing
Insert Sets insert mode for program editing

Note The default value is 0000. Consequently, terminal mode is selected with the

number of display digits set to 24 and the overwrite mode already set.

3-3-6 Cyclic Area Settings

&Caution

This area of the memory switches sets the area of the CPU Unit with which the
BASIC Unit will cyclically (periodically) transfer data. Up to six output areas
(CPU Unit to BASIC Unit) and up to six input areas (BASIC Unit to CPU Unit) can
be set. Up to 384 words can be set for all areas combined.

If this area is not set, the following defaults are used. These are in the CPU Bus
Unit Area.

Area: I/O memory area

Address: Output: 15 (first 15 words)
Input: 10 (last 10 words)

Number of areas: 1 for both output and input

Keep the first word address and number of words to within the range of each
area. If an improper word address is set, all the settings of the input and output
areas following the improper word address will be invalid. A range check is not
performed for this setting. Check your settings and input values carefully.

Each setting area consists of 4 words. For unused areas, set 0000 as the area
setting. If 0000 is set as the area type setting for all the areas, cyclic data transfer
is not executed.

39

Memory Switches Section 3-3

A minimum of 3 words is required in the input area to refresh BASIC Unit in-
formation.

Memory Switch: ESW6
ESW6-1= ek ek _ RGN _ ek ek _ SRk Rk (when set from terminal)
+20 +21 +22 +23 +24 +25 +26 +27

Byte address Byte address
| b7 b0 | b7 b0
+20 | Output area 1 } gwords > +20 0 | 0
+21 | Area setting (See the following table.)
+28 | Output area 2 +22 |)

+23 LFirst word address
+24 (See the following table)

+36 | Output area 3

+44 | Output area 4 +25 | ~

+26 | | Number of words
+27 | J (See the following table)

+52 | Output area 5

+60 | Output area 6

+68 Input area 1

+76 Input area 2

+84 | Inputarea 3

Area Setting
+92 | Inputarea 4

Setting Function
+100 | Inputarea s 0080 I/O Memory Area
+108 | Input area 6 0082 Data Memory Area
0090 Expansion Data Memory Area, bank 0
0091 Expansion Data Memory Area, bank 1
0092 Expansion Data Memory Area, bank 2
0093 Expansion Data Memory Area, bank 3
0094 Expansion Data Memory Area, bank 4
0095 Expansion Data Memory Area, bank 5
0096 Expansion Data Memory Area, bank 6
0097 Expansion Data Memory Area, bank 7
0000 None

First Word Address

Function
Specifies the first word address of the specified area in 8 digits BCD.
+24 +25 +22 +23

(leftmost byte) | 8 ' 7 | | 6 ' 5 | | 4 ' 3 | | 2 ' 1 | (rightmost byte)

First word address (8 digits, BCD)

Note: The order of the byte address when setting in 8 digits, BCD is
4,3—-2,1-8,7—6,5 (where the numbers indicate the number
of the digit).

Number of Words

Function
Specifies the number of words in the specified area in 4 digits BCD.
+26 +27
(leftmost byte) | . | | . (rightmost byte)

Number of words (4 digits, BCD)

40

Memory Switches Section 3-3

Example 2 Output Areas: 3 words from CIO 0120 of I/O Memory.
12 words from D24000 of DM Area.

1 Input Area: 2 words from CIO 0032 of I/O Memory.

b7 b0
+20 0 0
+21 8 0 |----- I/0O Memory
+22 0 1
+23 2 0
Ouputareat = o o } - - - From CIO 0120
+25 0 0
+26 0 0
427 0 3 } - - - 3words
+28 0 0
+29 8 2 |- I/0O Memory
+30 4 0
+31 0 0
Output area 2 +32 0 0 } - - - From D24000
+33 0 2
+34 0 0
+35] o } - - - 12 words
0 0
0 0
Output area :F AllO - - - Notset
3t06
0 0
+68 0 0
+69 8 0 |----- I/O Memory
+70 0 0
+71 3 2
472 0 0 } - - - From CIO 0032
+73 0 0
+74 0 0
+75 0 5 } - - - 2words
0 0
0 0
Input area :? AllO S - - - Notset
2to 6
0 0
0 0

41

Setting Memory Switches

3-3-7 GP-IB Setting

Section 3-4

This parameter sets the operation of the GP-IB interface. The parameter is nec-
essary only for the CV500-BSC51 and CV500-BSC61.

Memory Switch: ESW7

ESW7= 8 K
+116 +117

Byte address b7 b0
+117 :E - - - - Address of Talker and Listener

(when set from terminal)

Sets addresses of talker and listener in BCD (00 to 30).
b7 b0

+116 :E - - - - Master/Slave Setting

Master/Slave Setting

Setting Function
00 | Master Sets BASIC Unit as master.
01 | Slave Sets BASIC Unit as slave.

3-4 Setting Memory Switches

42

1,2 3.

The memory switches can be set from a Graphic Programming Console with a
CV-series Memory Cassette connected to the CPU Unit or by a terminal con-
nected to the BASIC Unit. The CVSS is not currently equipped with this feature.

Memory switch settings can be transferred from one CPU Unit to another using
the CVSS and copying the Extended PC Setup onto a Memory Card. Refer to
the Memory Card operations in the CV Support Software: Online Operation
Manual for details.

The following procedures will explain how to set the memory switch using a ter-
minal connected to the BASIC Unit. When the following procedure is completed,
new software memory settings will exist in both the BASIC Unit and the CPU
Unit.

Refer to Appendix J for details on setting methods using Support Software.

1. First, set the BASIC Unit in the machine language monitor mode. When the
message OX is displayed, or while the terminal is in the command input wait
status, input MON followed by a carriage return.

2. A prompt (*) will be displayed and the BASIC Unit will be set in the machine
language mode. Input as follows to set each memory switch. Input up-
per-case characters.

ESwW1=0300
Here, 1 is the memory switch and 0300 is the setting (hexadecimal).

For the settings, refer to 3-3 Memory Switches. The memory switch areas

are as follows:

: System parameters (ESW1)

: Automatic transfer file name (ESW2)

: Terminal/printer ports (ESW3)

: Baud rates (ESW4)

: Terminal specifications (ESW5)

: Cyclic area setting area (ESW6)

: GP-IB setting (ESW?7)

3. Set the cyclic areas as follows:
ESW6-1=0080-0100-0000-0008

Here, 1 is the output/input area no., 0080 is the area type no., 0100 are the
rightmost bytes of the first word address (BCD), 0000 are the rightmost by-

NO O~ WN =

Setting Memory Switches Section 3-4

tes of the first word address (BCD), and 0008 is the number of words (BCD).
This setting sets 8 words beginning from word 100 in the IO memory area as
output area 1.

Output/Input Area Numbers

Qutput area 1t0 6 l1to6
Inputarea 1 t0 6 71012

Area Specifications

I/O Memory Area 0080
Data Memory Area 0082
Expansion Data Memory Area, 0090 to 0097

bank 0 through bank 7

4. After setting all the memory switches, input Esw-w followed by a carriage
return to write the data to the CPU Unit.

43

SECTION 4
Programming Overview

This section provides an overview of BASIC programming and is not meant to provide a comprehensive explanation of BA-
SIC programming.

4-1 BASIC Syntax and Operationsot ut ettt e et 46
4-1-1 Syntax 46
4-1-2 BASIC Operationsttt e 51
4-2 Writing and Entering Programs 62
4-2-1 Preparationsttt e 62
4-2-2 Program Storage Locationst 62
4-2-3 Allocating a Program Areattt 62
4-2-4 Clearing Program Areattt 62
4-2-5 Generating Line Numbers 63
4-2-6 Writing a Program 63
4-2-7 Editing Programs e 64
4-2-8 Deletingin Programs i 65
4-2-9 Copying in Programsttt 65
4-2-10 Merging Programsoouittt i e 66
4-2-11 Changing Line Numbers i, 66
4-2-12 Naming Programsc. ittt 66
4-2-13 Keys Operations in Editing i 67
4-3 Program Execution and Debugging i 67
4-3-1 Preparationsttt et e 67
4-3-2 EXECULIONttt 68
4-3-3 Stopping and Resuming Execution 69
4-3-4 Step EXECUtiON it 70
4-3-5 Tracing Program Execution i, 70
4-4 Saving and Loading Programs i 71
4-4-1 EEPROM 71
4-4-2 Memory Cardst 71
4-4-3 Saving and Loading via Personal Computers 72

45

BASIC Syntax and Operations Section 4-1

4-1 BASIC Syntax and Operations

4-1-1 Syntax

To develop a program in BASIC, an understanding of the syntax and description
of BASIC is essential. This section describes some fundamentals of the BASIC
syntax and programming techniques. For the details of the BASIC syntax, refer
to the BASIC Unit Reference Manual (W207-E1).

Line Numbers and Labels

Line Numbers

Labels

Variables and Constants

Variables

46

A program consists of lines. Each line consists of a line number, executable
statement, a comment statement, and/or a non-executable statement.

10 PRINT ”“BASIC UNIT” Executable statement
20 REM *** BASIC UNIT*** Comment statement
30 DIM A(10) & v Non-executable statement
60 IF A$S = ” " THEN GOTO 40 . Executable statement
90 END & totiiieeie e ieiiiaalinn Executable statement

T Line number

Line numbers are integers from 1 to 65529 and are arranged in ascending order.
The program is executed in the order of the line numbers. The line numbers are
sometimes used to specify the destination to where the program execution is
branched with the GOTO and GOSUB commands.

A label is a name assigned to a line number to specify the branch destination of
such commands as GOTO and GOSUB. With the BASIC Unit, a label must start
with an asterisk (*) and followed by an alphabetic character.

50 GOSUB *LABEL Calling by label

60 GOSUB 80 . vevvvvnnnnnnnnn. Calling by line number
70 END

80 *LABEL . +evvvuinnnnnennnnn. Label

90 RETURN

If a line number is specified as a branch destination, and if the line number
changes when the program is modified, an error will occur. However, if a label is
used, the label will remain the same even when the program is modified.

A computer handles various types of data such as characters and numeric val-
ues. In a computer language such as BASIC, areas called variables in which
data is temporarily stored are used so that a program can be easily developed. A
variable is given a variable name and is assigned a value after substitution or
after an operation has been executed.

BASIC Syntax and Operations Section 4-1

Variable

Data is classified into character data and numeric data. This also applies to vari-
ables, which can be classified into character variables in which character data is
stored and numeric variables in which numeric data is stored. Numeric variables
are further classified into integer variables and real-number variables.
Real-number variables are then further classified into single-precision variables
and double-precision variables. These relationships are shown as follows.

Fixed character length variables
Character variable ﬂ (system variables)

Variable character length variables

Integer variable
Numeric variable . - .
Single-precision variable

Note

Real-number variable —E
Double-precision variable

In addition to the above classifications, variables are also classified into simple
variables which handle only one piece of data, and array variables which handle
more than one piece of data.

—— Simple variables (handle only one value)

Variable —

Array variables (handle more than one value)

The variable name given to a variable is specified by using alphanumeric char-
acters, a period (.), and a declarator. The length of a variable can be up to 40
characters including the declarator. The declarator specifies the type of the vari-
able, as follows:

$... Character

o°

... Integer

... Single-precision real number (this type is assumed if no type declarator is
specified)

... Double-precision real number

For example, A%, Al, A#, and A$ all indicate different variables. If the type decla-
rator is omitted, a single-precision real-number type is assumed, and conse-
quently, A and A! indicate the same variable.

The default length for character variables is fixed at 18 characters. Because of
this, garbage collection is not performed. If character variable length needs to be
changed, use the OPTION LENGTH instruction before PARACT 0. Length
checks are not performed for substitution into character variables.

47

BASIC Syntax and Operations Section 4-1

Constants

The contents (data) of a variable are changed by a substitution or operation. In
contrast, a constant, which indicates a value by itself, is used where data does
not need to be changed. Like variables, constants are classified into character
constants and numeric constants, which are further classified into integer con-
stants and real-number constants. The real-number constants are further di-
vided into single-precision constants and double-precision constants. These re-
lationships are shown below.

Character constant

Constant

Integer constant
Numeric constant ; -
Single-precision constant

Types of Expressions

48

Real-number constant {
Double-precision constant

A character constant usually consists of a character string of 255 characters or
less enclosed by a pair of double quotation marks. These characters can be in
alphanumeric characters and/or symbols.

Examples 712345"
"BASIC UNIT”

Numeric constants are expressed as a positive or negative value, or as 0, and
are specified in decimal, octal, hexadecimal, or exponential format.
Decimal (-32768 t0 32767):

9200 & e
123%

Octal (&0 to &77777):

&123 o e
&0200

Hexadecimal (&HO0 to &sHFFFF):

&HI23 .
&H2B3F

Exponential (single precision) (-3 .4E + 3810 3.4E + 38):

-1.23E + 4 . ..

345.2!

Exponential (double precision) (-1.701411834604692D + 307 to
1.701411834604692D + 307):

=1.23D - 12 . .ol
345.2#

Expressions are classified into numeric, character, relative, and logical expres-
sions depending on the type of the value handled in the expressions.

Numeric expression A+ B
. Character expression "BASIC” + "UNIT”
Expression
Relative expression A > B
Logical expression A AND B

BASIC Syntax and Operations

Section 4-1

Numeric Expressions

Character Expressions

Relative Expressions

Logic Expressions

A numeric expression returns a numeric value and consists of numeric variables
and numeric constants coupled with arithmetic operators. The arithmetic opera-
tors shown in the following table can be used.

Arithmetic operator Operation Example
+ Addition A+ B

- Subtraction A -B

* Multiplication A * B

/ Real-number division A/ B

¥ or \ Integer division A¥B, A \ B
~ Exponent calculation A~ B

MOD Remainder calculation A MOD B

Note ¥ or \ depend on the terminal used.

A character expression returns a character string and consists of character vari-
ables and character constants coupled with an arithmetic operator (+).
Example

"OMRON” + "Corporation”

A relative expression consists of numeric expressions coupled with a relative
operator. The relative operators shown in the following table can be used.

Relative operator Operation Example

= Equal A =B

<>, >< Not equal A <> B, A >< B
< Less than A< B

> Greater than A >B

<=, =< Less than or equal to A <= B, A ==, => Greater than or equal to A >= B, A =>B

A logic expression is used to execute logic operations, manipulate bits, or check
conditions of TF statements. A logic operator is used to form a logic expression.
The logic operators shown in the following table can be used.

Logic operator Operation Example
NOT Negation NOT A
AND Logical product A AND B
OR Logical sum A OR B
XOR Logical exclusive sum A XOR B
IMP Implication A IMP B
EQV Equivalence A EQV B

Result of Operations by Logic Operator

NOT
A NOT A

0 1

1 0

AND

A B A AND B

o |0 o

o |1 o

1 |0 o

1 |1 |1

49

BASIC Syntax and Operations Section 4-1

BASIC Functions

A B A OR B

PP OO
P oRr o
[l el el]

XOR (Exclusive OR)

A B A XOR B
0 0 0
0 1 1
1 0 1
1 1 0

IMP (Implication)
A | B A IMP B

PP OO
P O Rr O
P OoORr K

EQV (Equivalence)
A B A EQV B

P BP OO
P O Rr O
PO OoORr

The BASIC Unit supports many functions in addition to ordinary BASIC func-
tions. A function is used to perform a predetermined operation on a given argu-
ment. Some functions return numeric values, while others return character
strings. These are explained in more detail later in this manual and in the BASIC
Unit Reference manual.

Functions Returning Numeric Values

Function Operation
ABS Gives absolute value
ACOS Gives arc cosine
ASC Gives character code
ASIN Gives arc sine
ATN Gives arc tangent
CDBL Converts integer value or single-precision value into double-precision value
CINT Converts real-number value into integer value
cos Gives cosine
CSNG Converts integer value or double-precision value into single-precision value
CVI/CVS/CVD Converts character string into numeric value
EOF Gives end code of file
ERL/ERR Gives line in which error occurs and error code
EXP Gives value of exponential function
FIX Gives integer
FRE Gives size of unused memory area
INSTR Searches characters string and gives position of character
INT Gives integer value truncated at decimal point
INTRB/INTRL/INTRR | Gives destination line, generation line, and type of interrupt
LEN Gives total number of characters of character string
LOC Gives present value in FILE

50

BASIC Syntax and Operations

Section 4-1

Function Operation
LOF Gives size of FILE
LOG Gives natural logarithm
PEEK Returns contents of specified address
RND Gives random number
SEARCH Searches element of array variable and gives position of character
SGN Checks sign
SIN Gives sine
SPC Outputs blank
SOR Gives square root
TAB Sets column position of screen or printer
TAN Gives tangent
USR Calls machine language function on memory
VAL Converts character string into numeric value
VARPTR Gives storage address of variable

Functions Returning C

haracter String

Function Operation
CHRS Gives character having specified character code
DATES Gives date
HEXS$ Converts into hexadecimal number
INKEYS Inputs only one character
INPUTS Inputs only specified number of characters
LEFTS Gets character string (from leftmost position)
MIDS Gets character string
MKI$/MKSS/MKDS$ Converts numeric code into character code
OCT$ Converts into octal number
RIGHTS Gets character string (from rightmost position)
SPACES Gives blank character string
STRS Converts numeric value into character string
STRINGS Creates character string of specified characters
TIMES Gives time

4-1-2 BASIC Operations

Displaying Data

This section introduces examples of programming for fundamental operations
of the BASIC Unit.

To display data, program as follows by using the PRINT and PRINT USING

To Display “BASIC UNIT”

and Contents of Variable X

commands:
10 PARACT 0
20 X = 10
30 PRINT ”“BASIC UNIT”
40 PRINT "X = ”";X
50 PRINT "X = ",X
60 END
70 END PARACT
11 Result of execution
BASIC UNIT
X =10
X = 10

51

BASIC Syntax and Operations

Section 4-1

Difference Between PRINT
and WRITE Commands

To Specify Display Format

52

If a character (in this example, X) is delimited by “;”, it is displayed immediately
after the character displayed immediately before. If it is delimited by “,”, the
character is displayed from the beginning of the next area (one area consists of
14 characters). In addition, TAB specification that displays the current position of
the cursor as character X coordinate = 0 can also be made.

The WRITE command has a similar function to the PRINT command. The WRITE
command is also used to output data to the screen. With the WRITE command,
the variables and expressions to be displayed are delimited by only commas
when they are specified. They are also delimited by commas when they are dis-
played. To display a character string, it automatically encloses a pair of double
quotation (”) marks. To display a numeric value, unlike the PRINT command, no
blank is placed before and after the numeric value.

Consequently, if the sample program shown previously is written by using the
WRITE command instead of the PRINT command, the display will be as follows:

10 PARACT O

20 X = 10

30 WRITE ”"BASIC UNIT”
40 WRITE "X = ";X

50 WRITE X, 20

60 END

70 END PARACT

ﬂ Result of execution

"BASIC UNIT”
"X = ", lo
10, 20

Sometimes, the data displayed by the PRINT command is hard to see. The
PRINT USING command is used to specify the format in which the data are dis-
played, so that the data is easy to see.

10 PARACT O

20 X = 1234.56

30 PRINT USING "#####.###"”;X

40 PRINT USING “+#####.###";X
50 PRINT USING "X = #####. ##";X
60 PRINT USING "###.#7;1234.5
70 END

80 END PARACT

ﬂ Result of execution

1234.560

+ 1234.560
X = 1234.56
%$1234.5
The number of digits of a numeral, including that of the sign, is specified by the
number of “#” marks. If the number of digits of the data is less than the specified
number of “#” marks, the data is right-justified for display. If the number of digits
is greater, “%” is prefixed to the extra digits of the data.

BASIC Syntax and Operations Section 4-1

To Output Data to Printer

END and STOP Commands
Ending Program

To output data to the printer, use the LPRINT or LPRINT USING command.

10 PARACT O

20 LPRINT “BASIC UNIT”
30 END

40 END PARACT

ﬂ Result of execution

BASIC UNIT

Write the END command at the end of the program. This command closes all
open files and terminates the execution of the program. However, sometimes it
is necessary to stop the program under execution. For example, if a wrong key
has been pressed, or if a certain condition is satisfied, it may be necessary to
stop the program. In this case, the STOP command is used. When this command
is executed, a message is displayed and the program execution is stopped.
10 PARACT O

20 FOR I = 1 TO 100

30 IF 5 - I = 0 THEN STOP

40 PRINT I

50 NEXT I

60 END

70 END PARACT

ﬂ Result of execution

1
2
3
4
t

Stop in 30

Inputting Data From Keyboard

To Input Numeric Data

To input data to the variables in the program from the keyboard, program as fol-
lows by using the INPUT or LINE INPUT command:

10 PARACT 0

20 INPUT A} Numeric data input
30 INPUT B

40 PRINT A, B

50 END PARACT

ﬂ Result of execution

100
? 200
100 200
When the INPUT command is executed, ? is displayed, indicating that the pro-
gram is waiting for the input of data. The program is stopped until data has been
input. Then input a desired numeric value from the keyboard and press the car-
riage return.

53

BASIC Syntax and Operations Section 4-1

To Input Character Data

To Display Message While
Data is Input

Variable Name and
Reserved Word

54

If an attempt is made to input character data in the above example, an error oc-
curs. To input a character, $ must be suffixed to a variable name. This means that
for the variable name specified by the INPUT command, the data type of the vari-
able must be specified by $, depending on the type of the data to be input.

10 PARACT O

20 INPUT AS } Character data input
30 INPUT BS

40 PRINT AS; BS
50 END PARACT

ﬂ Result of execution

? BASIC

? UNIT

BASIC UNIT

For example, to input integer type numeric value in the above program, $ must
be suffixed to the numeric value, like 2% and B%. To input a numeric value of
double-precision real-number type, # must be suffixed.

The INPUT command is used to input data to a variable while the program is
executed. However, it may be unclear which data is to be input if only “?” is dis-
played when the INPUT command has been executed. To clarify which data
should be input, therefore, a message can be displayed before “?”.

10 PARACT O

20 INPUT “NAME”;AS

30 INPUT “TEL ”;B$S

40 PRINT “NAME “;AS$,”TEL ”;BS
50 END PARACT

ﬂ Result of execution

NAME? OMRON

TEL ? 123-4567

NAME OMRON TEL 123-4567

As shown above, if a character string specified is enclosed in a pair of double
quotation marks () before a variable name, the specified character string can
be displayed when data is input. Note that the character string must be delimited
by a semicolon (;) from the variable name.

As described earlier, any name can be given to a variable. However, the names
used for commands and functions must not be used as the names of variables.
For example, PRINTS$ and INPUT% must not be used as variable names be-
cause these names are command names. The names that must not be used by
the user are generically called reserved words or keywords. A list of reserved
words are presented in Appendix G.

BASIC Syntax and Operations Section 4-1

Operations

To Perform Arithmetic
Operation

To process data through operations, program as follows by using operators and
arithmetic functions:

To perform an operation, use arithmetic, relative, and logic operators described
earlier.

10 PARACT 0

20 PRINT 10/3

30 PRINT 10%¥3%

40 PRINT 10%/3#

50 END PARACT

ﬂ Result of execution

3.33333

3

3.333333333333333

The above program is to execute a division and display the result. The result dif-
fers depending on the data type (such as integer, single-precision real-number,
and double-precision real-number).

On line 20, the operation is performed with single-precision real-numbers, and
the result is rounded at the sixth digit. Therefore, five or less digits are displayed
as the result.

On line 30, the operation is performed with integer values. Therefore, the data is
truncated at the decimal point.

On line 40, a single-precision real-number variable and double-precision
real-number variable are processed. If the precision of a variables differ, the
higher precision takes precedence. In this case, therefore, the double precision
takes precedence. Consequently, the data is rounded at the 16th digit, and dis-
played in 15 digits or less.

55

BASIC Syntax and Operations

Section 4-1

Priority of Operators

Each operator is assigned priority as shown in the following table. Relative oper-
ators are not assigned priority in respect to each other, and are executed in se-
quence starting from the left.

Priority Operator Operation Classification
1 () Gives priority to () Expression in ()
2 Numeric function Returns numeric value Function

Character function Returns character string
3 ~ Exponential operation Arithmetic operator
4 - Negative sign
5 *, Multiplication, division of real number
6 ¥ or \ Division of integer
7 MOD Remainder
8 +, - Addition, subtraction
9 = Equal to Relative operator
<>, >< Not equal to
<, > Less than, greater than
<=, =< Less than or equal to
>=, => Greater than or equal to
10 NOT Negation Logic operator
11 AND Logical product
12 OR Logical sum
13 XOR Logical exclusive sum
14 IMP Implication
15 EQV Equivalence
16 = Substitutes right member into left member Substitution

Character Operations The only operation available for character variables and character constants is
adding (coupling).

10 PARACT 0

20 AS$ = “BASIC”

30 B$S = "UNIT”

40 PRINT A$ + BS

50 END PARACT

ﬂ Result of execution

BASIC UNIT

Changing Program Flow
It may be necessary to change the flow of the program execution according to
the result of an operation or conditions. The BASIC Unit can change the flow of
program execution by using the following program control commands:

Instruction Operation
FOR TO STEP NEXT Repeatedly executes program enclosed by FOR and NEXT commands the specified number
of times
GOSUB RETURN Calls subroutine and returns from subroutine
GOTO Unconditionally jumps to specified line number

IF THEN ELSE/
IF GOTO ELSE

ON GOSUB/ON GOTO
WHILE WEND

Selects line to be execution in accordance with result of relative or logic expression

Branches to specified line

Repeatedly executes a series of commands until condition is satisfied

56

BASIC Syntax and Operations Section 4-1

To Repeat the Same
Process

To Specify Conditions for
Repetition

Repeating the same processing is called a loop. Loop processing can be im-
plemented by using the FOR TO STEP NEXT command. This command re-
peatedly executes the processing enclosed between FOR and NEXT.

FOR variable name = initial value
TO end value STEP increment

(Processing to be repeated >

NEXT variable name

Loop processing can also be performed by using the GOTo command. However,
if the number of times the processing to be repeated is fixed, the FOR TO STEP
NEXT command is used. A sample program using this command is shown be-
low.

90 ’'Calculate even sum and odd sum from 0O through 100.
100 PARACT O

110 A% = 0

120 B% = 0

130 FOR I%=0 TO 100 Sum of even numbers and odd numbers
from 0 to 100

140 J%=I% MOD 2

150 IF J%=0 THEN A%=A% + I% ELSE B%=B% + I%

160 NEXT I%

170 PRINT ”“"The even number sum 0 through 100?”;A%
180 PRINT ”"The odd number sum 0 through 100?”;B%
190 PRINT

200 END

210 END PARACT

ﬂ Result of execution

The even number sum 0 through 100? 2550
The odd number sum 0 through 100? 2500
The FOR TO STEP NEXT command can also nest loops as follows:

— FOR I = 1 TO 10

[FOR J = 1 TO 15

Loop 1 — Loop 2 — <— Loop 2 is set as a nest of box.

NEXT J

—— NEXT I
The variable name of NEXT can be omitted.

Instead of specifying the number of times for the FOR TO STEP NEXT com-
mand, it may be necessary to specify a condition under which repetition should
be executed, for example, when the number of times the execution is to be re-
peated is not known such as when the processing is to be executed until x = 0.
In this case, the WHILE WEND command is used as follows:

WHILE relative expression

(Processing to be repeated)

WEND

57

BASIC Syntax and Operations Section 4-1

To Execute the Same
Processing at Different
Locations

58

Indefinite loop where relative expression is 1
Example:
WHILE 1 to WEND

The WHILE WEND command executes the processing enclosed between
WHILE and WEND until the condition specified by the relative expression is not
satisfied (i.e., becomes false (0)).

The FOR TO STEP NEXT command is used to repeat the same processing at
the same location. However, it may be necessary to repeat the same processing
at different locations, depending on the program. For example, if the same pro-
cessing should be executed to various measured data, and if the same program
is described for each measured data, the program becomes redundant. In this
case, a subroutine is created and called as required by using the GOsuUB and
RETURN commands.

GOSUB label name of subroutine (xxx) Calls subroutine
GOSUB label name of subroutine (xxx) Calls subroutine
XXX to
Subroutine
RETURN

¢

The following is a sample program using the GOSUB RETURN command.

Calling and returning from subroutine

100 PARACT O

110 *START

120 PRINT ”“Program calculating area of circle”
130 INPUT ”“Input radius (to end, radius = 0)"”;R%
140 IF R%=0 THEN END

150 GOSUB *CAL

160 PRINT ”"Area of radius ”;R%;” is ”;S!;".”

170 GOTO *START

180

190 *CAL v teiiiiiiiiiaaaannn. Subroutine calculating area of circle
200 8! = 3.14*R%*R%

210 RETURN . ..ovvunnnnnnnnnnn End of subroutine by RETURN

220 END

230 END PARACT

ﬂ Result of execution

Program calculating area of circle
Input radius (to end, radius = 0)°?5
Area of radius 5 is 78.5

Program calculating area of circle
Input radius (to end, radius = 0)0
Ok

BASIC Syntax and Operations Section 4-1

As shown above, by using subroutines the program can be divided into several
modules so that it can be easy to see and develop and so that the same process
can be executed from different locations.

Program Program
Task 1 Task 1
Operatiqn Task 2
processing
Task 2 Task 3
Operation Operation
processing processing
Task 3
Operation
processing

RETURN Command Ending When a subroutine is called, a return address is stored in a memory area so that

Subroutine the program execution can be returned to the main routine after the subroutine
has been executed. This memory area is called a stack. To return the execution
from a subroutine to the main routine, the return address is restored from the
stack by the RETURN command.

Calling Subroutines

Stack
Main program

P \\\\\\ :
. ~ '
// Subroutine N !
/ B N Return address —
GOSUB ; N
| ' \
| Return address | 1 f
A /
\\ RETURN /
\ \/ /
/
N /
N s
N s
~ P
\\ //
\\ -

—————

Only one level can be restored by the RETURN command. This means that to call
another subroutine (2) from one subroutine (1) as shown below, the RETURN
command is necessary for each subroutine.

Main program

Subroutine 1

GOSUB _/

GOSUB

Subroutine 2

RETURN
RETURN

59

BASIC Syntax and Operations Section 4-1

Changing Processing To select and execute processing according to the result of a relative expres-
According to Conditions sion, the IF THEN ELSE or IF GOTO ELSE command is used.
Example
IF relative expression THEN| line no.| ELSE| line no.
string string
label label

The following is a sample program using the IF THEN ELSE and IF GOTO
commands.

Conditional branch operation

100 PARACT 0

110 *START

120 PRINT ”0: End 1: Sum 2: Difference 3: Product”

130 INPUT ”Select from menu”;I%

140 IF I%=0 THEN END When the input value is 0

150 IF I%>3 OR I%<0 THEN GOTO *EPROCESS

160 INPUT "A”;A#

170 INPUT “B”;B#

180 IF I%=1 THEN PRINT A#;”+";B#;”=";A#+B# ELSE *NEXT1
....... When the input value is 1

190 GOTO *START

200 *NEXT1

210 IF I%=2 THEN PRINT A#;”-";B#;”=";A#-B# ELSE *NEXT2
....... When the input value is 2

220 GOTO *START

230 *NEXT2

240 IF I%=3 THEN PRINT A#;”*";B#;"=";A#*B#

When the input value is 3
250 GOTO *START

260 *EPROCESS . .vvvvvvvnnnn. When the input value is other than
above

270 PRINT” ** * INPUT ERROR***”

280 GOTO *START

290 END

300 END PARACT

1l Result of execution

0: End 1: Sum 2: Difference 3: Product
Select from menu? 1

A ? 42

B ? 39

42 + 39 = 81

0: End 1: Sum 2: Difference 3: Product
Select from menu? 3

A ? 81

B ? 27

81 *27 = 2187

0: End 1: Sum 2: Difference 3: Product
Select from menu? 0

Changing Processing To select a line number to which the execution is to branch according to the value
According to Value of an of an expression, the ON GOSUB or ON GOTO command is used.
Expression

ON expression{ GOSUBH line no} { line noH line no....}
GOTO label label label

Example

ON ABC GOSUB 1000, 2000, 3000, *suB3, 5000
ON X1% GOTO *LAB1, 1500, *LAB3, *LAB4

60

BASIC Syntax and Operations Section 4-1

If the value specified by the numeric expression is 1, the execution branches to a
line number specified first. If the value is 2, the execution branches to a line num-
ber specified second. If the value is 3, the execution branches to a line number
specified third. A sample program using the ON GOSUB and ON GOTO com-
mands is shown below.

Expression value branch

100 PARACT O

110 *PRCS

120 PRINT ”“(1: Sum 2: Difference 3: Product 4: End) ”;
130 INPUT ”"Select number”;A%

140 IF A%<l OR A%>4 THEN PRINT ”“INPUT ERROR!!”: GOTO
*PRCS

150 IF A%=4 GOTO *E

160 PRINT ”“Input 2 integers”

170 INPUT S1%

180 INPUT S2%

190 ON A% GOSUB *PLUS, *MINUS, *MULT

200 GOTO *PRCS

210 *E & oot When 2% is 4
220 END

230

240 *PLUS . c'iiiiiiiinnnnnn. When A% is 1
250 PRINT S1%;”+";S2%"=";S1%+S2%

260 RETURN

270

280 *MINUS . tivniiiiiinnnnn... When 2% is 2
290 PRINT S1%;”"-";S2%"=";S51%-S2%

300 RETURN

310

320 *MULT &+ oeiieeieieinennnnn When 2% is 3
330 PRINT S1%;”"*";S2%"=";S51%*S2%

340 RETURN

350 END PARACT

ﬂ Result of execution

(1: Sum 2: Difference 3: Product 4: End) Select number?
1

Input 2 integers

? 12

? 23

12 + 23 = 35

(1: Sum 2: Difference 3: Product 4: End) Select number?
3

Input 2 integers

? 31

? 23

12 * 23 = 713

(1: Sum 2: Difference 3: Product 4: End) Select number?
4

ON GOSUB and ON GOTO functions are similar to each other. When ON GOTO is

used, the destination will not be the same subroutine as ON GOSUB.

61

Writing and Entering Programs Section 4-2

4-2 Writing and Entering Programs

4-2-1 Preparations

When developing or editing program, the uppercase and lowercase characters
are not distinguished.

The uppercase and lowercase characters are also not distinguished in describ-
ing variable names, constant names, and array names. However, they are dis-
tinguished in character strings and comments.

When the program is displayed by the LI ST command, it is displayed in upper-
case characters.

Enable writing with the memory protect switch.

4-2-2 Program Storage Locations

When programs are input from a terminal, they are created in the user program
source program area. Commands that read the program to the terminal, such as
LIST, handle the program as source code.

When programs are executed they are automatically compiled into execution
code and moved into the program execution area, requiring a certain amount of
processing time. If the same program is executed a second time without alter-
ation, this processing time is eliminated.

When programs are written to or read from EEPROM, the entire program area is
copied as source code. Because the entire area is always copied, the size of the
program does not affect the processing time.

When programs are written to or read from a Memory Card, only the program
with the designated program number is transferred.

If the Memory Switches are set to specify automatic program transfer or auto-
matic starting, the source code is loaded and recompiled each time the BASIC
Unit is started. The Memory Switches can be set to transfer the program from a
Memory Card or from EEPROM.

4-2-3 Allocating a Program Area

1,2, 3... 1. Allocate areas to develop and store the program. Three areas are available,
each of which separate programs can be developed and stored.
PGEN_27 « vevrernnnnnnnnnnn 2 is the program no. (1 to 3)
2. Confirm that the program area has been allocated.
PINF -
3. The following information is displayed:
No. ‘ PNAME , __S-CODE , __E-CODE . GLOBAL . LOCAL
1 ‘ TEST ‘ 41 ‘ ‘ ‘
*2 4
3 4
FREE 64207 112276

* on the left of No. indicates the area currently used.

4-2-4 Clearing Program Area

62

If a program previously developed or used remains in the allocated program
area, clear the area. If the program is given a name, first delete the name by us-
ing the PNAME command, and clear the program area with the NEw command.
PNAME " "2 & ceeeeeenennnnnnn. Deletes program name

NEWZ & eeeeeeeeeeeeenennnnnnnns Clears program area

If the program is not given a name, the program can be cleared only with the NEW
command.

Writing and Entering Programs Section 4-2

4-2-5 Generating Line Numbers

Generate line numbers automatically by using the AUTO command.

AUTO_100,52 « cevernennnnnnnn. 100 is the start line no. and 5 is the in-
crement.

In this case, the program starts from line 100, and the line number is increm-

ented by 5.

The specification of increment can be omitted, in which case, the program line
number is incremented by 10.

AUTO_ 1002 . cevrrieennnnnnnn. 100 is the start line no.

Both the start line number and increment can be omitted, in which case, the pro-
gram with line number 10 is incremented by 10.

AUTO»

In this case, the following messages are displayed. Input the program below
these messages.

AUTO

Ok
10

To end generation of the line numbers, input CTRL+X, CTRL+C, Of press carriage
return after the line numbers have been displayed.

Line numbers can also be manually input one at a time without using the AuTO
command.

4-2-6 Writing a Program

Note

Input and write the program along with line numbers. Each line must end with a
carriage return. A new line number will automatically be displayed. Continue in-
putting the program.

As an example, input the following program:

Key Input

PARACT_0»

A=3:B=4-

FOR_I=1_TO_37

A=A+Bo

PRINT A

NEXT_ I

ENDy

END_PARACT

Program

10 PARACT 0
20 A = 3
30 FOR I =
40 A = A +
50 PRINT A
60 NEXT I
70 END

80 END PARACT

Input CTRL+X, CTRL+C, Or press carriage return to end generation of the line
numbers.

=4
03

H

B
1
B

The BASIC Unit is provided with a multitasking function by which more than one
task (program) can be processed in parallel. The programs in the BASIC Unit
should be written in units of tasks. PARACT 0 on line 10 in the above example
program is a command indicating the beginning of a task. A task can be num-
bered 0 to 15. END PARACT on line 80 indicates the end of a task. For further
information, refer to 6-2 Multitasking.

63

Writing and Entering Programs Section 4-2

4-2-7 Editing Programs

Changing Overwrite/Insert

Mode

Editing Program in
Overwrite Mode

64

1,2, 3.

1,2, 3.

To edit a program, use the EDIT command. With this command, read and edit
one line of the developed program at a time.

To edit programs, it is necessary to write characters over existing characters
(overwrite mode), or insert new characters between existing characters (insert
mode).

With BASIC, the mode is changed between the overwrite and insert modes with
the memory switch (refer to 3-3-5 Memory Switch/Terminal Specification Setting
Area).

To change the mode, read the program with the EDIT command, and then input
CTRL+R or INS Key. The mode is alternately changed each time CTRL+R or INS
Key has been input. However, after one line has been edited, the setting of the
memory switch is assumed.

‘ Power application ‘

|

\ Default is set to the insert mode \

|

| Type in as EDIT_10- |

| Press CTRL+R or INS Key |

| Mode is set to overwrite |

| Press CTRL+R or INS Key |

| Mode is set to Insert |

. Turn the Power ON.
. Insert mode by memory switch.
. Type as EDIT _10-

. Press CTRL+R or INS Key to change the mode to overwrite mode.
or
Press CTRL+R or INS Key again to change the mode to insert mode.

A W DN =

The following procedure changes I=1 on line 30 into I=2.

1. Read the program.
EDIT 3072 « tevvrennnnnnnnn. 30 is line no. to edit

Writing and Entering Programs Section 4-2

2. The program of line 30 is displayed as follows. Move the cursor to the posi-
tion of 1 by using the Left Key.
EDIT 30
Ok
30 FOR I = 1 TO 3

3. Input 2 followed by carriage return. This has edited the program.

EDIT 30
Ok
30 FOR I = 2 TO 3
Inserting Characters The following procedure inserts I before PRINT 2 on line 50.

1,2, 3. 1. Type EDIT_50-
2. The line to be edit is displayed as follows, then move the cursor to the posi-
tion A with the Left Key.

EDIT 50
Ok
50 PRINT A

3. Change the mode from the overwrite to the insert mode by pressing CTRL +
R or INS Key.
4. Insert 1 followed by carriage return.

EDIT 50

Ok

50 PRINT I,A

This has inserted T and edited the program.

4-2-8 Deleting in Programs

Deleting Characters The following procedure deletes A+ of A=A+B on line 40 of the following pro-
gram.

1,2,3... 1. TypeEDIT _ 40,
2. The line to be deleted is displayed as follows, then move the cursor to the
position B with the Left Key.

EDIT 40

Ok

40 A = A + B

[BS][BS][] or [DEL][DEL][]

Note The BS Key of the CVSS has the same function as the DEL Key. How-
ever, depending on the terminal, the character at the cursor position
is deleted by the DEL Key.

EDIT 40
Ok
40 A = B
3. The program is edited when the carriage return is pressed.

Deleting Line The following procedure deletes line 40 in the above sample program.

To do this, only input the line number or use the DELETE command.
40— or DELETE_40-

More than one line can also be specified at a time by specifying a range as fol-
lows:

DELETE_120-150%vvnen... 120 is the beginning line no. which re-
quires editing and 150 is the end line
no. which requires editing

4-2-9 Copying in Programs

The following procedure copies program line 50 of the sample program below to
line 55.

1,2,3... 1. Type EDIT 50

65

Writing and Entering Programs Section 4-2

2. The line to be copied is displayed as follows, then move the cursor to the
position 0 with the Left Key.
EDIT 50

Ok
50 PRINT I,A

3. Input the number of the line to which line 55 is to be copied.
Type 53

4. This has copied the contents of line 50 to line 55.
EDIT 50

Ok
55 PRINT I,A

5. Next, A of line 50 is changed to B.

6. Move the cursor to the position of A. Input B and then carriage return.
EDIT 50
Ok
55 PRINT I,B
Any part of the program can be copied and edited. In addition to the above meth-
od, the line to be copied can be displayed by inputting, say EDIT 50, and a new
line can be created by changing the program and line number at the same time
and then pressing carriage return.

4-2-10 Merging Programs

The MERGE command can be used to add another program to the existing pro-
gram. Be sure that the line numbers in the two programs do not overlap.

4-2-11 Changing Line Numbers

To put line numbers in order and assign new line numbers, the RENUM command
is used.
RENUM-

In the following example, the program is changed so that the first program line
starts with 100 and the program lines are incremented by 10:

RENUM_100,10,102 100 is the new first line, left 10 is the old
first line, and the right 10 is the incre-
ment

In the above example, the line numbers of the existing program are changed, so
that the program starts with line 100, instead of 10, and the line numbers are
incremented by 10. The program lines less than 10 are left untouched.

The line numbers specified for GOTO and GOSUB commands are automatically
changed by the RENUM command. Therefore, it takes some time to complete the
processing. Wait until the message OK is displayed.

4-2-12 Naming Programs

66

To identify the contents of a program, a program name is given to each program
area by the PNAME command. When a program name has been given, the pro-
gram cannot be erased by the NEw command.

PNAME_"SAMPLE” 2 . cueucuvuunnn.. SAMPLE is the program name

When the PNAME command is executed without specifying a program name, the
existing program name is deleted.

PNAME_" ">

After this, a new program name can be given by another PNAME command.

Program Execution and Debugging

Section 4-3

4-2-13 Keys Operations in Editing

The following tables shows the keys that can be used in editing operations.

Key Operation

Left Key Moves the cursor to the left. This key is invalid while the cursor is at the beginning of a line.

Right Key Moves the cursor to the right. This key is invalid while the cursor is at the end position of a
line + 1 column.

Up Key Moves the cursor up. If this key is pressed while the cursor is at the top line, the cursor
moves to the leftmost position. If the cursor is at the leftmost position of the top line, this key
is invalid.

Down Key Moves the cursor down. If this key is pressed while the cursor is at the bottom line, the
cursor moves to the bottom position of the + 1 column. With the cursor at this position,
further pressing of this key is invalid.

Return Executes editing functions and rewrites the program. After that, line feed and carriage return

are performed.

SHIFT+HOME/CLR

Moves the cursor to the first position of a line. If the cursor is at the top line, this key is
invalid. This function is not provided to the CVSS.

CTRL+H or BS

Deletes the character at the left of the cursor. This key is invalid with the cursor at the
leftmost position of a line.

DEL

Deletes the character at the cursor position. This key is invalid while the cursor is at the
rightmost position + 1.

CLR or CTRL+L

Clears the entire screen and moves the cursor to the home position (upper left). The
processing under execution is canceled.

CTRL+E

Deletes the characters starting from the cursor position to the end of the line.

CTRL+R or INS

Switches between the overwrite mode and insert mode. Either the overwrite or insert mode
is assumed according to the setting of the memory switch when editing is started by the
EDIT command.

CTRL+X or CTRL+C

Terminates the execution of the AUTO or EDIT command.

Note 1. SHIFT+HOME CLR represents the pressing of the HOME CLR Key while
holding down the SHIFT Key.

2. CTRL+L represents the pressing of the L Key while holding down the CTRL
Key.

3. The edit function is executed when the carriage return has been pressed,
and the program in the BASIC Unit will be rewritten accordingly.

4. The DEL Key and BS Key of CVSS are the same. In addition, HOME CLR
and SHIFT+HOME CLR Keys are invalid.

4-3 Program Execution and Debugging

4-3-1 Preparations

The BASIC Unit is provided with commands that execute or debug the program.

To start or stop the program, the following commands are used:

RUN, STOP, BREAK

To resume program execution, or execute the program on a step-by-step basis,
these commands are used:

CONT, STEP
To display the execution status of the program, these commands are used:
TRON, TROFF

67

Program Execution and Debugging Section 4-3

Note

4-3-2 Execution

1,2, 3.

By using the above commands, the program is debugged. As an example, the
following sample program is debugged.

10 PARACT 0
20 A = 3

30 FOR I =
40 A = A +
50 PRINT A
60 NEXT I
70 END

80 END PARACT

Execution can also be stopped from the keyboard by inputting CTRL-X or
CTRL-C. When CTRL-X is input, all execution, including I/O processing, will be
aborted immediately and “Quit in ...” will be displayed. STEP and CONT cannot be
used after aborting execution with CTRL-X. When CTRL-C is input, execution is
stopped as soon as the current instruction has been executed. If “Break in ...” is
displayed, STEP and CONT can be used. If “Quit in ...” is displayed, STEP and
CONT cannot be used.

Data received while program execution is stopped may not be retrievable after
CONT is executed. To avoid this problem, make sure that data has been received
and jump to the address defined with ON PC before setting the BREAK point.

1. To execute the program, use the RUN command.
RUN, ERASE
2. Specify ERASE to clear the non-volatile variables.

3. Display and confirm the sample program. (LIST)
4. Execute the program. ERASE can be omitted.

5. Type RUN and press ENTER to execute the program.

LIST
10 PARACT O
20 A = 3
30 FOR I =
40 A = A +
50 PRINT A
60 NEXT I
70 END
80 END PARACT
Ok
RUN

7

11

15
Ok

6. If an error is found on a line of the program while the program is executed,

the execution is stopped at that point, and the line number and an error mes-
sage identifying the nature of the error are displayed. To correct the error,
display the line by using the EDIT command, input the correct command,
and press the carriage return. Then input again and execute the program by
the RUN command. If another error message is displayed, correct the pro-
gram in the same manner and execute it again.

=4
0 3

H

B
1
B

Displaying Execution Result Commands can be input or directly executed from the terminal without assigning

68

line numbers. The values of variables immediately after the program has been
executed can be displayed and checked by the PRINT command.
Type PRINT_A, I
PRINT A, I
15 4
Ok

Program Execution and Debugging Section 4-3

4-3-3 Stopping and Resuming Execution

STOP Command

CONT Command

BREAK Command

1,2, 3.

1,2, 3.

The sToP command is inserted in the program in advance. When the program is

executed and the STOP command is reached, the program is stopped. In the fol-

lowing example, the STOP command is placed at line 55.

55 STOPD & teeieieieaennnn. 55 is the line number into which sToP
command is inserted.

1. Execute the program.

RUN>
2. The program is stopped at line 55 by the STOP command and the line num-
ber (55) is displayed.
55 STOP
RUN
7
Stop in 55

To resume the program stopped by the STOP command, the CONT command is
used.
CONT~
Erase line 55. (557)
CONT
11
Stop in 55
CONT
15
Stop in 55
CONT
Ok
55

The program execution can also be stopped by the BREAK command. With this
command, the line where execution is to be stopped is specified. This method
stops the execution without modifying the program. Up to 10 lines, where the
execution is to be stopped, can be specified.

BREAK 20,702 « vvvvvnnnnnnnn. 20 and 70 are the line nos. where the
program is required to break

1. First specify a break line execute the program. (RUN-)

2. Displays a message and stops the program before executing line 20. Then
resumes execution. (CONT>)

3. Displays a message and stops the program before executing line 70. Then
resumes execution. (CONT~)

BREAK 20, 70
Ok
RUN
Break in 20
CONT
7
11
15
Break in 70
CONT
Ok
To cancel the effect of the BREAK command, use the BREAK DELETE com-
mand.

BREAK_DELETE_207 . cevvvnn... 20 is the break line no

BREAK _DELETE_ALLD . «u.vuvn... ALL means all break lines are deleted

BREAKD + tvtiieennnnnnnnnnnnns BREAK means the set break line is dis-
played

69

Program Execution and Debugging Section 4-3

4-3-4 Step Execution

1,2, 3.

After stopping the execution of the program, the program can be executed one
line at a time by the STEP command.
STEP-

1. First, specify a break point and execute the program.
BREAK 20
RUN

2. The program execution is stopped at line 20. Then four steps of the program
are executed on a step-by-step basis. (STEP-)

3. 7 is displayed.

4. Display the contents of 2 and B by the PRINT command.
PRINT_A, By

5. Resume execution by the CONT command.
CONT~

6. Clear the break point. (BREAK_DELETE_ALL7y)

BREAK 20
Ok
RUN
Break in 20
STEP
STEP
STEP
STEP
STEP
7
PRINT A, B
7 4
CONT
11
15
Ok
BREAK DELETE ALL
Ok

Note Since line 20 is a multi-statement, the STEP command must be executed two

times to execute this line. Also, because the execution code (E code) is an inter-
mediate code, sometimes one STEP command will execute two consecutive
lines and sometimes two STEP commands will be required to execute one line.

4-3-5 Tracing Program Execution

70

1,2 3.

The line numbers of the program under execution can be displayed in the order
of execution by the TRON command. This function is canceled by the TROFF
command.

TRON_ 172 & teveeeeieeniannnnnnn 1 is the task no.

TROFF_ALL D & veeetiennnnnannnn ALL is the task no.

If ALL is specified instead of the task number, the line numbers of all the tasks
are traced (or tracing is canceled). If neither a task number nor ALL is specified,
the current task is traced.

1. Starts tracing. (TRON7)
2. Run the program (RUN-). Then displays line number under execution.

3. Cancels tracing (TROFF<). Then starts tracing task 1.

TRON

Ok

RUN

[10][20] [30][40][50] 7
[60]1[40][50] 11

Saving and Loading Programs Section 4-4

[60]1[40]1([50] 15
[60]1[70] Ok
TROFF
Ok
TRON 1
Ok
RUN
7
11
15
Ok
When @ is input, the number of the task under execution can be checked.

4-4 Saving and Loading Programs

EEPROM
Floppy Disk

Memory Cards

4-4-1 EEPROM

4-4-2 Memory Cards

Note

Note

The program can be saved to/loaded from the following three devices:

If the BASIC Unit is provided with EEPROM, all the three programs in the source
code area can be saved to or loaded from the EEPROM.

Each program can be saved to or loaded from a floppy disk by the save/load
function of the computer with terminal mode connected to the BASIC Unit.

If the CPU Unit is equipped with a memory card, the program can be saved to or
loaded from the memory card.

To load the program, set the memory protect pin of the DIP switch to the OFF
position. Otherwise, an error will occur.

Pin no. DIP switch setting

1 Terminal resistor (OFF)

2 Not used (OFF)

3 Memory switch (invalid) (OFF)

4 Memory protect (OFF)

With the BASIC Unit with EEPROM (CV500-BSC21/41/61), the program can be
saved to or loaded from the EEPROM. In addition, the program in the EEPROM
can be verified.

To save the program, use the ROMSAVE command.

When this command is executed, the contents of all the user program areas are
written to the EEPROM.

ROMSAVE,

To read (load) the program written to the EEPROM to the user program areas,
use the ROMLOAD command.

ROMLOAD>

All the contents of the EEPROM are read to all the user program areas. Conse-
quently, the current contents of the user program areas are erased.

To compare the contents of EEPROM and those of the user program areas, use
the ROMVERIFY command.

ROMVERIFY-

This command verifies the contents of the user program areas with those of EE-
PROM. If a discrepancy is found, the message “VERIFY ERROR” is displayed.

If the above three commands are executed with the BASIC Unit not equipped
with EEPROM, an error occurs.

The program of the BASIC Unit can be saved to or loaded from the memory card
of the CPU Unit. The memory card must be formatted in advance by a Memory
Card Writer.

71

Saving and Loading Programs Section 4-4

To save the program to the memory card, use the SAVE command.

SAVE_”"0:SAMPLE” 2 0 is the device name (0: memory card),
and SAMPLE is the file name

The contents of the program area currently used are saved to the memory card

under a specified file name in text format (in displayed image). If the specified file

name already exists in the memory card, the contents of the existing file are

changed.

To load the contents of the memory card to the program area of the BASIC Unit,

use the LOAD or MERGE command.

To Load New Program:

LOAD_"0:SAMPLE” 2 . c.vvvenn... 0 is the device name (0: memory card),
and SAMPLE is the file name

The LoaAD command clears the currently used area and loads the program to

that area.

To Load Additional Program:

MERGE_”0:SAMPLE" > 0 is the device name (0: memory card),
and SAMPLE is the file name

The MERGE command loads an additional portion of a program to the area cur-

rently used.

Only files of text format can be loaded. If a file of specified file name does not

exist on the memory card, an error message is displayed. If the line numbers of

the program loaded by the MERGE command overlap the line numbers of the ex-

isting program, the line numbers of the newly loaded program take precedence.

4-4-3 Saving and Loading via Personal Computers

72

Personal computer editing operations can be used to create source programs in
the BASIC Unit or transferred programs between the personal computer and the
BASIC Unit. Connect the personal computer to the terminal port of the BASIC
Unit as proceed as described next.

Use the following program to load programs from the personal computer to the
BASIC Unit.

1,2, 3... 1. Use an editor in the personal computer to create a source program consist-
ing of BASIC Unit commands as a file in memory or on a disk.

2. Place the BASIC Unit into BASIC mode so that input from the terminal is en-
abled.

3. Create a program in the personal computer to do the following.
a) Send the L.,oAD command to the BASIC Unit to initialize reception.
b) Send the program created in step 1. one line at a time to the BASIC Unit.
¢) Send the file end code after the last line of the source program has been
sent.
Use the following program to save programs from the BASIC Unit to the personal
computer.
1,2, 3... 1. Place the BASIC Unit into BASIC mode so that input from the terminal is en-
abled.
2. Create a program in the personal computer to do the following.
a) Send the LIST command to the BASIC Unit to have the BASIC Unit out-
put one line at a time of a source program.
b) Store each line of the program being read into the personal computer
into a file in memory or on a disk.
c) Detect “OK” in the transmission from the BASIC Unit to determine the end
of the transmission.
The following sample program can be used as reference in program develop-
ment. If there are problems with loading using this program, increase the time on
line 340.

Saving and Loading Programs

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580

Section 4-4

*kkkkkkKk*k

*kkkkkkk*k

*kkkkk kK

CPU Unit-BASIC UNIT UPLOAD/DOWNLOAD

*kkkkkKk*k

*kkkkkkk*k

*kkkkkkk

>>This program uploads/downloads programs created on the CPU Unit from/to

the BASIC Unit.
*SELECT

INPUT “SELECT L (LOAD (Computer->BSC))/S(SAVE (BSC->Computer)) ---";k$

IF K$="L"” GOTO *PCBSC
IF K$="K” GOTO *BSCPC

. GOTO *SELECT

———— DOWNLOAD (Computer to Basic Unit) --——-

<<<Caution>>>

If a program name is registered, use PNAME

*PCBSC

ON ERROR GOTO *EEE

OPEN ”“COM:N83XN” AS #1

OPEN ”BSCTEMP.BAS” FOR INPUT AS #2

B$S="LOAD #1,”+CHRS (&H22)+”COMU: ”"+CHRS (&H22)

*CMND

PRINT #1,BS

LINE INPUT #1,AS

IF A$<>BS GO TO *CMND
*LOOP

FOR TT=1 TO 100
LINE INPUT #2,AS
PRINT #1,A$+CHRS (13);
GO TO *LOOP

*BEEE

PRINT #1,CHRS (&H1A)
LINE INPUT #1,AS
CLOSE #1 CLOSE #2
END

NEXT

———— UPLOAD (Basic Unit to Computer) —---—
*BSCPC
OPEN “COM:N83XN” AS #1
OPEN "BSCTEMP.BAS” FOR OUTPUT AS #2
BS="LIST”"

PRINT #1,BS
LINE INPUT #1,AS

*LOOPS

LINE INPUT #1,AS

IF A$="0K” THEN *FINAL

PRINT #2,AS
GOTO *LOOPS
*FINAL

CLOSE #1
END

CLOSE #2

"7 to delete it in advance.

Breaks at file end.

8 bits, no parity, 2 stop bits
Opens source file.
Preparing for LOAD

Sends =
Reads command echoback
Checks =

Waits for BASIC load processing
Reads one line of source program

Loops until end of file is reached

Sends file end code
Reads “0k” echoback

8 bits, no parity, 2 stop bits
Opens file to save in
Preparing for LIST

Sends =

Reads command echoback

Reads one line from file

Checks for end

Sends one line

Loops until end of file is reached

CLOSE

73

SECTION 5
Data and Files

This section provides information on data management and operations for the BASIC Units.

5-1 Data OPerationsouune ettt e e e e 76
5-1-1 Handling NumericData i, 76
5-1-2 Handling Character Data i, 79
5-1-3 Handling Large Quantitiesof Data o iia... 81
5-1-4 Handling Time Data i 82
5-1-5 Data Input/Outputin Program i, 83
5-2 File OPerationsttt ettt e e e e 84
5-2-1 FleS .o 84
5-2-2 Manipulating DataFiles 85

75

Data Operations Section 5-1

5-1 Data Operations
5-1-1 Handling Numeric Data

Tvpes of Numeric Data

The numeric data the BASIC Unit handles is classified into integers and real
numbers, as shown below, and can be expressed in various formats.

— Octal

Integers — — Decimal

. —— Hexadecimal

Numeric data
Single-precision
real number

Real numbers —

Double-precision
real number

Octal Format In this format, the numeric data is expressed in numerals 0 through 7 with &0 or &
prefixed. With the BASIC Unit, up to 5 digits of octal numbers can be expressed
(from 0 to 77777).
Examples:
&0123
&256

Decimal Format The BASIC Unit can handle decimal integers from —32768 to +32767.

Examples:
-256
123%
Hexadecimal Format In this format, the numeric data is expressed in numerals 0 through 9 and alpha-

betic characters A through F with &H prefixed. The BASIC Unit can represent
hexadecimal numbers from 0 to FFFF.

Examples:

&H123

&H2EAF
Single-precision Real The numeric data of this type is expressed using up to 5 digits with the sixth digit
Numbers rounded. The range of the numeric data is from —3.4E+38 to 3.4E+38 for vari-

ables and —3.40282E+38 to 3.40282E+38 for arithmetic results. The represen-
tation format of single-precision real number can be any of the following:

o Number of six digits or less
e Exponential format with E
o With ! suffixed to numeral

Examples:

3.21
-1.23E + 4
345.2!

Double-precision Real The numeric data of this type is expressed with up to 15 digits with the 16th

Numbers digit rounded. The range of the numeric data is therefore from
—1.701411834604692D+307 to 1.701411834604692D+307. The representa-
tion format of double-precision real numbers can be any of the following:

o Number of seven digits or less
o Exponential format with D
* With # suffixed to numeral

76

Data Operations

Exponential Format

Section 5-1
Examples:
9876543210
-1.2345D - 12
345.21 #

12345.6789098

When a number with many digits is handled, writing many Os is cumbersome
and can cause errors in the program. Therefore, the BASIC Unit employs an ex-
ponential format to handle a number having many Os. For example, to express
number 12300000, it is simpler and easier to read by expressing it using an ex-
ponent, as follows:

=1.23 x 10000000
=1.23x 107

With the BASIC Unit, this exponent is represented as follows:
= 1.23E+7 ... (single-precision real numbers)

= 1.23D+7 ... (double-precision real numbers)

Here, 1. 23 is called the mantissa, while E+7 and D+7 are called the exponents.
This representation method is called exponential format. The relationship
among the numbers and units of the exponent are as follows:

Indication Number Name Symbol

E-3 0.0001 milli m
E-6 0.0000001 micro u
E-9 0.0000000001 nano n

E-12 0.0000000000001 pico p

E+3 1000 kilo K
E+6 1000000 mega M
E+9 1000000000 giga G
E+12 1000000000000 tera T

Number Precision and Type Conversion

Usually, the same type of numbers are operated (for example, an integer is oper-
ated with an integer, and a single-precision number is operated with a
single-precision number). On some occasions, however, various types such as
integer, single-precision real numbers, and double-precision real numbers must
be mixed when executing an operation. On these occasions, the type having the
highest precision takes precedence and the other types are converted into that
type.

10 PARACT O

20 PRINT 10%¥3% Integers

30 PRINT 10%/3! Integer and single-precision real num-
bers

40 PRINT 10!/3# . .cccnn.... Single-precision real-numbers and

double-precision real-numbers
50 END PARACT

ﬂ Result of execution

3
3.33333
3.333333333333333

To determine the types of variables at the beginning of a program, the DEFINT,
SNG, DBL, or STR command is used.

77

Data Operations

Section 5-1

Examples:
DEFINT A

DEFSNG B
DEFDBL C

DEFSTR D

Specifies variable name starting with A
as integers

Specifies variable name starting with B
as single-precision number

Specifies variable name starting with ¢
as double-precision number

Specifies variable name starting with D
as character

To perform batch conversion of variable types from 2 to D, the range of type must
be specified as follows, by using a hyphen:

Example:
DEFSNG B -

Numeric Operation Functions

List of Functions Executing
Arithmetic Operations

78

E . oot

Converts all types of variables with
names starting with B, C, D, or E into
single-precision number.

The BASIC Unit supports the following functions to execute arithmetic opera-
tions based on numeric data.

Function Meaning
ABS Gives absolute value
ACOS Gives arc cosine
ASIN Gives arc sine
ATN Gives arc tangent
CDBL Converts into double-precision real number
CINT Converts into integer
cos Gives cosine
CSNG Converts single-precision real number
CvI/cvs/cvD | Converts character string into numeric value
EXP Gives value of exponential function
FIX Gives integer
INT Truncates at decimal point
LOG Gives natural logarithm
RND Gives random number
SGN Gives sign
SIN Gives sine
SOR Gives square root
TAN Gives tangent

Data Operations

Section 5-1

5-1-2 Handling Character Data

The BASIC Unit also handles character data in addition to numeric data. When
characters are handled as data, various commands and functions that manipu-
late character strings in various manners are necessary. The BASIC Unit there-
fore supports the following character string manipulation commands and func-
tions.

The length of a character variable is fixed, and the default length is 18 characters
unless otherwise specified. If more than 19 characters are specified as a charac-
ter variable, the excess characters are ignored, but no error occurs. To handle
more than 19 characters, the necessary length (i.e., number of characters) must
be declared by the DIM or OPTION LENGTH command. The maximum number
of characters in a string is 538.

Functions Retrieving Part of Character String

To Check Character String
Length

To Retrieve n Characters
from Ends of Character
String

To Retrieve Characters
from Character String

For functions that retrieve the specified number of characters from a specified
location of a character string, or that check the number of characters of a charac-
ter string, LEFT$, RIGHTS, MID$, and LEN are used.

The LEN function checks the number of characters of a character string.

Example:

L = LEN(AS) & civiriiennnnnn Stores the number of characters of
string A$ in L

The LEFTS and RIGHTS functions retrieve n characters from the left and right

ends of a character string, respectively.

Examples:

A$ = LEFTS (”"BASIC UNIT”,2) Stores the lefttwo characters “Ba” from
“BASIC UNIT”in AS

A$ = RIGHTS (”BASIC UNIT”,5)
Stores the right five characters “_uNIT”
from “BASIC UNIT”in AS

The MID$ function retrieves the specified number of characters from the speci-
fied position of a character string.

Example:

A$ = MIDS$ ("BASIC UNIT”,7,3)
Stores three characters “UNI” from “BA-
SIC UNIT” starting from the seventh
character position from the left in A3

Functions Searching a Character String

To Search and Return from
Character String

The INSTR function searches a specified character string from a character
string and returns its position.
Example:
X = INSTR(”ABCDEFGH”,"E")
Checks the position of “E” in “ABC-
DEFGH” and stores the result, 5, into X
If the specified character string is not found, 0 is returned. In the above example,
even if more than one “E” exists, only “E” at the leftmost position in the character
string can be found because the character string is searched starting from the
left. To search a character string at a specified position, therefore, a position from
which the search is to be started must be specified.

Example:

X = INSTR(6,”ABCDEFGHE”,"E")
Searches for “E” after the 6th character
position in “ABCDEFGHE". If “E” is found,
its position (in this case, 9th position) is
stored into variable X

79

Data Operations

Section 5-1

Functions Creating Character String Consisting of Identical Characters

To Arrange Identical
Characters

To Arrange More Than One
Space

The STRINGS or SPACES function is used to arrange identical characters or
spaces.

The STRINGS function is used to arrange as many of the identical characters as
required.

Example:

A$ = STRINGS (10,”*”) Stores character string consisting of 10

*f**********iinK)A$
The maximum number of characters that can be arranged by this function is 538.

If two or more different characters are specified, only the one specified first is
assumed.

The sPACES function arranges as many spaces as required.
Example:

AS$ = SPACES$(10) . ..cennn.... Stores 10 spaces into A$

Commands Rewriting Part of Character String

To Change Only Part of
Character String

To change only part of a character string, the MID$ command is used. Note that

the MID$ command is different from the MID$ function in use.

MIDS (AS,X,Y)=BSo..... As is the character string rewritten, X is
the position of character to or rewritten,
Y is the number of characters rewritten,
and B is the contents to be replaced
(character string)

Y characters from xth position of A$ are replaced by Y characters of BS.

The number of characters to be rewritten can be omitted. In this case, the num-
ber of characters specified in the left member is assumed. As an example, the
following program replaces character string “ABCDE” with “OMRON”.

10 PARACT 0

20 AS = "ABCDE”

30 PRINT AS

40 BS = "OMRON”

50 MIDS (AS$,1) = BS

60 PRINT AS
70 END PARACT

ﬂ Result of execution

ABCDE
OMRON

Functions Converting Numeric Value and Character String

To Convert Numeric Value
into Character String

To Convert Character String
into Numeric Value

80

On some occasions, programming is easier if numeric values are handled as
characters. For example, numeric values are easier to see if each three digits
are delimited by a comma (,) as 123,000, or if Os are prefixed to unify the number
of digits, as 0012, 0123, and 0001. To perform processing of this kind, it is neces-
sary to convert numeric values into character strings. The STRS function is used
for this purpose.

Example:

AS = STRS(1234) Stores the character string “1234” in A3
To convert a character string into a numeric value, the VAL function is used.
Example:

A = VAL(1234) . ceiiiinn... Stores character data “1234” in A as nu-

meric value 1234

Data Operations

Section 5-1

5-1-3 Handling Large Quantities of Data

When handling a large quantity of data in a program, programming is extremely
difficult if separate variable is used for each data item. To facilitate programming,
therefore, variables called array variables are used. Array variables can specify
more than one data item under one variable name, and are classified into one-di-
mensional array variables and multi-dimensional (two-dimensional, three-di-
mensional, and so on) variables.

One-dimensional Array and Multi-dimensional Array

Use of Array Variables

Declaring Array Variables

An array variable consists of a variable name followed by a numeric value en-
closedin (). This numeric value is called a subscript. An array variable having
only one subscript is called a one-dimensional array. An array having two sub-
scripts is called a two-dimensional array, and the one having three subscripts is
called a three-dimensional array. Generally, an array variable having two or
more subscripts is called a multi-dimensional array.

Examples:

X = A(5) v i Stores A (5) of one-dimensional array
into X

Y = B(3,3) ¢ i Stores B(3, 3) of two-dimensional array
into Y

For example, (12, 54, 33, 95, 28) can be represented by one array variable A as
A(0),A(1),A(2),A(3),andA(4).

Subscript 0 1 2 3 4
Data 12 54 33 95 28

The two-dimensional array is used to represent the data that can be represented
by rows and columns. For example, suppose that three parameters, voltage,
current, and temperature, are each measured three times. The first measured
data set of voltage, current, and temperature, (3, 5, 20), the second data set (2,
4, 21), and third data set (4, 6, 25) can be represented by a two-dimensional
array as follows:

Subscript 0 (voltage) 1 (current) 2 (temperature)
0 (first time) 3 5 20
1 (second time) 2 4 21
2 (third time) 4 6 25

Assuming the array variable name to be 2, the second measured data of voltage
is specifiedas A (1, 0), and the third measured data of temperature is specified
asA(2,2).

When using an array variable with the BASIC Unit, first declare the array variable
by using the DIM command. The number of array elements that can be specified
by one array variable is not restricted, but limited by the memory capacity of the
variable area.

Example:

DIM A(1,3) +iririiiinnnnnn. Allocates 2 x 4 = 8 array elements as
array variable A (two-dimensional array)
of numeric data.

ﬂ Result of execution

A(0,0) A(0,1) A(0,2) A(0,3)
A(1,0) A(1,1) A(1,2) A(1,3)
The above array elements are allocated in memory.

81

Data Operations

Section 5-1

Setting Lower-limit Value of
Subscript

Array of Character Variables

Usually, the subscript of an array starts from 0. However, it can be specified to
start from 1 by using the OPTION BASE command.

Example:

OPTION BASE 1
DIM A (2,3)

ﬂ Result of execution

A(1,1) A(1,2) A(1,3)
A(2,1) A(2,2) A(2,3)

2 x 3 = 6 array elements are allocated in memory. The declaration made by the
OPTION BASE command cannot be changed once it has been made.

A character array of up to 538 characters can be handled by using a character

variable name.

DIM A$(50) 538vvnvnnn.. Defines one-dimensional character array
variable having maximum character
storage area of 538 characters

Here, A$ (50) is the character variable array name, and 538 is the maximum

number of characters.

5-1-4 Handling Time Data

To Check Current Time

DATES$ Function

82

The BASIC Unit also supports functions that handle time data such as dates and
hours.

To check the current time, the TIMES function is used.

10 PARACT 0
20 T$ = TIMES

30 HHS = LEFTS$ (TS, 2)

40 MMS = MIDS (TS, 4, 2)

50 SSS = RIGHTS (TS, 2)

60 PRINT”Current time is ”;HHS;”:”;MMS$S;”:";SSS;"."
70 END

80 END PARACT

ﬂ Result of execution

Current time is 23:07:26.

This function is used to check the current date.

10 PARACT 0
20 D$ = DATES

30 YY$ = RIGHTS (DS, 2)

40 DD$ = MIDS (Ds$, 4, 2)

50 MMS$ = LEFTS (DS, 2)

60 PRINT”Today is ”;MMS$;”—-";DD$;"—";YYS;”.”
70 END

80 END PARACT

ﬂ Result of execution

Today is 07-26-91.

Data Operations

Section 5-1

5-1-5 Data Input/Output in Program

To Simplify Data
Input/Output in Program

To Read DATA Command
Using READ Command

To read data by a program, the INPUT command or substitution statement such
as A = Bis used. However, if a large quantity of data is to be handled or if the
input data is known in advance, describing the INPUT command or substitution
statement is inefficient and not necessary. To simplify data input/output in the
program, the READ and DATA commands are used.

The DATA command reads data (constants) continuously to the program. These
data items are automatically read to specified variables by the READ command.
A sample program using the DATA and READ commands is shown below.

10 PARACT 0
20 READ AS$; BS . vevvrnvnn... Reads character data from data state-
ment on line 70
e Reads numeric data from data state-

ment on line 80

30 READ C, D, E

40 PRINT AS$; BS

50 PRINT C; D; E

60 END

70 DATA “BASIC”,”UNIT” Character data known in advance
80 DATA 10, 16, 1990 Numeric data known in advance
90 END PARACT

ﬂ Result of execution

BASIC UNIT

10 16 1990

The READ and DATA commands are always used in pairs. The DATA command
can be described anywhere in the program because it is a non-executable state-
ment. As many DATA commands as required can be used in one program.

An error occurs if

e The number of character constants of the DATA command is read by the nu-
meric variable of the READ command (the numeric constant of the DATA com-
mand can be read as a character string by the character variable of the READ
command),

e The data of the DATA command has run out while the READ command is ex-
ecuted, or

e DATA of another task has been read.

If more than one READ and DATA command exists, data is read in the execution
sequence of the program. However, it may be necessary for the READ command
to read the DATA command on specified line. In this case, the RESTORE com-
mand is used. Note, however, that the DATA command of another task must not
be specified. A sample program using the RESTORE command is shown below.

10 PARACT 0

20 RESTORE 100

30 READ AS, BS . covvinnn.... Reads character data from date state-
ment on line 100

40 RESTORE 90

50 READ C, D, E . .icouunn... Reads numeric data from data state-
ment on line 90

60 PRINT AS; BS

70 PRINT C; D; E

80 END

90 DATA 10, 16, 1990 Numeric data known in advance

100 DATA ”"BASIC”, UNIT Character data known in advance

110 END PARACT

83

File Operations

Section 5-2

ﬂ Result of execution

BASIC UNIT
10 16 1990

5-2 File Operations

5-2-1 Files

A BASIC Unit file manages a cluster of program information and data. Files are
classified by the contents or access mode as seen in the following:

Data File and Program File

Program File

Data File

Note

Files can be classified by contents into program files and data files.

A program file is a BASIC source program file created by using the editing com-
mands of the BASIC Unit. This file can be read from or written to the memory
card of the CPU Unit by the SAVE, LOAD, or VERIFY commands.

10 OPEN...

20 PRINT...
30 IF...THEN...

A data file is a file recording the data used by a program file. This file is opened by
the OPEN command, and read or written by the PRINT, WRITE, INPUT, PUT, Or
GET commands. It is closed by the CLOSE command.

100 30 70

60 11 23
74 49 86

The BASIC unit reads or writes the memory card of the CPU Unit as program and
data files.

Sequential/Random Access File

Sequential File Access

Random Access File

84

Files can be classified by data access mode into two types: sequential file and
random access file.

A sequential access file is sequentially read or written starting from the begin-
ning of the file and is also known as a consecutive file.

Data 1 Data 2 Data3 | ... Data n

A random access file is read or written in units called records (one record is fixed
to 256 bytes with the BASIC Unit). This file can be accessed more quickly than
the sequential file.

Record 1 Record 2 Record 3

.......... Record n

<-(256 bytes)s

File Operations

Section 5-2

The sequential access file and random access file each have their own features,
seen as follows:

Feature Sequential access file Random access file
Data access Can only be read from beginning | Can be read/written starting from any location (in record units)
Data length Can be changed freely Fixed
Changing data | Entire file must be updated Can be changed in record units
Adding data Data is written at the end of file Can be written to any position
Data type Numeric data, character data Numeric data must be converted into character data

5-2-2 Manipulating Data Files

File Names

&Caution

Opening/Closing Files
Opening

To input/output a file, a memory area called a buffer is used to temporarily store
data. The number assigned to this buffer is called a file number. One buffer cor-
responds to one file, and therefore, one buffer cannot be used by more than one
file. The file numbers that can be used are from #1 through #15. This means that
the maximum number of data files that can be simultaneously used is 15.

Data Buffer - File

,,,,,,,, | ' Memory card

With the BASIC Unit, the data file can be read only by the memory card. In this
case, a file name must be given to the file. A file name must consist of eight char-
acters or less and start with an alphabetic character. A device name 0: is pre-
fixed to the file name to access the memory card. In addition, an extension con-
sisting of up to three characters can also be suffixed.

"0:MFILE.DAT” . teiiiennnnn.. 0 is the device (0: memory card),
MFILE is the file name, and DAT (pre-

ceded by “) is the extension
If the file name consist of 9 or more characters, or if the extension consists of 4 or
more characters, the excess characters are ignored and thus not recognized. A
period (.) must proceed the extension. A file name can also be specified in char-

acter string.

Although file names in the BASIC Unit can consists of any characters except;, .,
and blanks, lowercase letters and the ¥ symbol can cause problems on DOS
machines and should be avoided.

A file is opened by the OPEN command. Once a file has been opened, the file
number assigned to that file must not be used by any other files until closed by
the cL.LoSE command. The OPEN command specifies a file name, mode, and file
number. The mode does not need to be specified for a random access file.
Opening Sequential Access File
OPEN ”0:DATA2” FOR OUTPUT AS #1

0:DATA?2 is the device and file name,

OUTPUT is the mode setting, and #1 is
the file number.

Three modes can be specified: INPUT (to read data from a file), OUTPUT (to write

data to the file), and APPEND (to add data to the file).

Opening Random Access File

OPEN ”0:SAMPLE” AS #1 0:SAMPLE is the directory and file
name, and #1 is the file number.

If the mode is omitted, the random access file is assumed.

85

File Operations

Section 5-2

Closing

To end inputting/outputting of a file, the file number allocated by the OPEN com-
mand must be released by using the CLOSE command to close the file. When the
CLOSE command is executed, the data remaining in the buffer is written to the
file, so that the file number assigned to that file can be used by other files. There-
fore, the CLOSE command must be used in conjunction with the OPEN command.
When the END or STOP command is executed, the open files are automatically
closed.
CLOSE #1,#2 . cuvvivinnnnnnn.. #1 and #2 are the file numbers (several
files can be closed simultaneously) and
if omitted, all files are closed

Operation of Sequential Access File

Opening File With OPEN
Command

In OUTPUT and APPEND
Modes

In INPUT Mode

Closing Using the CLOSE
or END Command.

86

Data is sequentially written to a sequential access file starting from the begin-
ning of the file. Any part of data cannot be rewritten, and only new data can be
added to the end of the file.

OPEN ”0:DATA2” FOR OUTPUT AS #1
0:DATA?2 is the directory and file name,
OuTPUT is the mode setting, and #1 is
the file number

OUTPUT: write

INPUT: read
APPEND: additional write

In the above example, sequential file DATA2 is opened under file name of #1 to
output data to the file.

WRITE #1,A$,BS
READ #1,AS$,BS
#1 is the file no., and A$ and B$ are the variables

Character data given by character variables A$ and Bs are written file #1 in the
order of A$ and Bs.

INPUT #1,A$,BS . .cooivnn.... #1 is the file no., and A$ and B$ are the
variables

Sequential data is read from file #1 and stored into A$ and BS.

CLOSE #1 & ciiiiiiiiannannnnn. #1 is the file no.
When a file opened for output is closed, all the data remaining in the buffer is
written to the file and then the file is closed.

The following sample program illustrates the above process:

10 PARACT 0

20 OPEN ”0: DATA2” FOR OUTPUT AS #1
30 A$ = "BASIC”: B$ = "UNIT”

40 WRITE #1, AS$, BS

50 CLOSE #1

60 OPEN ”“0: DATA2” FOR INPUT AS #1
70 INPUT #1, AS, BS

80 PRINT AS, BS

90 CLOSE #1

100 END

110 END PARACT

ﬂ Result of execution

BASIC UNIT

File Operations

Section 5-2

Program Example of
Sequential Access File

Here is an example of operating a sequential access file.

'Sequential file
90 PARACT 0
100 DIM F$30
110 OPEN “0: DATA2” FOR OUTPUT AS #1
Opened to output new sequential file

120 A$=" OMRON ”

130 B$=" BASIC "

140 C$="UNIT"

150 D$="BASIC UNIT”

160 WRITE #1,AS$,BS Data output to sequential file (data com-
pression)

170 PRINT #1, USING " & & & &";Cs$,D$
Data output to sequential file with format

180 GOSUB *WRT

190 CLOSE . viiviiiennnnnnnn.. Closes opened file

200 OPEN “0: DATA2” FOR INPUT AS #1
Opens sequential file for input

210 PRINT “Contents of data file are as follows”

220 LINE INPUT #1, F$ Reads one entire line to character vari-
able (F$)

230 PRINT F$

240 LINE INPUT #1, F$

250 PRINT F$

260 GOSUB *RD

270 CLOSE

280 END

290 7

300 *WRT v tiienerinnnnnnnnn. Processing to output data to sequential
file

310 INPUT ”"Input data (999 to end writing) ”;ES
320 IF E$=7999” THEN RETURN

330 PRINT #1, ES Data output to sequential file

340 GOTO *WRT

350 -

360 *RD v vvvviieennnnnnannnnn Processing to input data from sequential
file

370 IF EOF (1) THEN RETURN Branches if data runs out

380 INPUT #1, GS$o...... Reads data

390 PRINT GS$S
400 GOTO *RD
410 END PARACT

11 Result of execution

999 to end writing)?1
999 to end writing) ?2
Input data (999 to end writing) ?3
Input data (999 to end writing) ?999
Contents of data file are as follows

Input data
Input data

UNIT BASIC UNIT

” OMRON ", " BASIC ”
UNIT BASIC UNIT
1

2

3

87

File Operations

Section 5-2

Operating Random Access File

The data length of a sequential access file can be set freely. Data of a random
access file is read or written in record units, and the data length is fixed in record
units. However, the random access file can be accessed more quickly than the
sequential access file since data (record) can be read or written in any se-
quence. Only character data can be used with the random access file. To write
numeric data, it must be converted into character data by the MKI$, MKSS$, or
MKDS$ functions when it is written. When reading data, it is converted back to nu-
meric data by the cvI, cvs, or cvD functions.

Numeric data for random access files is converted into character data as seen in
the following diagram.

Numeral
data

GET
MKIS PUT
MKSS
MKDS
Buffer Random access file
CVI
Cvs
CVD
LSET OPEN
REET CLOSE
FIELD

Character string data

Programming Sequence

88

1,2, 3.

1. Open a file using the OPEN command.
OPEN “0:DATA3” AS #10 . DATA3 is the directory and file name,
and #1 is the file number
To read/write data from/to random access file DATA3, the file is opened un-
der file number 1.

2. Assign variable areas to the buffer in record units by using the FIELD com-
mand.
FIELD #1, 5 AS AS$, 18 AS BS
#1 is the file number, 5 is the field
width, and AS is the character variable
A 5-byte variable area is assigned under variable name A$ and an 18-byte
area is assigned under variable name B¢ to the I/O buffer of the random ac-
cess file opened under file name #1. To assign an area of more than 19 by-
tes to a character variable, allocate a variable area at the beginning of the
program by using the OPTION LENGTH command. More than one charac-
ter variable can be specified, but keep the total field width to within 256 by-
tes.

3. To write data to a file, set the data in the buffer by the LSET or RSET com-
mand, and write the data to a record of the file from the buffer by using the
PUT # command.

LSET AS$ = "BASIC” A$ is the variable name, BASIC is the
character sting.

To write, left-justified, character string BASIC to variable area (buffer) of

variable name A$.

RSET B$ = "UNIT” BS is the variable name, UNIT is the
character string

File Operations

Section 5-2

The

To write, right-justified, character string UNIT to variable area (buffer) of

variable name BS.

PUT #1,8 + ciinnnnn #1 is the file number, 8 is the record
number (1 through 32767)

The data in the buffer is written to the eighth record of the random access file

opened under file number #1.

. Use the GET # command to read data from the file.

GET #1,8 . cevvvvvnnnnnnn.. #1 is the file number, 8 is the record
number (1 through 32767).

The data is read to the buffer from the eighth record of the random access

file opened under file number #1. This data is stored into a variable defined

by the FIELD command, and therefore, can be displayed by the PRINT

command.

. Close the file by using the C1L.OSE command.

CLOSE #1 . cevvvvvvinnnnn.. #1 is the file number.

The file opened under file number #1 is closed.

following sample program illustrates the above procedure.
10 OPTION LENGTH 20

20 PARACT 0

30 OPEN ”0: DATA3” AS #1

40 FIELD #1, 15 AS A$, 20 AS BS

50 LSET AS$S = “BASIC”
60 RSET BS$ = “UNIT”
70 PUT #1, 8
80 GET #1,8

90 PRINT AS; BS
100 CLOSE #1
110 END

120 END PARACT

ﬂ Result of execution

BASIC UNIT

Program Example of Random Access File

10

90

100
110
120
130
140
150
160
170

180
190
200
210
220
230

240
250
260

'Random file
'
.

PARACT 0
DIM AS50
ON ERROR GOTO *ERPRCS Setting of error processing routine
OPEN ”0:DATA3” AS #1 . Opens random file
FIELD #1, 50 AS A$ Assigns variable area
PRINT “Input [W] to write file.”
PRINT “Input [R] to read file.”
PRINT ”“Input [E] to end.”
BS=INPUTS (1) Conditional input from buffer to charac-
ter string
IF B$="w” OR B$="W” THEN GOSUB *WRT
IF BS="r” OR B$="R” THEN GOSUB *RD
IF B$="e” OR B$="E” THEN GOSTO *E
GOTO 140
*E
PRINT “Data file size is” ;LOF (1) ;"
Size of file by record number
CLOSE #1 . «evvviiinnnnn.. Closes file
END

89

File Operations

Section 5-2

90

270
280
290

300

310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510

520
530
540

FIWRT v ottt ieeeeeeennnn Write subroutine
INPUT ”"Record no. (1-999):”;REC%
IF REC%>999 THEN ERROR 1

Sets error generation number (ERR
1)

IF REC%<1 THEN ERROR 2 Sets error generation number (ERR =
2)

LINE INPUT ”DATA:";C$

PRINT “Writes data (Y/[ELSE])"”

DS=INKEYSovvvvnnnn. Inputs 1 character from keyboard
IF D$S="” THEN GOTO 330

IF DS=< >”"Y” AND D$< >”y” THEN RETURN

LSET A$=CS . civeeen.. Sets data in buffer

PUT #1, REC%oun... Writes buffer data

RETURN . .uviiiiinnnnnnn.. End of write subroutine

FRD & vtieieeie i Read subroutine

INPUT “Record no. (1-999):”;RECS%

IF REC%>999 THEN ERROR 1

IF REC%<1l THEN ERROR 2

GET #1, REC% . .evvnnn... Reads data to buffer

PRINT AS

RETURN . c'vviiriennnnnn.. End of read subroutine
FERPTCS & vveeeeeennnnnnn. Error processing routine

IF ERR=1 THEN PRINT ”"Record no. is too large.”

IF ERR=2 THEN PRINT ”“Record no. is too small.”

IF ERL=440 THEN PRINT ”“The record no. has NO data.”
When reading data fails

RESUME 140

END PARACT

ﬂ Result of execution

Input [W] to write file.
Input [R] to read file.
Input [E] to end.

Record No. (1-999):? 3
Data: 3

Writes data (Y/I[ELSE])
Input [W] to write file.
Input [R] to read file.
Input [E] to end.

Record No. (1-999):? 4
Data: 4

Writes data (Y/I[ELSE])
Input [W] to write file.
Input [R] to read file.
Input [E] to end.

Record No. (1-999):? 3

3

Input [W] to write file.
Input [R] to read file.
Input [E] to end.

Data file size is 4.

SECTION 6
Advanced Programming

This section advances further into BASIC programming and provides information on interrupts, multitasking, and machine
language for the purposes of advanced programming.

-1 INEEITUPES . .ottt e e 92
6-1-1 Defining an Interrupt Service Routine 92
6-1-2 Interrupt-related Instructions i 93
6-1-3 Interrupt Programming 93
6-1-4 Interrupt TYpesot 94
6-1-5 Interrupt Processing Details i 96
6-2 Multitasking e 97
6-2-1 Tasks ... o 97
6-2-2 Declaration of Start & End of Task Program 98
6-2-3 Starting, Aborting, and Waiting foraTask 99
6-2-4 BASIC Unit Status and Transitionso it nnenen .. 103
6-2-5 Inter-task Communicationouuiuminieneunenaneenanann.. 104
6-3 Machine Languagettt e 107
6-3-1 Segments and Offsetsttt e 108
6-3-2 Developing a Machine Language Program 108
6-3-3 Examining and Altering Memory with BASIC 111
6-3-4 Calling a Machine Language Subroutine 112
6-3-5 Storage Formats e 114
6-3-6 Machine Language Programming Summary 118
6-3-7 Machine Language Monitor Commandsc.vuiuininon... 119
6-4 PC COMMUNICALIONS . . . o .ottt ettt et e e e e e e e e e e et 120
6-4-1 SEND(192) and RECV(193) it e 120
6-4-2 CV-series (FINS) Commands0t 123

91

Interrupts

Section 6-1

6-1 Interrupts

Interrupt Processing

An interrupt is one means by which a device connected to the BASIC Unit can
inform the program that some event has occurred and that some action on the
part of the program is required immediately. For example, when a character is
received by a communications port, the program must stop whatever it is doing
and read the character as soon as possible so that the input buffer does not over-
flow. When an interrupt occurs, the BASIC Unit may stop executing the current
task and run an interrupt service routine instead. When the service routine is fin-
ished, control is returned to the task that was executing before the interrupt.

Interrupts can also be used to restart a task which has been stopped by the
PAUSE statement.

Main program

§ Interrupt service routine

Interrupt occurs

The BASIC Unit supports several different interrupts which indicate various con-
ditions. The table below lists the interrupt types and related BASIC instructions.

Interrupt Type Meaning BASIC Instructions
TIMES Time ON TIMES GOSUB TIMES ON/OFF/STOP
ALARM Elapsed time ON ALARM GOSUB ALARM ON/OFF/STOP
TIMER Time interval ON TIMER GOSUB TIMER ON/OFF/STOP
KEY (key-number) Numeric key pressed ON KEY GOSUB KEY ON/OFF/STOP
coM Input from communication port ON COM GOSUB COM ON/OFF/STOP
PC Interrupt from CPU Unit ON PC GOSUB PC ON/OFF/STOP
FINS Interrupt from network ON FINS GOSUB FINS ON/OFF/STOP
SIGNAL signal-number Signal received from another task ON SIGNAL GOSUB SIGNAL ON/OFF/STOP

ERROR

Error occurred

ON

ERROR GOSUB

ERROR ON/OFF/STOP

6-1-1 Defining an Interrupt Service Routine

92

Before interrupts of a certain type can be processed, the program must define an
interrupt service routine to be called when that type of interrupt occurs. The oN
interrupt-type GOSUB { line-number | label } instruction is used for this purpose.
The line-number or label indicates the start of the service routine. Interrupt ser-
vice routines must end with a RETURN statement.

Interrupts

Section 6-1

6-1-2 Interrupt-related Instructions

Note

Interrupts usually occur asynchronously; that is, the program cannot know when
an interrupt will occur. However, there may be sections of the program which
should not be interrupted. For example, if an interrupt occurs while the program
is performing a time-critical calculation, the result of the calculation will be
delayed and the program may miss its deadline.

Therefore, the BASIC Unit provides the interrupt-type ON, OFF, and STOP in-
structions, which may be used to enable, disable, or temporarily delay interrupts
of the specified type.

The interrupt-type ON instruction enables interrupts of the specified type; after
this instruction is executed, the interrupt service routine will be called each time
an interrupt is received.

The interrupt-type OFF instruction disables interrupts of the specified type; after
this instruction is executed, the BASIC Unit will ignore those interrupts. Inter-
rupts during OFF execution for coM, PC, and FINS, however, are handled the
same as those during STOP execution, as described next.

The interrupt-type STOP instruction disables interrupts of the specified type, but
any interrupts received while the interrupt is STOPped will be recorded, and the
interrupt service routine will be called if the interrupt is later enabled.

Interrupts from a source are disabled (turned OFF) immediately after an interrupt
service routine for that type of interrupt is defined (or re-defined) with ON inter-
rupt-type GOSUB. Furthermore, interrupts are sTopped while the interrupt
service routine is being executed.

An interrupt can be accepted while an input instruction is being executed. When
an interrupt-type ON instruction occurs while an input instruction is being
executed, the input instruction will be interrupted and the interrupt service rou-
tine as defined by the interrupt will be executed. If all I/O data has not been pro-
cessed when the interrupt occurs, the data will be discarded and the instruction
ended.

An interrupt will be STOPped if the another interrupt from the same source oc-
curs before interrupt processing is completed. To produce effective interrupts,
write multitasking programs so that each interrupt is executed independently
(for example: ON COM2 combined with INPUT or ON PC combined with PC
READ). If interrupts are combined during single task execution, PC STOP must
be executed during INPUT.

There is no priority ranking for the interrupts listed above. If an interrupt is

received during the execution of any interrupt subroutine, the later one interrupts
the earlier one and is executed.

6-1-3 Interrupt Programming

1,2, 3.

To write a program that makes use of interrupts:
1. Select the type of interrupt to be used and develop an interrupt routine. Be
sure to use a RETURN statement at the end of the routine.

2. Define the interrupt routine in the main routine using the ON interrupt-type
GOSUB statement.
3. Use the interrupt-type ON instruction to enable interrupts.

4. If an interrupt occurs, the interrupt routine will be executed. Execution con-
tinues at the point where the interrupt occurred when the interrupt routine’s
RETURN statement is executed.

5. Use interrupt-type STOP if necessary to protect sections of the program from
interruption. Use interrupt-type OFF when you are no longer interested in in-
terrupts.

93

Interrupts Section 6-1
Interrupt Programming Example
100 PARACT O
110 ON KEY (1) GOSUB 700 . . Define interrupt service routine
[}
X Interrupts from numeric
: key 3 are ignored.
[}
200 KEY(1) ON . .evvvvvnnnnn. Enable interrupts
[}
' If numeric key 3 is pressed
: here, the interrupt service
' routine will be called.
[}
300 KEY(1) OFF . vevvrnnnnn.. Disable interrupts
[}
: Interrupts from numeric
: key 3 are ignored.
[}
600 END . .ovvrrniannaannnnn. End of main routine
700 ’'Start of KEY 1 interrupt routine
:
)
800 RETURNcovveeunnnnn. End of interrupt service routine

6-1-4 Interrupt Types

Timer Interrupts

Interrupt at Specified Time

Interval Interrupt

Elapsed Time Interrupt

Numeric Key Interrupts

94

The BASIC Unit supports three types of timer interrupts. These interrupts occur
at a specified time (TIMES), at specified time intervals (TIMER), or when a spe-
cified time has elapsed (ALARM).

The ON TIMES$ GOSUB statement defines an interrupt routine to be executed at
a specified time. For example:

100 ON TIMES = ”02:30:10” GOSUB 1000

110 TIMES ON

The interrupt service routine starting at line 1000 will be called at 2:30:10. The
time at which the interrupt occurs is specified as a character string containing
hours, minutes, and seconds.

The ON TIMER GOSUB statement defines an interrupt service routine to be ex-
ecuted repeatedly at a certain interval. For example:

100 ON TIMER 3600 GOSUB 1000

110 TIMER ON

The interrupt service routine starting at line 1000 will be executed once every six
minutes until TIMER STOP or TIMER OFF is executed. The time interval is spe-
cified in units of 0.1 second, in the range 1 to 864000 (0.1 second to 24 hours).

The ON ALARM GOSUB statement defines an interrupt service routine to be ex-
ecuted once after the specified time has elapsed. For example:

100 ON ALARM 10 GOSUB 1000

110 ALARM ON

The interrupt service routine starting at line 1000 will be called 1 second later.
The time is specified in units of 0.1 second.

The ON KEY GOSUB statement defines an interrupt routine to be executed
when a certain numeric keypad key is pressed. For example:

100 ON KEY (1) GOSUB 1000

110 KEY (1) ON

When numeric key 1 is pressed, the interrupt service routine starting at line 1000
will be executed.

Interrupts

Section 6-1

The key pressed is read during the interrupt processing and does not remain in
the input buffer.

Communications Port Interrupts

Network Interrupts

Signal Interrupts

PC Interrupts

The ON COM GOSUB statement defines an interrupt routine to be executed
when a character is received by a communications port. For example:

100 ON COM(2) GOSUB 1000

110 COM(2) ON

When a character is received by communications port 2, the interrupt service
routine starting at line 1000 will be executed. If the port number is omitted, port 1
is assumed.

Interrupts for communications ports are enabled and disabled using coM ON
and COM OFF. COM STOP will operate the same as COM OFF.

This table shows the correspondence between port numbers and port types.

Port no. Port type
1 RS-232C
2 RS-232C
3 RS-422

The ON FINS GOSUB statement defines an interrupt routine to be executed
when data is received from another BASIC Unit on the PC or connected with a
network, or an FA computer. For example:

100 ON FINS GOSUB 1000

110 FINS ON

The interrupt service routine starting at line 1000 will be called when network
data is received. (For information about establishing communication between
BASIC Units, see 7-1 Peripheral Device Operation.)

Interrupts from networks are enabled and disabled using FINS ON and FINS
OFF. FINS STOP will operate the same as FINS OFF.

The ON SIGNAL GOSUB statement defines an interrupt routine to be executed
when a specified signal is received from another task. For example:

100 ON SIGNAL 5 GOSUB 1000

110 SIGNAL 5 ON

When signal 5 is received from another task, the interrupt routine starting at line
1000 will be executed. (For more information about signals, see 6-2-5 Inter-task
Communication.)

The ON PC GOSUB statement defines an interrupt routine to be executed when
an interrupt from a PC is received. For example:

100 ON PC(2) GOSUB 1000

110 PC(2) ON

When interrupt 2 is received from a PC (the user program in the CPU Unit ex-
ecutes a SEND(192) or RECV(193) instruction), the interrupt routine starting at
line 1000 will be executed. (For more information about PC communications,
see 6-4 PC Communications.)

Interrupts from the CPU Unit are enabled and disabled using PC ON and PC
OFF. PC STOP will operate the same as PC OFF.

95

Interrupts

Section 6-1

Error Processing

Note

Error processing is slightly different than other interrupt processing. If the BASIC
Unit encounters an error (for example, if the program attempts to divide by zero),
execution is normally terminated and an error message is printed. If an er-
ror-handling “interrupt” routine is defined with the ON ERROR GOTO statement,
the BASIC Unit will instead execute that routine. The routine can take whatever
action is necessary to correct the error and continue.

The ON ERROR GOTO statement defines an interrupt routine to be executed if
the BASIC Unit encounters an error. For example:

100 ON ERROR GOTO 1000

If the BASIC Unit encounters an error, the interrupt routine starting at line 1000
will be executed. To restore the default error action, specify line 0.

The line number on which the error occurred and a number indicating the error
type can be obtained with the ERL and ERR functions. (For a list of error codes
and corresponding error conditions, see Section 8-1-1 Error Messages.)

To exit from the error processing routine, use the RESUME statement instead of
the RETURN statement. RESUME can take one argument, which can be a line
number where execution should continue, 0 to indicate that the error line should
be re-executed, or NEXT, to resume execution at the line after the error. If no ar-
gument is supplied to RESUME, the BASIC Unit attempts to execute the error line
again.

There is N0 ERROR ON, ERROR OFF, of ERROR STOP statement. Error process-
ing is always enabled.

6-1-5 Interrupt Processing Details

96

The BASIC Unit maintains three system variables, INTRB, INTRL, and INTRR,
which can be examined in an interrupt service routine to find information about
the current interrupt. INTRR contains a number indicating the interrupt source:

Interrupt source INTRR
User-defined signal (1 to 5) 1to5
Communication port COM (1 to 3) 6t08
Signal (STOP) 10
Signal (PC watchdog timer error) 11
Signal (cyclic error) 12
Signal (battery error) 13
Alarm 14
Timer 15
Time 16
SRAQ (service request from GP-IB) 17
FINS (network) 18
Numeric key input (0 to 9) 20to 29
PC (1 to 15) 31t045

INTRB contains the number of the line to be executed next when the interrupt
occurred; when the service routine returns, execution will continue at that line.

Multitasking Section 6-2

INTRL contains the line number of the statement that was aborted by the inter-
rupt, or 0 if no statement was aborted. Some BASIC Unit instructions take an
indefinite amount of time to complete. For example, the INPUT statement
causes the Unit to wait until the user has entered a value at the terminal. If an
interrupt occurs while the Unit is waiting for such a statement to complete, the
statement will be aborted and INTRL will contain the statement’s line number.
The instructions below may be aborted by an interrupt, and will cause a line num-
ber to be stored in INTRL if they are:

GET # LINE INPUT WAIT RECEIVE
INPUT LPRINT SEND
INPUT WAIT LPRINT USING TWAIT
INPUTS PRINT WRITE
INPUT # PRINT@ WRITE #
INPUTE@ PRINT # PC READ
LINE INPUT PRINT # USING PC WRITE
LINE INPUT # PUT #

Note INTRR and INTRB are saved before an interrupt routine is called and restored
after the routine returns, so they always contain the correct values for the current
interrupt, even if execution is not completed or a second interrupt occurs while
the Unit is executing a different interrupt service routine.

This example shows one way to re-start a statement if it is aborted by an inter-
rupt. If this type of programming is not implemented, the program line 100 may
be aborted before completion.

10 ON TIMER 100 GOSUB *SUB
20 TIMER ON

100 INPUT AS.
110 IF WAS_ABORTED = 100 THEN WAS_ABORTED = 0 : GOTO 100

480 *SUB
500 WAS_ABORTED = INTRL Subroutine

600 RETURN

6-2 Multitasking

6-2-1 Tasks

o A task is a series of instructions necessary for a computer to complete one pro-
cess and is one unit of a program.

o Tasks are classified by the function they perform; for example, a print task
prints data with a printer, a text display task displays characters on a CRT
screen, and a CPU Unit communications task communicates with the CPU
Unit.

o Multitasking is the ability to execute two or more tasks simultaneously on one
computer. The BASIC Unit can execute up to 16 tasks simultaneously.

97

Multitasking

-

Section 6-2
¢ The following example shows tasks that transmit and print data, and print re-
ceived data.
\

Main Task

Prepare data
to transmit

'

Start transmit/receive
and print tasks

Transmit/

Receive

Task

}

Wait for end of
reception

l

Edit received data

l

Start print task [

/

Note Execution of tasks switches after each instruction, even for compound lines.
Task execution begins with the task with the smallest task number and moves in
order to all tasks in the READY status. If execution for a task is not possible when
it is switched to (e.g., the task is waiting for input), the next task will be switched to
immediately.

6-2-2 Declaration of Start & End of Task Program

The PARACT statement must be used to declare the beginning of each task pro-
gram. The task program must end with the END PARACT command.

Declaring the Start of a Task Program

98

PARACT task-no. [WORK no.-of-bytes]

Here, task-no. is an integer from 0 to 15, and no.-of-bytes is the size of the
task work area (default: 1024 bytes).

Statements between the PARACT and END PARACT statements constitute a
task.

Task number 0O is the main task and will be executed first. If a program contains
no task 0, an error will occur and the program will not be executed.

Multitasking Section 6-2

The number of WORK bytes is the number of bytes of work area used by the task.
The default value is 1024 bytes.

The PARACT statement must appear on alone on a line; it cannot be used in a
multi-statement line.

Declaring the End of Task Program

END PARACT

The END PARACT statement is used on the last line of the task program to de-
clare end the task program.

The END PARACT statement must appear alone on a line; it cannot be used in a
multi-statement line.

Examples of Programming Tasks

Single Task If there is only one task, it must be task number O.
10 RDIM + ooieeeeiecieieennn Declaration of non-volatile variables
20 DIM & toiieiiieieiieiaennn Declaration of global volatile variables
30 PARACT O & vevveenenennnnn. Beginning of task
1000 END PARACT . .eovvvnnn.. End of task
Multiple Tasks Task 0 is will be executed first when the program is started. Other tasks may be
started by the first task.
10 RDIM © tiveeee e eeeeeenn Declaration of non-volatile variables
20 DIM & viitiiieeeiiaannnnn Declaration of global volatile variables
30 PARACT 8 . vevvvennnnnnnnn. Beginning of task 8
, Note that tasks
' can be declared
in any order.
100 END PARACT . cenvvvvnnnn.. End of task 8
110 PARACT 0 . cevvvveennnnn.. Beginning of task 0
300 END PARACT . c.novvvnnnn.. End of task 0
310 PARACT 1 . cevvvvveennn... Beginning of task 1
660 END PARACTovvvnn... End of task 1

6-2-3 Starting, Aborting, and Waiting for a Task

A task can be started with the TASK statement and aborted by the EXIT state-
ment. In addition, one task can wait for the end of another task that has been
started by using the TWAIT statement.

If an attempt is made to start, stop, or wait for a task number that has not been
declared by a PARACT statement, an error occurs.

Starting a Task

100 TASK 1 +vvviviieinennnnnn, Execution of task 1 is started from the
task’s PARACT statement. If task 1 has
already been started, an error message
is displayed.

Aborting a Task

200 EXIT 1 v'vvivineiennnnn, The EXIT command aborts a specified
task. If the is not running, an error mes-
sage is displayed.

99

Multitasking

Section 6-2

Waiting for End of Task

300 TWAIT 1

Main Task
(Task 0)
PARACT 0
TASK 1
TWATT 1 Wait for task
1 to end.
END PARACT

100

Start

!

End

I

The task that executed this TWAIT state-
ment will wait for task 1 to exit before
continuing. If an interrupt occurs while
the task is waiting, the Unit will execute
the task’s interrupt routine and then re-
sume waiting. If the specified task has
already ended, an error message is dis-
played.

Task 1

PARACT 1

END PARACT

Multitasking

Section 6-2

Example of Program Starting/Ending Task

Note

When the RUN command is entered from the terminal or when the BASIC Unit is
started by the RUN/STOP switch or by the setting of the automatic start setting
area of the memory switch, task 0 is started. Task 0 can then start other tasks
with the TASK command.

Task 0

100 PARACT O

200 TASK 15

250 TASK 1

290 END PARACT

Task 15

300 PARACT 15

360 TASK 8

480 END
490 END PARACT

Task 1

500 PARACT 1

690 END PARACT

Task 8

700 PARACT 8

850 EXIT 1

900 TASK 15

990 END PARACT

Starts task 0 by RUN

Command in task 0
starts task 15

Starts task 8

Task 15 ends

Command in task
0 starts task 1

Command in task 15
starts task 8

Ends task 1

Starts task 15 again

. Task 0 is started when the program is started.

. Tasks 15 and 1 are started by the TASK commands in task O.

. Task 8 is started by the TASK command in task 15.

. Task 1 is terminated by the EXIT command in task 8.

1
2
3
4. Task 15 ends when it executes line 480.
5
6

. Task 15 can be started again by the TASK command in task 8 even after it

has exited once.

101

Multitasking

Section 6-2

Switching Tasks

102

Task 0 ——

Task 1

Task 8

Task 15

Task 15 starts

Task 0
runs

Task 1 starts

Tasks 0
and 15 run

When two or more tasks have been started, the BASIC Unit switches between
active tasks in round-robin fashion, executing a single statement from each task
in turn. In each execution cycle, the next statement from each active task is ex-
ecuted in order of its task number. If a task uses an input or output statement
such as PRINT or INPUT, or some other statement which involves waiting time,
that task is excluded from the round-robin until the input/output processing or
waiting is completed.

In the previous example, statements are executed from the active tasks in the
following order:

Task 8 starts Task 15 ends Task 8 terminates task 1

i

Tasks 0, 1, Tasks 0, 1, 8, Tasks 0, 1, Tasks 0 -
and 15 run and 15 run and 8 run and 8 run

Multitasking

Section 6-2

6-2-4 BASIC Unit Status and Transitions

After the BASIC Unit has been started, the internal status of program execution
and termination changes as illustrated below.

< Power ON/restart >

[]indicates command or instruction

| All tasks in END

status

END (end)

Automatic No
start

Yes r - - - - - c ot mmmm b oo |
| es Edit mode
Source correction | ! !
‘ Edit |
Run, cont (1) ‘ Run (2) :
Task Cancels waiting event Execution mode
READY (wait for dispatch) w
Exit Abort input ‘
End Dispatch Waits for event ‘
End paract !
Run WAIT (waits for event) w
Stop (3) l
Abort input w
Task STOP status | Abortinput :
Stop |
Exit !

BASIC Unit Modes

Edit

Debug

Execute

Task Status

RUN

READY
WAIT
END
STOP

1. CONT is valid only after STOP is executed.
2. Can also be started by the RUN/STOP switch.
3. Can also be stopped by the RUN/STOP switch or a BREAK point setting.

All the tasks are in the END state and the source program is being created or
edited. The program can be edited on the terminal.

All the tasks are stopped and the source program is not being edited. The pro-
gram can be debugged through operations on the terminal.

One or more tasks are running. The debug mode can be set when an abort oper-
ation is performed on the terminal, when the RUN/STOP switch is operated, or
when a STOP statement is executed.

A statement from the task is being executed. Only one task can have this status
at a time.

The task is waiting for its turn in the round-robin.
The task is waiting for the end of an input/output operation or for an interrupt.
The task is not running.

The task is temporarily stopped, but can be resumed by a CONT or STEP com-
mand.

103

Multitasking

Section 6-2

6-2-5

Inter-task Communication

When a multitasking program is executed, it may be necessary to transfer data
between tasks or to synchronize execution of tasks. Transfer of information
among tasks is generically called inter-task communication.

For example, consider an application which requires the BASIC Unit to receive
some information, perform a calculation on the data, and send the result back. A
multitasking version of such a program could consist of three tasks: task 1 per-
forming data reception, task 2 performing data processing, and task 3 perform-
ing data transmission. Each task in this program must be synchronized with the
others to exchange data properly. For example, task 2 must wait for task 1 to
receive some data before it can begin calculations, and task 3 must wait for task
2 to finish its processing before the results can be sent.

i

Data = ata)=

Task 1 (reception)

Task 2 (data processing) Task 3 (transmission)

~

Synchronization >— —< Synchronization >—

Types of Inter-task
Communication

Signals

Sending a Signal

104

In the multitasked approach, the variables used by each task are local to the
task; that is, the variables of one task cannot be directly referenced by the other
tasks. To perform inter-task communication, messages to transfer data between
tasks and global variables that can be accessed by each task are used to trans-
fer data between tasks. In addition, a signal may be used to inform a task of the
occurrence of an event in another task.

The BASIC Unit supports three different methods of inter-task communications.
The simplest method is the signal, which one task can use to inform another task
that some event has taken place. The second method is the message, which a
task can use to send information to another task. The third method is the use of
global variables, which can be accessed by any task.

Signals can be used to inform a task of the occurrence of an event in another
task, and are useful when it is necessary to establish synchronization between
tasks. A task in which an event has occurred sends a signal to another task with
the SENDSIG statement. The other task must define a processing routine with
the ON SIGNAL GOSUB statement. Then, when the second task wishes to re-
ceive signals from the first task, it executes the SIGNAL ON statement. Signal
processing works the same as interrupt processing; see Section 6-1 Interrupt
Operation for details.

A task sends a signal by executing the SENDSIG statement:

SENDSIG signal-no., task-no.

Multitasking

Section 6-2

Defining a Signal
Processing Routine

Enabling / Disabling /
Stopping Signal Interrupts

Signal Program Example

Note

Signal-no. must be an integer from 1 to 5 or 10 to 13. Signals 10 through 13 have
pre-defined meanings; signals 1 through 5 are available for user definition. The
meanings of the pre-defined signals are:

Signal Meaning
10 STOP
11 PC watchdog timer error
12 Cyclic error
13 Battery error

A task that wishes to receive a signal must first define an interrupt processing
routine to be executed when the signal is received. The routine is defined with
the ON SIGNAL GOSUB statement:

ON SIGNAL (signal-no.) GOSUB {line-no. | label}

After the ON SIGNAL GOSUB statement has been executed, the task must ex-
ecute SIGNAL ON when itis ready to receive signals. When the task is no longer
interested in the signal, it should execute STGNAL OFF. To temporarily disable
processing of a signal, execute SIGNAL STOP. The difference between
SIGNAL OFF and STOP is that STOP records any signals received while the sig-
nal is sTOPped, and interrupt processing is executed if the interrupt is later
enabled by STGNAL ON. Signals received while STGNAL OFF is in effect are
ignored.

10 PARACT O . vevvvvnnnnnnnn.. Beginning of task 0
20 TASK 1 . coiiiiiiinnn... Start execution of task 1

80 PRINT ”"Task 0 -> Task 1”
90 PRINT ”“Send signal 3”

100 SENDSIG 3, 1 Send signal 3 to task 1
:
)
190 END PARACT . ..eenvuunnn.. End of task 1
200 PARACT 1 v vuervurnnnnnnnnn Beginning of task 1
210 ON SIGNAL 3 GOSUB 300 Define signal processing routine
220 SIGNAL 3 ON Enable interrupts for signal 3
230 PAUSE . ceevriennnnnnnnnn. Wait for a signal
:
)
290 END

300 REM Signal 3 processing routine
310 PRINT ”"Received signal 3”

390 RETURN
400 END PARACT . veovenvnnnn.. End of task 1

Result of execution:

Task 0 -> Task 1
Send signal 3
Received signal 3

1. If the signal receiving task has no processing to do until the interrupt occurs,
it can execute the PAUSE statement to wait for an interrupt to occur.

2. In the example, if task 0 sends the signal to task 1 immediately after starting
task 1, the signal may not be received because task 1 may not have finished
defining the signal processing routine and enabling interrupts.

If it is important that task 1 receive every signal, the program could be
re-written so that task 1 signalled task 0 when it was ready to receive signals.

105

Multitasking

Section 6-2

Messages

Allocating Message Number

Transmitting Message

Receiving Message

Releasing Message Number

Message Program Example

Global Variables

106

Tasks can use messages to communicate when the information to be sent is
more complicated than the simple on/off that a signal can indicate.

To communicate with messages, the two tasks must first acquire a message
number. Then, the transmitting task sends the message with the SEND state-
ment, and the receiving task gets the message with the RECEIVE statement.
When the tasks are done communicating, they should release the message
number.

Each instruction is explained in more detail below.

To use a message, both tasks must allocate the message number with the
MESSAGE statement:

MESSAGE function, message-no.

Function is 0 (allocate message number), and message-no. is an integer from 1
to 32767. Each task can acquire up to four message numbers, and a total of
eight message numbers can be acquired for the entire program.

Next, the transmitting task prepares the message and sends it with the SEND
statement:
SEND message-no., character-expression

Message-no. is the message number acquired in the first step, and charac-
ter-expression contains the information the task wishes to send. Character-ex-
pression can be up to 538 characters long.

The receiving task gets the message with the RECEIVE statement:
RECEIVE message-no., character-variable

Message-no is the message number acquired in the first step, and charac-
ter-variable is the name of a variable into which the message will be stored. If the
receiver executes RECEIVE before the transmitter executes SEND, the receiving
task will wait until a message is transmitted.

When the tasks are done communicating, they should release the message
number with the MESSAGE instruction:
MESSAGE function, message-no.

Function is 1 (release message number), and message-no. is the number ac-
quired in the first step.

10 PARACT 0 . cevvveennnnnnn.. Beginning of task 0
20 TASK 1 & tiiiinnnnnnnnnnnnn Start task 1
30 MESSAGE 0, 1cunn.... Acquire message number 1
40 A$ = "START!” Prepare data to send to task 1
50 SEND 1, A$. eoiinnnnn... Send the message

'

)
80 MESSAGE 1, 1 . ceevvvvnnn. Release message number 1
90 END PARACT . veeevvvvnnn.. End of task 0
100 PARACT 1 . cevvvvieennn... Beginning of task 1
110 MESSAGE 0, 1 Acquire message number 1
120 RECEIVE 1, BS Receive a message
130 PRINT “Message from task 0...”"; BS

'

)
180 MESSAGE 1, 1 Release message number 1
190 END PARACT . ..oenvnennn... End of task 1

All the variables declared between the beginning of the program and the first
PARACT statement can be accessed by every task.

These variables are called global variables. Global variables can be used to
transfer data between tasks and to hold data common to two or more tasks.

Machine Language

Section 6-3

An example in which task 0 stores data in global variables A and B and task 1
performs a calculation using the data is shown below.

Global Variable Program Example

Inter-task Communication
with Non-volatile Variables

10 RDIM A . toiviviinannnnnnn Declare non-volatile global variable &

20 DIM B v tiieeeeiiiiaaannnnn Declare (volatile) global variable B

30 PARACT 0 & vevvvennnnnnnnnn Beginning of task 0

40 A = 15 . oot Store 15 in global variable A

50 B = 3 0 i Store 3 in global variable B

60 TASK 1 . ceviiiiinnnnnnnn. Start task 1

'

90 END PARACT . veuunerenenn.. End of task 0

100 PARACT 1 . cevvvvvennnn... Beginning of task 1

110 C = A o ottt Copy global variable a to local variable
C

120 D = B v teeiiiiiiaeeaannn Copy global variable B to local variable
D

130 E = C + D v vvvvnnnnnnnnn Add the local copies of 2 and B and

store the result in local variable E
140 PRINT E

190 END PARACT . vvvuvrnnenn.. End of task 1

Variables declared with the RDIM statement retain data even after the power has
been turned off. These variables are called non-volatile variables, and are
stored in battery-backed memory. Non-volatile variables can be declared only in
the global definition block, i.e., from the beginning of the program to the first
PARACT statement.

Variables declared with RDIM must appear before those declared with DIM.

Non-volatile variables are not cleared even when the power has been turned off.
To clear these variables, execute the OPTION ERASE Or RUN ERASE com-
mand. Non-volatile variables can be saved to or loaded from a file with the
VSAVE or VLOAD commands.

6-3 Machine Language

1,2, 3...

The BASIC Unit provides support for machine language programming. Machine
language subroutines can be called from BASIC programs, access BASIC vari-
ables, and return results to the program.

Machine language programs can be entered, modified, and debugged when the
Unit is in the machine language monitor mode. Use the MON command to enter
this mode.

The BASIC Unit's CPU is a V25 (NEC uPD70322), and the monitor assembler
accepts most (but not all) V25 mnemonics and notations. See Appendix E for
more information.

The machine language program can be entered in these ways:
1. Enter one instruction at a time with the machine language monitor’s mne-
monic assembler.

2. Store the subroutine object code as data in the BASIC program and use
POKE to place the code in memory.

3. Load the subroutine object code from a file with the LOAD instruction.

107

Machine Language

Section 6-3

6-3-1 Segments and Offsets

Memory addresses used by the BASIC Unit consist of two parts: the segment
and the offset. Both are 16-bit integers. The actual memory address used by an
instruction is calculated by multiplying the segment number by 16 and adding
the offset. For example, segment &H0050 and offset &H1234 give the actual
memory address &H01784:

Segment address E E E
Multiply by 16 [o]fo][s][o]:0:
Offset address +
Actual address E

The segment address is specified by the DEF SEG statement in the BASIC pro-
gram, and is contained in DSO in the machine language monitor mode. The G, T,
and B commands, however, use PS (program segment).

6-3-2 Developing a Machine Language Program

Allocate Memory

Enter the Machine
Language Program

108

Note

This section describes how to develop a machine language program. Only the
major commands are described. For details, refer to Appendix E Machine Lan-
guage Monitor Reference.

First, allocate an area in memory to hold the machine language subroutine.

The machine language program area is located before (at lower addresses
than) the user program area. The BASIC program area capacity is reduced by
the amount allocated for the machine language program.

To allocate the area, use the MSET command:

MSET &H4000 . vvvuinnnnnnnnn. The machine language program area is
from address &H500 to &H3FFF. Ad-
dresses &H4000 and those that follow
contain the BASIC program and vari-
ables.

If MSET is entered without an argument, the current set value is displayed. The
value set with MSET is stored in battery-backed memory, so it is not necessary to
execute MSET each time power is turned on.

When the BASIC Unit is started for the first time, the beginning of the BASIC pro-
gram area is set to &H500, and no machine language program area is allocated.
Be sure to allocate the machine language program area with MSET before devel-
oping a machine language program.

To enter a machine language program from the terminal, first set the BASIC
Unit's machine language monitor mode with the MON command. The Unit's RUN
indicator will light, and the * prompt will be displayed. All subsequent input must
use upper case letters only.

Use the A (Assemble) command to start assembling the program. When this
command has been entered, the prompt will change to an exclamation point (!).
Next, enter the program start address (in hexadecimal, followed by a colon) and
the first machine language instruction. When you type return (3), the BASIC Unit
will reply with the address, object code, and corresponding mnemonic.

MON—

*A

13000 :MOV_AW, PS—

3000 8cCcs8 MOV AW, PS

Machine Language

Section 6-3

Check the Program

Run the Program

Note

No address is necessary if you wish to continue entering the program; the BA-
SIC Unit automatically increments the location counter appropriately. When you
have finished entering the program, type X to return to the * prompt.

Corrections can be made by deleting with the Backspace Key until the carriage
return key is input.

As an example, here is a simple program that adds 7 to the contents of location
&H1000 and stores the result at &H1000.

B L e Begin assembling

13000:MOV AW,PS . covnvvvnnn.. See note

3000 8ccs MOV AW, PS

MOV DSO, AW

3002 8EDS MOV DSO, AW

IMOV AL, 7 v eeeeiiieiainenn. Load 7 into AL

3004 B0O7 MOV AL, 07

MOV BL, [1000] . «...ovennn.. Load the contents of &H1000 into BL
3006 8AIE0010 MOV BL, [1000]

IADD AL,BL . toviiennnnnnnnnn. Add BL to AL (result stored in AL)
300A 00DS8 ADD AL, BL

IMOV [1000],AL . «uvvuvnvernn.. Store the result in &H1000

300C A20010 MOV [1000],AL

IBR 300F

300F E9FDFF BR 300F

X

*
The first two instructions, MOV 2w, PS and MOV DSO0, AW are used to make the
data segment equal to the program segment.

To verify the program just entered, display it with the T (Inverse Assemble) com-
mand. This command displays the object code and mnemonics of the program.

*I3000.300F . covvininnnnnnn.. Disassemble from &H3000 to &§H300F
3000 8cCcCs8 MOV AW, PS

3002 8EDS8 MOV DSO, AW

3004 BOO7 MOV AL, 07

3006 8AIEO0010 MOV BL, [1000]

300A 00DS8 ADD AL, BL

300C A20010 MOV [1000],AL

300F E9FDFF BR 300F

*k

If the display end address is omitted, 20 lines of the program are displayed from
the specified start address. If the start address is omitted, the display starts at the
next address after the end of the previous display. If both the start and end ad-
dresses are omitted, 20 lines are displayed, starting at the address after the end
of the previous display.

To execute the program, use the G (Go) command. Breakpoints can be set with
the B command and cleared with the N command. The T (Trace) command can
be used to execute the program one instruction at a time. These commands
used PS for segments.

*B30067 « cvvvrrnnnnninnaaanns Set a break point at «H3006.
*B300F 7 & ceveiiiiaiaaaanns Set another break point at &H300F.
B e The B command with no arguments dis-

plays the current break point(s).

B=3006 300F

*G300072 + tevieeriiiieenns Begin execution at &H3000. If the CPU
encounters a break point, execution is
stopped and the current contents of the
flags and registers are displayed.

Ea Execute the next instruction.

¥ T300072 @ eevveneneennnannnnnn Execute the instruction at &§H3000.

109

Machine Language

Section 6-3

Displaying Memory and
Register Contents

Saving and Loading
Programs

110

Note

The contents of memory can be displayed with the D (Dump) command. For ex-

ample:

*D4000.40082 + vevriinannnnnn Display the contents of memory from
&H4000 to &H4008.

4000 - 00 07 00 00 12 34 FB C2

4008 - 5A

If the end address is omitted, only one byte is displayed. If the start address is

omitted, the contents of memory from the address after the end of the previous

display to the end address are displayed.If both the start and end addresses are

omitted, 8 bytes are displayed starting at the address after the end of the pre-

vious display.

The contents of the registers and flags can be displayed with the R (Register)

command.

*R7

RZRI ROV D I BS ZFl AF0 P IBC

_—— —— —— k% __ kK __ 0 0 —— —— —— —_—

AW-FFFF BW-0000 Cw-0000 DwW -0000 SP-0000 BP -0000
IX-0000 IY-0000 PS-0000 DS0-0000 SS-0000 DS1-0000 PC-3006

*

The contents of a register or flag can also be changed:

*RAW=00057 « vevvrrrnnnnnnnnnn AW is the register or flag name and 0005
is the data.

The register names are: Aw, BW, CW, DW, SP, BP, IX, IY, PS,DS0, SS,DS1, and PC.
The flag names are: R2, R1, R0, V, D, I, B, S, 72, F1, A, FO, P, IB, and C.

Data must be 4 characters or less of hexadecimal numbers; leading zeros may
be omitted.

The contents of the machine language area may be saved to the memory card or
the connected terminal with the s (Save) command. The syntax of the command
is:

S device [formaf] start-address . end-address. file-name
Device F is the memory card; R is the terminal.

Format H is hexadecimal; format s is Motorola S-records. (If format is omitted,
the default is S-records.) Format H must be used for Memory Cards.

For example,

*SFH4000.400F .FILE3, Save the contents of memory locations
&H4000 to &H400F in hexadecimal for-
mat on the memory card in a file named
FILE3.

When the CVSS is used and the program is to be saved to the terminal, the S

command does not have to be entered by the user because the save operation is
performed through the menu screen of the Terminal Pack.

To load a file from the memory card or terminal, use the L (Load) command. The
syntax of the command is:

L device [formal] offset. file-name

Device and format are the same as in the s command. Offset can be used to
force the contents of the file to be stored in a different location in memory. (The

contents of the file are placed at saved-address + segment-address (DSO0) + off-
set.)

For example,

*LFHO .FILE3 2 + vvvvvenannnnnnn The contents of hexadecimal FILE3 on
the memory card are loaded into
memory.

When saving to or loading from EEPROM, use the ROMSAVE/ROMLOAD com-
mands for the entire source code (S code) area and the BASIC program.

Machine Language

Section 6-3

Common Programming
Mistakes

To check whether the program has been correctly saved or loaded, use the X
command immediately after the s or L command.

If an error has occurred, an error message (SAVE ERROR Or LOAD ERROR) iS
displayed.

Keep the following points in mind when developing a machine language subrou-

tine:

¢ Don’t forget to allocate memory for the machine language program with the
MSET command.

* Remember that the storage address for the machine language program is the
sum of the segment address (DS0) and the offset (the specified address).

¢ Be careful not to erase or damage the system and BASIC program areas by
assembling or loading to the wrong section of memory.

» Before calling the machine language routine, use DEF SEG to define the ma-
chine language routine’s segment address.

¢ To return from the machine language routine to the BASIC program, use the
RETF instruction. Make sure that the value of the stack pointer is the same as
when the machine language routine was called. Other registers and flags are
restored by the system.

* Do not disable interrupts in the machine language program.

* To use some of the memory allocated by the MSET command as a work area,
turn OFF the memory protect switch (write enable status).

e Instructions that are used for transferring data to or from the CPU Unit, or for
port operation such as PC READ and PC WRITE of PRINT and INPUT cannot
be programmed using the machine language.

6-3-3 Examining and Altering Memory with BASIC

Note

Reading & Writing Memory

To write data to the machine language program area from a BASIC program, use
the POKE statement. To read data, use PEEK.

The memory protect switch must be turned OFF for POKE to work.

Before reading or writing data in the machine language program area, define a
segment address with DEF SEG.

10 DEF_SEG = &H400 Use segment &H400

To write data, use the POKE statement. (The memory protect switch must be
turned OFF.)

30 POKE &H100, &H41 Store &H41 at location &§H4100 (seg-
ment &H400 + offset &H100).

To read the contents of memory, use the PEEK statement.

40 N = PEEK(&H100) Read the contents of location &H4100
and store in N.

Here is a simple program that stores a value in memory, then reads it back and
displays it:

10 PARACT O

20 DEF SEG = &H400

30 POKE &H100, &H41
40 N = PEEK(&H100)

50 PRINT CHRS (N)

60 END

70 END PARACT

In this program, addresses and data are specified as hexadecimal numbers.
However, they can also be specified in other formats or as variables.

111

Machine Language Section 6-3

Note that the data read or written by the PEEK and POKE instructions in byte
units.

6-3-4 Calling a Machine Language Subroutine

To call the machine language subroutine from the BASIC program, use the CALL
statement or the USR function. Machine language subroutines that return a val-
ue to the BASIC program must be called by the USR function.

USR Ten USR functions, USRO through USR9, can be defined and used. Before using
any USR function, the machine language subroutine segment must be defined
with DEF SEG. Then, the start address for each subroutine must be defined with

DEF USR.

For example:

100 DEF SEG = &H400

110 DEF USR1 = &H100 USR1 starts at offset «H100 in segment
&H400 (absolute address &H04100).

120 N = USRI(5) « vevrennn.. Call the subroutine, passing it the argu-

ment 5. The result is stored in N.
When the machine language subroutine is called, information about the argu-
ment is passed as follows:

DSO: | Segment -

Argument value
BW: Offset L. _ |
AL: Type

The argument type in AL will be one of these values:
0 : Integer

1 : Single-precision floating point

2 : Double-precision floating point

3 : Character variable

The beginning of the argument value is specified by the address in DS0 and BW.
For information about the argument value’s storage format in memory, refer to
6-3-5 Storage Formats.

The machine language subroutine must return its result in the same type and
using the same area in memory.

Sample Program This program uses a machine language subroutine which squares an integer to
print a list of squares from 1 to 10. However, the program does not use the USR
argument to pass the number to square; rather, it stores the number in a fixed
location (with POKE). The machine language routine gets it from that location
and places the result at another fixed location.

10 PARACT O

20 DEF SEG=&H400 Define segment address (&H400)

30 DEF USR1 = &H100 Define subroutine start address (¢H100)

40 FOR T = 1 TO 10

50 POKE &H200, I Save the value to square at offset
&H200 (absolute location &H4200)

60 N = USRL(0) . evrvuunnn... Call the subroutine

70 A = PEEK(&H202) Get the squared value which the subrou-
tine has stored at offset &H202

80 PRINT I; A . cevvvvvnnnnnns Print the number and its square

90 NEXT I

100 END

110 END PARACT

112

Machine Language Section 6-3
Here is the machine language portion of the program. It must be loaded in
memory at segment &H400, offset «H100 (absolute location &H4100).

MOV AW,PS . tiviiirinnnnnnnnn Make data segment equal to program
segment

MOV DSO, AW
MOV AL, [200] . vevvvennnnnnn.. Get the value to square from &H200
10 2 Square the value
MOV [202],AL . cevvvvnnnnnnn.. Save result at &§H202
RETF o ttiiiiieeaeeeeaannnnns Return to BASIC program

Note When writing machine language programs, allocate space with the MSET
instructions and remember that the storage address is the segment address
(DSO0) plus the offset (the specified address). DS0 will be 0050 when the ma-
chine language monitor mode is entered. If a program is input immediately, the
first offset address will be 4100 — 0500, or 3C00.

CALL The cALL statement executes a machine language subroutine from the BASIC

program. Before using CALL, the machine language subroutine’s segment must
be specified with the DEF SEG statement. Then, the subroutine’s offset address
must be stored in an integer variable which will be used in the CALL.

Several argument values may be passed to the subroutine when it is CALLed.
The BASIC Unit passes information about the arguments in type tables and
address tables; the table addresses are passed in DS0, BW and DS1, CW as
follows:

DS1 contains the argument type table segment.
CW contains the argument type table offset.

DSO0 contains the argument address table segment.
BW contains the argument address table offset.

DS Argument type table
0. Number of arguments Argument types
Cw +1 0: Integer
Argument 1 type 1: Single-precision real variable
+2 | Argument 2 type 2: Double-precision real variable
3: Character variable
Argument n type)))
-
Argument address table ' Argument 1 value .
DSO 0]] _
Argument 1 offset
BW 5
+ Argument 1 segment - T
+4 | Argument 2 offset ‘ Argument 2 value ‘
+6 | Argument 2 segment ‘ ‘
L.]
+4(n=1) | Argument n offset l Y_Argument nvalue
+4(n—1)+2 | Argument n segment J B N

The argument value address in the address table indicates the beginning of the
argument value. For information about the argument value storage formats, re-
fer to 6-3-5 Storage Formats.

113

Machine Language

Section 6-3

Sample Program

Note

The area of the argument to which the execution result of the machine language
program has been given is returned to the BASIC program as the value of the
same type.

The following program inputs two numbers (A% and B%) and calls a machine lan-
guage subroutine which stores the larger of the two numbers in C%.

10 PARACT O

20 DEF SEG = &H300

30 OFADR% = &H200

40 A% = 0

50 INPUT B%,C%

60 CALL OFADR% (A%,B%,C$%)
70 PRINT A%

80 END

90 END PARACT

Here is the machine language subroutine. It must be loaded at segment &H300,
offset &H200 (absolute address &H3200).

MOV CW,A[BW] . cevvvveennnn... Get C% argument segment
MOV DS1,CW
MOV IX,8[BW] . cevvvveeennn... Get C%argument offset
DS1:
MOV AW, [IX] . cevervvennnnnn.. Get C% argument value
MOV CW,6[BW] + vevrveennnnnnn. Get B% argument segment
MOV DS1,CW
MOV IX,4[BW] . cevvvvrennnn... Get B% argument offset
DS1:
CMP AW, [IX] v veerrerrnnnnnnn. Compare values (C% to B%)
BGE 321B . ittt Jump if C% >=B%
DS1:
MOV AW, [IX] .+ ceviirininnnnnn. Move B% value to aw
MOV CW,2[BW] . cevvveennnnn... Get A% argument segment
MOV DS1,CW
MOV IX,0[BW] . cevvvveennnn... Get A% argument offset
DS1:
MOV [IX],AW . evuuiinnnnannn. Move AW to A% area
RETF

1. To return from the machine language subroutine to the BASIC program, be

sure to use the RETF instruction (op code &HCB). This is because the ma-
chine language program segment is different from the BASIC program seg-
ment, so the RET instruction (op code &H3¢) will not work. If a subroutine is
used within the machine language program, near CALL and RET instruc-
tions may be used.

2. Remember that the storage address for the machine language program is
the sum of the segment address (DS0) and the offset (the specified ad-
dress).

6-3-5 Storage Formats

Integers

114

Variables are stored in memory as follows depending on their types:

Integers are stored as two-byte (16-bit) 2's complement numbers. The low-order
byte is stored in the lower-addressed of the two bytes occupied.

7 0

Address + 0 Lower byte

Address +1 | S Upper byte

Machine Language Section 6-3

Single-precision Floating Single-precision floating point values are stored in four consecutive bytes (32
Point Values bits), in IEEE 32-bit floating point format.
7 0
Address + 0 M
Lower byte
Address + 1 M
Address +2 | E M
byt
Address +3 | S E Unper byte
S: sign bit (0: positive, 1: negative)
E: exponent (8 bits, offset 127)
M: mantissa (23 bits)
31 0
sL. e | 0
LI_II | I | : : |
1 bit 8 bits 23 bits

Actual value = (—1)S2E-127(1.M)

Note: Binary value

Double-precision Floating Double-precision floating point values are stored in eight consecutive bytes (64
Point Values bits), in IEEE 64-bit floating point format.

7 0

Address + 0

Lower byte
Address + 1

Address + 2

Address + 3

Address + 4

Address + 5

Address + 6 E

Upper byte

mg|Igs|lE(g2|2| £

Address+7 | S

S: sign bit (0: positive, 1: negative)
E: exponent (11 bits, offset 1023)
M: mantissa (52 bits)

63 0

sl e] M

LI_II | Il | I |

1 bit 11 bits 52 bits

Actual value = (—1)S2E-1023(1 M)

M

Note: Binary value

115

Machine Language

Section 6-3

Character Strings

Array Values

116

Character strings are stored with 4 bytes of header information (2 bytes for maxi-
mum length and 2 bytes for current length), followed by the characters in the
string. A pad byte is appended if necessary so that the number of bytes used is
even. The pad byte’s value is undefined.

7 0
Address + 0 Max. length, lower byte
Address + 1 Max. length, higher byte
Address + 2 Current length, lower byte

Address + 3 Current length, higher byte

Address + 4 First character

Address + n Last character

Arrays are stored contiguously in memory; each element of the array occupies
the same number of bytes. (The size of each element is the same as the size for
a simple value of the same type.)

0 A (0)
A1)
A(2)
n A (x)

Machine Language Section 6-3

Multi-dimensional Array Multi-dimensional arrays are stored in row-major form; that is, all the elements of
one row are stored before the first element of the next row. The diagram below
shows the layout of an XxY array.

0 B(0,0)

B(0,1)

B(0,2)

n B(x,y)

117

Machine Language Section 6-3

6-3-6 Machine Language Programming Summary

To call a machine language program from the BASIC program, use the CALL
statement or USR function.

Beginning .
' '
' e 1
)
Machine Lan- : [
guage program ' .
X '
1)
1 1
RETF --fF----- Return to BASIC :
program !
)
)
1
)
e————— MSET command defines '
beginning of BASIC .
program area ,
1
DEF USR = =|-=-=-=-~-~- Defines start address of _ _ !
machine language function :
User program DEF SEG - - [- - - - - Declares segment address = - -
source code area
BASIC program
CALL ------- Calls machine language
program (any address)
USR P Calls machine language
function
VARPTR = -|-=----- Reads variable storage address
ABCD
Variable area Variable

118

Machine Language Section 6-3

Machine Language Monitor This diagram shows the commands that are used to move between the machine
Mode and BASIC Mode language monitor mode and BASIC mode.

[][\ [
RN RN

BASIC mode Machine language mode Line assemble

B
[T

etc.

BASIC pro- Machine language

program debug

gram
“RUN”

When MON-, is typed in the OK display status or command input status in BASIC
mode, the Unit enters machine language mode. At this time, the BASIC RUN
indicator goes off.

To return to BASIC mode, type Q- at the * prompt.

6-3-7 Machine Language Monitor Commands

This table lists the machine language monitor commands and gives a brief de-
scription of each command’s function. Detailed descriptions of each command
may be found in Appendix E Machine Language Monitor Reference.

Command Function
D Displays memory contents at specified address
W Changes memory contents at specified address
M Transfers memory contents
C Compares memory contents
A Assembles one line
I Disassembles
S Saves machine language program
L Loads machine language program
v Verifies machine language program
X Checks result of saving, loading, or verifying machine

language program

Sets or displays break point

Cancels break point

Executes machine language program

Executes one step of machine language program
Displays or changes register contents

Addition or subtraction in hexadecimal number
Sets or displays memory switch

N|lm|A|Q|=2|w

el
)
=

119

PC Communications Section 6-4

6-4 PC Communications

To transfer data between the CPU Unit and BASIC Unit, the PC READ or PC
WRITE command is usually used from the BASIC Unit. However, the CPU Unit
can also interrupt the BASIC Unit by executing the SEND(192) or RECV(193)
instruction or by using FINS commands.

6-4-1 SEND(192) and RECV(193)

The NETWORK SEND (SEND(192)) and NETWORK RECEIVE (RECV(193))
instructions can be used in the ladder-diagram program of the CPU Unit to send
data to or receive data from a BASIC Unit. Communications with the CPU Unit
using these instructions are handled as interrupts by the BASIC Unit.

Note 1. No signal is generated to indicate the end of the SEND (192) orRECV (193)
instruction. If it is necessary to confirm completion of PC READ or PC
WRITE in the CPU Unit program, confirmations data can be written to specif-
ic area in the CPU Unit and checked by the CPU Unit program.

2. To prevent communications problems when executing more than one
SEND(192) OrRECV (193) instruction, use a different port for each instruc-
tion or write the CPU Unit program to ensure that only one instruction is
executed at a time.

3. Itis more efficient to combine data transfer operations to reduce the number
of PC READ and PC WRITE commands.

4. Only one write request (PC WRITE) is executed by the CPU Unit during
each CPU Unit cycle. If more than one request is received, the other write
requests must wait until the next cycle. This includes requests from other
BASIC Units, other CPU Bus Units, and Link Units (SYSMAC LINK, SYS-
MAC NET, etc.)5

CPU Unit Interrupt Processing Program
The ON PC GOSUB statement is used to define a service routine for PC inter-

rupts.

ON PC(2) GOSUB 1000 2 is the interrupt number and 1000 is
the first line number of the interrupt rou-
tine.

Interrupts 1 to 15 can be specified.

To generate an interrupt from the CPU Unit, the SEND (192) or RECV (193) in-
struction is executed by the user program in the CPU Unit.

When the CPU Unit generates an interrupt, the PC READ command is used to

read the data from the CPU Unit:

PC READ ”S10H4”; A(0) S10H4 isthe formatand A (0) is the
variable which will receive the data.

When an interrupt has been generated from the CPU Unit, use the PC WRITE

command to write data to the CPU Unit:

PC WRITE ”S10H4”; B(0) S10H4 is the format and B (0) contains
the data to send.

The format is specified as shown in this table. For details, refer to the BASIC Unit

Reference Manual (W207-E1).

Name Format Meaning
| min n-digit decimal data of m words (n: 1 to 4)
H mHN n-digit hexadecimal data of m words (n: 1 to 4)
o mon n-digit octal data of m words (n: 1 to 4)
B mBn nth bit data of m words (n: 0 to 15)
A man ASCII character data specified by n of mwords (n: 1 to 3)
S smXn nth (nth bit) data specified by X of m words (Type S is of array type of type |, H, O, or B, and
Xindicates |, H, O, or B.)

120

PC Communications

Section 6-4

¢ [f mis omitted, 1 is assumed.
o Make sure that 1 word of types |, H, O, and B corresponds to 1 variable.
* Type A must correspond to 1 variable in format units.

¢ Type S correspond to 1 array variable in word units, but must correspond to 1
array variable in format units for description. Use one-dimensional array as the
array variable.

Transferring Data from the CPU Unit

1,2, 3.

To transfer data from the CPU Unit, the CPU Unit interrupts the BASIC Unit with
the SEND (192) instruction.

(192) S: 15t source word

—{SEND S D c]

D: 1st destination word

C: 1st control word

Word Bits 00 to 07 Bits 08 to 15
C Number of words (1 to 0990 in 4-digit hexadecimal, i.e., $0001 to $03DE)
C+1 Destination network address Bits 08 to 11: Interrupt number
(0to 127, i.e., $00 to $7F) ($1 to $F)
Bits 12 to 15: Set to 0.
C+2 Destination unit Destination node address
C+3 Bits 00 to 03: Bits 08 to 11:
No. of retries (0 to 15 in Transmission port number
hexadecimal, ($0to $7)
i.e., $0 to $F) Bit 12 to 14:
Bits 04 to 07: Set to 0.
Setto 0. Bit 15: ON: No response.
OFF: Response returned.

C+4 Response monitoring time ($0001 to SFFFF = 0.1 to 6553.5 seconds)

e The interrupt number must be the same as that used in the ON PC GOSUB and
PC ON, OFF, and STOP statements in the BASIC program. The interrupt num-
ber must be a hexadecimal number from 1 to F.

* The destination Unit specification is the BASIC Unit’s unit number plus 16 (a
hexadecimal number from 10 to 1F).

¢ Set D to 0000; the BASIC Unit ignores this parameter.

» Refer to the CV-series PC Operation Manual: Ladder Diagrams for further de-
tails.

Here is the procedure for interrupt-driven data transfer from the CPU Unit to the
BASIC Unit:

1. Transfer data from the CPU Unit by executing the SEND (192) instruction
with interrupt number set in C+1.

2. The BASIC Unit will be interrupted when the data arrives, and the PC inter-
rupt service routine defined by the ON PC GOSUB statement will be called.

3. Data of a predetermined length is read with the PC READ instruction and is
stored in the variable(s). The length set for the PC READ instruction must be
the same as that set for the SEND (192) instruction.

121

PC Communications Section 6-4

4. The pC READ command returns a response (1) to the CPU Unit.

CPU Unit Program Application Program

(1)
(192) } -
LSEND S D cl | 100 ON PC (2) GOSUB 500
- | |System 110 PC (2) ON

(4)} processing \ @ |
‘ (3) RN :
| 500 PC READ "S10H4” ; A(0)
|
|
} 600 RETURN
|
|
\
\

CPU Unit | BASIC Unit

Transferring Data to CPU Unit

To receive data from the BASIC Unit, the CPU Unit interrupts the BASIC Unit with
the RECV (193) instruction.

(193) S: 15t source word
—RECV S D cl
D: 1st destination word
C: 1st control word
Word Bits 00 to 07 Bits 08 to 15
C Number of words (1 to 0990 in 4-digit hexadecimal, i.e., $0001 to $03DE)
C+1 Source network address Bits 08 to 11: Interrupt number
(0to 127, i.e., $00 to $7F) ($1 to $F)
Bits 12 to 15: Set to 0.
C+2 Source unit Source node address
C+3 Bits 00 to 03: Bits 08 to 11:
No. of retries (0 to 15 in Transmission port number
hexadecimal, ($0to $7)
i.e., $0 to $F) Bit 12 to 14:
Bits 04 to 07: Setto 0.
Setto 0. Bit 15: ON: No response.
OFF: Response returned.
C+4 Response monitoring time ($0001 to SFFFF = 0.1 to 6553.5 seconds)

e The interrupt number must be the same as that used in the ON PC GOSUB and
PC ON, OFF, and STOP statements in the BASIC program. The interrupt num-
ber must be a hexadecimal number from 1 to F.

e The source unit specification is the BASIC Unit’s unit number plus 16 (a hexa-
decimal number from 10 to 1F).

e Set S to 0000; the BASIC Unit ignores this parameter.

Here is the procedure for interrupt-driven data transfer from the BASIC Unit to
the CPU Unit:

1,2 3. 1. Execute the RECV (193) instruction from the CPU Unit with the interrupt
number in C+1.
2. The PC interrupt service routine defined with oN PC GOSUB will be called

when the RECV (193) instruction has been executed.

122

PC Communications Section 6-4

3. Data of the predetermined length is sent from the BASIC Unit with the pC
WRITE instruction. The length set for the PC WRITE instruction must be the
same as that set for the RECV (193) instruction.

4. The PC WRITE instruction returns a response to (1) to the CPU Unit.

CPU Unit Program Application Program

(193) >
LRECV s D c \ . 100 ON PC (3) GOSUB 700
- | |System . 110 PC (3) ON
rocessin iR \
<4)} processing L@ ‘
‘ (3) RN :
| 700 PC WRITE "S10HA” ; A(0)
\ ‘
| \
} 800 R]‘ETURN
|
|
\
\
CPU Unit \ BASIC Unit

6-4-2 CV-series (FINS) Commands

The BASIC Unit supports automatic processing for certain FINS commands
transmitted via PC networks. Refer to the FINS Command Reference Manual for
details.

123

SECTION 7
Peripherals

This section information relating to the use and programming for the peripheral devices. The GB-IB Interface programming is
also provided for use with the peripherals.

7-1 Peripheral DevICesttt e 126
T-1-1 Using DeviCesttt e e e e et e e 126
T-1-2 User Indicators it e 128
7-2 GP-IB Programmingttt e 130
7-2-1 GP-IB System Configuration 131
7-2-2 Signal Lines of GP-IB 132
7-2-3 Transferring/Receiving Commandsand Data 133
7-2-4 Service ReqUestst 135
7-2-5 Developing a GP-IB Program i 136
7-2-6 GP-IB Program Example i 138

125

Peripheral Devices

Section 7-1

7-1 Peripheral Devices

Various devices such as a terminal, printer, communication port, and network
can be connected to the BASIC Unit. These devices can be opened, and data
can be read and written, in the same way as a regular file.

| Fil bufr

Data A INPUT, PRINT
01234,

File #1 OPEN
owns |]
ABCD to re CLOSE

File #3

Data /
1980:7:26 Transmitting port

7-1-1 Using Devices

Opening a Device

126

Network

As shown in this figure, the devices can be associated with a file buffer from 1 to
15 by the OPEN statement.

After that, when data is read from or written to the file buffer with commands such
as INPUT and PRINT, the data is automatically sent to or received from the de-
vice. When the device is no longer necessary, it can be dissociated from the file
buffer by the CLOSE statement.

To open a device, use one of the following names in the OPEN command:

Name Device
coMl: | Communication port 1
coM2: | Communication port 2
coM3: | Communication port 3
KYBD: | Terminal keyboard
SCRN: | Terminal screen
LPRT: | Printer

FINS: | Network

The name used for the communications port can also include information speci-
fying the communications parameters to use on the port.

This section describes how to use the devices.

Before using a device, open it with the OPEN statement.

For example, open a communications port as follows:

OPEN ”"COM2:” AS #4 “L,PRT: ” is the device name, and #4 is
the file number.

When the device has been opened, it is associated with the file buffer of the spe-

cified file number. Therefore, the same file number cannot be used by any other

file or device until the first device is closed.

File numbers must be integers between 1 and 15.

Peripheral Devices

Section 7-1

Note To establish communication between BASIC Units, specify FIN as the device

Communication Ports

name in an OPEN command, a network address, node address, and Unit ad-
dress, and send or receive data using the PRINT or INPUT statements.

The communication ports can be opened by the OPEN statement using device
name COM1:, COM2 :, or COM3 :. For example,
OPEN ”“COM1:9600,E,8,2,XN” AS #4
CcoM1 : is the device name,
9600, E, 8, 2, XN is the communications
setting (described below), and #4 is the
file number.
A character string can be specified after the device name to set various commu-
nications parameters such as the baud rate, bit length, and parity.
If these parameters are not specified, the value set by the memory switch is used
for the baud rate; the character length is 8 bits, 2 stop bits are used, and flow
control is disabled.
Specify communications parameters as follows:
9600,E,8,1,N,RS,CS10,DS0, LF
Here 9600 is the baud rate, E is for even parity, 8 is the data length, 1 is the num-
ber of stop bits, N controls XON/XOFF flow control, RS controls the RTS signal,
CS10 monitors transmissions, DS0 controls the handling of the DSR signal, and
LF enables the LF-after-CR function.

The details of the communication control parameters are as follows:

Parameter Setting Remarks Default
Baud rate 300, 600, 1200, | Sets transfer rate (bits/second (bps)) Setting of memory
2400, 4800, switch. 9600 if memory
9600, 19200 switch is not set
Parity E Even parity N
¢ Odd parity
N No parity
Data length 7 7 bits per character 8
8 8 bits per character
Stop bit 1 1 stop bit 1
2 2 stop bits
XON/XOFF X Performs XON/XOFF flow control X
XN Does not perform XON/XOFF flow control
RTS control | RS Turns ON RTS (request to send) signal on execution of None
I/0 command. RTS is OFF for all other commands.
None Always turns ON RTS signal. If a communication port is
set as the printer port or terminal port, control using RTS
is not possible. In this case, therefore, do not set RTS
control.
Transmission | Csn If CTS (clear to send) signal is ON, transmits and waits CS0
monitor nms for the end of the send, where nis 0 to 30000 (in
units of 100). When 0 is specified, wait time is indefinite
None If CTS signal is ON, transmits and waits indefinitely.
DSR control | DSO Does not check DSR (data set ready) signal None
None Checks DSR signal
LF LF Sends line feed character after carriage return None
None Does not send line feed

e Communications control using RTS/DTR signals is not possible for the ports
set as the terminal and printer ports. To perform communications control using
RTS/DTR signals, change the ports set as the terminal and printer ports to
ports other than the ones for which RTS/DTR control is to be used. This is done
using memory switch 3.

o With the COM3 (RS-422) port, after send processing is completed, approxi-
mately 60 ms is required until receive processing is possible. Be sure to allow
for this time.

127

Peripheral Devices Section 7-1

The timing of the communications control parameters is shown in the following
diagram.

DTR (Out) ON ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
©u OFF ‘ ‘] ‘ ‘ ‘ L

DSR(In) ON (= | | | % |
(i OFF ‘ % + Signal not check if ‘ ‘ S + Signal not check if

! DSO is specified! | DSO0 is specified!

RST (Out) ON ‘ ‘ | | | ‘ |
OFF ‘ 1 1 ‘ 1 1 ‘ 1‘ 1 1
CTS (in) 8EF ! % ' Unlimited wait if CS0 or ! ! S ! Unlimited wait if CSO or | !
| . nothing is specified.2 | | . nothing is specified.o | |
TXD (Out) ON ‘ }r————w ‘ ‘ ‘ }r————w ‘ ‘
OFF 7 7
RXD (In) ON | | | | | | | |
OFF T T \ T T T T \
r r T r r r r Completed
OPEN PRINT INPUT CLOSE OPEN PRINT INPUT CLOSE
without with
RS RS

Note: 1. The signal is check if nothing is specified and an “RS-232C not ready” error occurs if the sign is
not ON.

2. 1f CS100 to CS30000 is specified, the system will wait for from 100 ms to 30 s for PRINT to finish.
If time expires or the signal goes OFF before PRINT finishes, an “I/O timeout” error will occur.

To send data, use the WRITE or PRINT instructions:

WRITE #4, AS, BS . ..ooo..... #4 is the file number, and A$ and BS
contain the data to send.
PRINT #4, AS$, BS, #4 is the file number, and A$ and BS

contain the data to send.
Character data stored in character variables A$ and BS are output through file
buffer 4 in the order of A$ and B$.
To receive data, use the INPUT instruction:
INPUT #4, AS, BS #4 is the file number, and 2¢$ and BS are
the variables in which the data is stored.
Data is read from the device through file buffer 4 and stored in A$ and BS.

The device is dissociated from the file buffer by the CLOSE or END statements:
CLOSE #4 . «iiviiiinnnnnnnnn. #4 is the file number.

7-1-2 User Indicators

The eight user indicators (0 through 7) on the front panel of the BASIC Unit can
be lit or extinguished by the BASIC program.

The system provides a subroutine that controls the indicators. This subroutine is
called by setting the segment and address of the subroutine and passing argu-
ments that turn on, off, or blink the indicators.

100 ’***INDICATOR CONTROL PROGRAM***

110 PARACT O

120 'DEFINITION OF FUNCTION

130 DEF FNINT (X) =- (X<32768)*X- (X>32767) * (X-65536)
140 DEF FNCNV (H%, L%) =FNINT (H%*256+L%)

150 DEF FNWORD (A%) =FNCNV (PEEK (A%+1l), PEEK (A%))
160 DEF ENOFF (V%) =FNWORD (V%*4)

170 DEF FNSEG (V%) =FNWORD (V%*4+2)

180 'LED VECTOR READ

190 DEF SEG=&HO

200 LED%=FNOFF (64)

Q
o

\Y%
\Y%

128

Peripheral Devices

Section 7-1

Note

210 LEDSEG%=FNSEG (64)
220

500 ‘LED ON/OFF/BLINK EXECUTION
510 DEF SEG=LEDSEG%: LO%=0
520 CALL LED% (LO%, LOFF%, LON%, LBLINKS%)
530 RETURN
.

560 END PARACT
1. Enter lines 120 through 210 shown above as is (the comment line can be
omitted).

2. Set the arguments LON%, LOFF%, and LBLINK% to these values according
to the number of the indicator to be controlled:

Indicator No. 0 1 2 3 4 5 6 7

Set value &HO1 | &H02 |&HO04 |&HO08 |&H10 | &H20 | &H40 | &H80

» To control more than one indicator, the values of the indicators are ORed.
For example: indicators 1, 3, and 6 can all be turned on by LON% = &H4A

o If the same values are set for the arguments in duplicate, each of the argu-
ments is assigned priority as follows:
LBLINK% > LON% > LOFF%

3. Call the indicator subroutine including the segment definition statement
(Gosus 510).

Example:
100 ’"***INDICATOR CONTROL PROGRAM***

110 PARACT O

120 'DEFINITION OF FUNCTION

130 DEF FNINT (X) =- (X<32768) *X- (X>32767) * (X-65536)
140 DEF FNCNV (H%, L%) =FNINT (H%*256+L%)
150 DEF FNWORD (A%) =FNCNV (PEEK (A%+1), PEEK (A%))
160 DEF ENOFF (V%) =FNWORD (V%*4)

170 DEF FNSEG (V%) =FNWORD (V%*4+2)

180 'LED VECTOR READ

190 DEF SEG=&HO

200 LED%=FNOFF (64)

210 LEDSEG%=FNSEG (64)

220 7

230

240 7

250 LOFF%=&HFF: LON%=0: LBLINK%=0

260 GOSUB *LEDSUB

270 FOR I=0 TO 5000

280 NEXT I

290 LOFF%=0: LON%=&H4A: LBLINK%=0

300 GOSUB *LEDSUB

310 FOR I=0 TO 5000

320 NEXT I

330 LOFF%=&H8: LON%=&H10: LBLINK%=&HS82
340 GOSUB *LEDSUB

350 FOR I=0 TO 5000

360 NEXT I

370 GOTO 230

380

390 7

400 *LEDSUB "LED ON/OFF/BLINK EXECUTION
410 DEF SEG=LEDSEG%: LO%=0

420 CALL LED% (LO%, LOFF%, LON%, LBLINK%)
430 RETURN

129

GP-IB Programming Section 7-2

440 -
450
460 END PARACT

Remarks:

e Lines 120 through 210 and 400 through 430 are as shown on the preceding
page.

e Lines 250 and 260 extinguish all indicators O through 7.

e Lines 290 and 300 light indicators 1, 3, and 6.

e Lines 330 and 340 extinguish indicator 3, light indicator 4, and blink indicators
1 and 7. At this time, indicator 6 lighted by lines 290 and 300 remains lit.

* The sequence is repeated.

7-2 GP-IB Programming

GP-IB stands for General-Purpose Interface Bus and is an interface used for
connecting various kinds of measuring instruments with a computer. This inter-
face is standardized by IEEE-488 and IEC-625. GP-IB has functions called talk-
er, listener, and controller. Talker transfers data, listener receives data, and con-
troller controls the system. Each function has a my-address of 0 to 30, and the
controller manages the devices in the system using this address.

Each device can have only talker and/or listener functions, or all three functions.

BASIC Unit

Controller
Talker, Listener

AN

Interface control line (5) ———»

Data lines (8)

Hand shake line (3)

AV

Printer Digital multi-meter Logic analyzer

Listener Talker Talker, Listener

Data are transferred with eight data lines, five interface control lines, and three
handshake lines.

Each device can request the controller for a service by using the SRQ line.

The BASIC Unit has 16 BASIC instructions and 2 functions to control the GP-IB,
so that data can be transferred with each GP-IB device without having to be con-
cerned with the details of the GP-IB transfer procedures.

130

GP-IB Programming

Section 7-2

7-2-1 GP-IB System Configuration

Interface
Bus <

Controller

Talker

Listener

Dl08
to
DI01

DAV
NRFD
NDAC

IFC
ATN
SRQ
REN
EOI

In a GP-IB system, all devices are connected in parallel as shown below.
Up to 15 interfaces (devices) can be connected to one system.

The total length of the connecting cables is 20m or the number of devices con-
nected to the same bus x2m, whichever smaller.

The maximum cable length between two devices is 4m.

<
-
(=

N

Device A Device B Device C Device D
(with Controller, (with Talker and (with Talker only) (with Listener only)
Talker, and Listener)
Listener)
e.g. BASIC Unit e.g. Digital voltmeter e.g. Tape reader e.g. Signal generator

Note

The functions (roles) of the devices connected in a GP-IB system can be divided
into controller, talker, and listener. These three functions are outlined below.

This function is to control the entire GP-IB system and is effected by a computer.
The controller specifies the destination of data and commands (listener) and the
transfer source of data (talker) to control the overall system.

Usually, only one controller is permitted for one system. If more than one device
with the controller function is connected to the same bus, only one of the devices
can serve as a controller at a time.

The controller that actually operates as a controller is called the active controller.
If there are several controllers, one has the special function of system controller.

The system controller is always active when the system is started, and can spec-
ify another controller to serve as the active controller if necessary.

The BASIC Unit is designed to serve as a system controller and active controller
when set in the master mode.

A talker transfers data under the control of the controller. For example, a talker
can be a digital voltmeter that outputs measured values. Only one talker can op-
erate in a system at a time.

A listener receives data under the control of the controller. For example, a listen-

er can be a printer. Unlike the talker, more than one listener can operate simulta-
neously in one system.

131

GP-IB Programming Section 7-2

7-2-2 Signal Lines of GP-IB

The GP-IB consists of 16 signal lines and 8 ground lines. The signal lines are
divided into the following three groups based on their functions.

Data Lines (DIO1-DIO8) These 8 lines are the bi-directional data bus.
Handshake Lines (DAV, NRFD, NDAC)
Signal name Function
DAV Data Valid When low, indicates that data on DIO1 through DIO8 sent from controller are
valid
NRFD Not Ready For Data When low, indicates that listener is busy
NDAC Not Data Accepted When low, indicates that listener has not yet completed reception

Interface Control Lines (IFC, ATN, SRQ, REN, EOI)

Signal name Function
IFC Interface Clear Initialize interface when low
ATN Attention Indicates command mode when low
SRQ Service Request Indicates that device is requesting controller for service when low
REN Remote Enable Enables each device to be remotely controlled when low
EOQI End Or Identify Used as a delimiter when more than 1 byte is transferred. Also used for parallel
polling (in combination with ATN)

Three-line Handshaking To synchronize data transfer through GP-IB, a three-line handshaking tech-
nique is employed. This handshaking is automatically performed by the GP-IB
interface LSI in the BASIC Unit. Therefore, you need not be concerned with it
when programming the Unit. However, this section briefly explains the tech-
nique for those interested.

A typical timing chart of three-line handshaking between the talker and a listener
is shown below as an example.

1st data byte 1st data byte
DIOTto8 ~~77°" (3) (11) @1) - - -
Talker
DAV H (— Data valid : Data valid (23)
N 4)1() status O) Datai |n (12) — (16) status |20) Data in-
\ L valid valid sta-
/ H status_ -~ tus
NRFD L gs) (7) (14 15 517
2) 23
Listener, N @) iy (23)
All ||sten ' "’,'! All listenersarein ¥, 471",
NDAC L oF ers are in (8) 4= (.9 (13 data reception (15) '_4 (.1 9) (2| 2) 23
N (data re- ready status (23)
ception
H=>+2.0V ready sta-
L<+08V tus All listeners are in All listeners are
- data reception in data reception
ready status ready status

Operation of Three-line Handshaking
1,2 3. 1. The talker makes the DAV line high, indicating that the data is not valid.

2. The listener makes the NRFD line low, indicating that the listener is not yet
ready to receive data.
The listener may also makes the NDAC line low, indicating that reception of
data has not been completed.
At first, the DAV line is high, and NRFD and NDAC are low.

3. The talker sets data on the DIO lines.
. The talker waits until the DIO lines stabilize.
5. The listener makes the NRFD line high when it is ready to receive.

N

132

GP-IB Programming

Section 7-2

6. After confirming that the NRFD line is high, the talker makes the DAV line
low, indicating that the data on the DIO lines is valid.

7. After confirming that the DAV line is low, the listener makes the NRFD line
low, indicating that it has started receiving the data.

While the data is being transferred, the DAV line is low, NRFD is low, and
NDAC is low.

8. Each listener allows its NDAC line to go high when it has finished receiving
the data. When all the listeners are finished, the talker will see the NDAC line
go high.

9. After confirming that the NDAC line has gone high, the talker makes the DAV
line high.

10. through 22.
The next byte is transferred by means of handshaking in the same manner.

7-2-3 Transferring/Receiving Commands and Data

Command and Data Transfer Procedure

[B][0}]
to
Dlo8

DAV

i1

ommand mode
1 1 1

To operate a GP-IB device, the controller first makes the ATN line low to transfer
a command to all the devices connected to the bus.

When the ATN line is low, the bus enters the command mode, and each device
receives the data on the data bus as a command, and performs the operation
specified by the command.

Y.
[
o
2
[V
3
o
Q.
[
)
' [
']
))
' v

1

)
1 @)
\/‘

ATN ——

S I N N O N

My Address

Interface Message

UNL: Unlisten command (1) to (n): Data
TA: Talker address (D): Delimiter (CR + LF, CR, LF or EQI)
LA: Listener address

1,2, 3.

1. The controller makes ATN low and transfers the UNL command. This re-
leases all the devices from the current status.

2. The controller transfers TA (talker address) and LAs (listener addresses).
This selects a new talker and listeners, which enter the standby status.

3. The controller makes ATN high to set the data mode, in which data is trans-
ferred between the talker and listeners.
Each device in a GP-IB system has an address called my-address.
My-address is an integer from 0 to 30, and is used to identify each device.
The controller uses my-address to select a talker or listener. The BASIC Unit's
my-address is set by the memory switch.

Interface messages are called bus commands or interface commands and are
messages to control a GP-IB system. These messages can be transferred only
by the controller.

133

GP-IB Programming Section 7-2

The interface messages are divided into two types: uni-line messages and mul-
ti-line messages.

The BASIC Unit automatically transfers an interface message each time it ex-
ecutes a statement. The interface message is information necessary for per-
forming complicated operations.

Uni-line Message A uni-line message is given a meaning by only one signal line and is transferred
using the control bus (ATN, IFC, SRQ, REN, and EOI).
Multi-line Message A multi-line message is transferred by using the data bus (DIO1 through DIO8)

and by means of handshaking. DIO1 through DIO7 of the data bus are used to
transfer a multi-line message and DIO8 is ignored. In a narrow sense, a mul-
ti-line message is called an interface message.

A multi-line message is a common command of the GP-IB interface, unlike the
commands (program codes), which are peculiar to each type of device.

Multi-line messages can be classified into the following five types:

a) Universal command
This command is for all the devices connected to the bus.

b) Address command
This command is for a specified device and is transferred with a listener
address specified.

c) Listener address
This is a command to specify a listener.

d) Talker address
This is a command to specify a talker.

e) Secondary command
This command is suffixed to a listener address or talker address to speci-
fy the secondary address of an extra listener or talker.

A list of multi-line messages is shown on here.

Codes in Command Mode

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
b; | bg | bs [bs | b3 [by | by coLumn [@ 1 2 3 4 5 6 7
ROW
o [o]o [o]o a) a) b) b)
o o]o [1 [1 GTL |LLO
o o [1 o |2
oo [1[1]3
o |1]o [0 |4 SDC | DCL
o1]o[1]5 PPC |PPU
o1]1 [o |6
o1 [1[1]7
1 [o [o [0 |8 GET |SPE
1 o o [1 |9 TCT |SPD
1 [o [1 o [10(a)
1 [o [1 |1 [11(8)
1 [1 o o [12(C)
1 [1 Jo [1 [13(D)
1 [1 [1 o [14(B)
1 [1 [1 [1 [15(0F) UNL UNT

a) MLA listener address
b) MLA talker address

134

GP-IB Programming

Section 7-2

Column 0: Address Command Group (ACG)

Column 1: Universal Command Group (UCG)
Column 2 and 3: Listener Address Group (LAG)
Column 4 and 5: Talker Address Group (TAG)
Column 6 and 7: Secondary Command Group (SCG)

Column 1 through 5: Primary Command Group (PCG)

Group Name Function

Address command GTL Go To Local Localizes

group : Initialize
SDC Selected Device Clear Sets acknowledge bit of parallel polling function
PPC Parallel Poll Configure Triggers
GET | Group Execute Trigger | Selects active controller
TCT Take Control

Universal command LLO Local Lock-out Disables local function

group ; Initialize
DCL Device Clear Cancels acknowledge bit of parallel polling function
PPU Parallel Poll Unconfigure | Sets serial polling mode
SPE Serial Poll Enable Release serial polling mode
SPD Serial Poll Disable

Listener address group UNL Unlisten Cancels listener specification

Talker address group UNT Untalk Cancels talker specification

Codes in Data Mode (ASCII Codes)

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
b; | bg | bs [bs | bs [by | by coLumn [@ 1 2 3 4 5 6 7
ROW

o o]o [0 |0 NUL |DLE |SPACE |0 @ P b
o o]o [1 [1 SOH [DC1 |[! 1 A Q a q
oo [1 [o |2 STX |Dbc2 |” 2 B R b r

o o1 [1]3 ETX |DC3 |# 3 C S c s
o |1]o [o |4 EOT |DC4 |$ 4 D T d t
o1]o[1]5 ENQ |[NAK |% 5 E U e u
o1]1 [o |6 ACK [SYN & 6 F Vv f v
o1 |1 [1]7 BEL |ETB |’ 7 G w g w
1 [o o [0 |8 BS CAN |[(8 H X h X

1 [o o [1 |9 HT EM) 9 | Y i y

1 [o [1 o [10(A) LF suB |* J 2 i z

1 o [1 |1 [118) VT ESC |+ : K [K {

1 [1 o o [12(C) FF FS , < L \ [|

1 [1 Jo [1 [13(D) CR GS - = M] m }

1 [1 [1 o [14(E) SO RS > N A n ~

1 (1 [1 [1 [15(0F) S| us / ? o) _ 0

7-2-4 Service Requests

Service Request and Serial

Polling

A device connected to the GP-IB can interrupt the controller by making the SRQ

line low to request a service.

When the SRQ line has gone low, the controller executes serial polling to find the

device that generates the interrupt.

135

GP-IB Programming

Section 7-2

The serial polling is performed with the controller requesting each device to se-
quentially transfer a status byte, as follows:

e () (i an () G e GO G S

I L

SPE: Serial poll enable SPD: Serial poll disable

TA: Talker address

STB: Status byte

Parallel Polling

UNT: Untalk

Parallel polling is a method by which the controller checks the presence or ab-
sence of requests from more than one device (up to eight devices) at a time. One
of the DIO through DI8 lines and an acknowledge line is assigned to each de-
vice, and the controller checks whether each device is making a request by mak-
ing ATN and EOI low simultaneously.

7-2-5 Developing a GP-IB Program

Data Transfer/Reception
Commands

Interface Control Commands

SRQ Interrupt Commands
Functions

Program Codes

The BASIC Unit has 16 commands and 2 functions which control the GP-IB in-
terface.

INPUTE@, LINE INPUT@, PRINT@, RBYTE, WBYTE

IRESET REN, ISET IFC, ISET SRQ, ISET REN, POLL, PPOLL,
CMD DELIM, CMD PPR, CMD TIMEOUT

ON SRQ GOSUB, SRQ ON/OFF/STOP
IEEE (0) through IEEE (7), STATUS

To develop a GP-IB program, the operations of the measuring instrument to be
connected must be understood.

For example, if a digital voltmeter is to be connected, the measurement modes
such as DC voltage and AC voltage, and measurement range of voltage are se-
lected by pressing appropriate buttons of the voltmeter. With a BASIC program,
however, the control codes of the measuring instrument called program codes
are transferred by the PRINT@ command.

The measured voltage is received by the INPUT@ command.

In this manner, a human operator could be replaced by a BASIC program.

A procedure to develop a GP-IB program is briefly explained on the following
pages. For details, refer to the BASIC Unit Reference Manual (W207-E1).

Program codes are used to control each operation of the measuring instrument.

These program codes are different for each instrument. Refer to the instru-
ment’s manual for details.

The program codes are entered in the BASIC program in the sequence ex-
pected by the measuring instrument and executed by the measuring instrument.
Each program code is specified by a character code with the operation of each
measuring instrument enclosed by literal (”). In addition, a program code can
also be specified by a variable when, for example, an output frequency is contin-
uously changed.

Example: Digital Multimeter 3478A

136

PRINT@24; "F1RAN5ST4” 24 is the listener address, F1 is the
measuring function (DC voltage), RA is
the auto range, N5 is the 5 1/2 digit dis-
play, and T4 is the trigger (hold).

GP-IB Programming

Section 7-2

Initializing GP-IB

1,2, 3.

Before transmitting data with the GP-IB, it is necessary to initialize the interface
bus and measuring instruments.

1. Initialize the GP-IB by making IFC (interface clear) of the interface control
bus low:
ISET IFC

2. Enable the GP-IB to be remotely controlled by making REN (remote enable)
low.

ISET REN

3. Transfer the DCL (device clear) command in the command mode to initialize
the measuring instrument.
WBYTE &H14;

4. This completes initialization. Some measuring instruments takes a long
time to be initialized. Be sure to wait for the time specified by the instrument’s
manual before issuing the next command.

Transfer/Reception with GP-IB

To transfer commands or data to the GP-IB, the PRINT@ or WBYTE statements
are used. To receive data, the INPUT@Q, LINE INPUT@, or RBYTE instructions
are used.

For example, suppose a 3478A digital multi-meter is connected.
Transfer the program code determined for each measuring device.

PRINT@24; "F1RAN5ST4” 24 is the listener address, F1 is the
measuring function (DC voltage), RA is
the range (auto range), N5 is the 5 1/2
digit display, and T4 is the trigger mode

(hold).
Next, trigger the measuring instrument.
PRINT@24; "T3" . i, 24 is the listener address, and T3 is the

trigger mode (Single trigger).
Receive and store the data in a variable.
INPUT@24;T . cevvvvnnnnnnnnn.. 24 is the talker address and I is the
name of data storage variable.
As you can see, data can be transferred to and from a GP-IB device with a simple
BASIC program.

Service Request Interrupt Processing

If a service request is generated by a GP-IB measuring instrument, the interrupt

service routine defined with ON SRQ GOSUB will be called.

ON SRQ GOSUB *LABEL *LABEL is the label or first line number
of the SRQ interrupt routine.

After the routine has been defined, the interrupt must be enabled when the pro-

gram is ready to accept interrupts.

SRQ ON

To disable the interrupt, use SRQ OFF. To stop it temporarily, use the SRQ STOP

statement.

When the SRQ interrupt service routine has been called, execute serial polling

with the POLL statement.

The device status will be stored in a variable.

POLL 24, S . tiiiieinnnennn. 24 is the talker address, and s is the de-
vice status storage variable.

If bit 6 of the device status is 1, the SRQ interrupt was generated by the specified

talker.

This statement can be used to check bit 6 of the status:

IF S AND 64 THEN *LABEL1

137

GP-IB Programming

Section 7-2

When the interrupting device has been found, read the data it is trying to send:

INPUT@24:R . evvvvnnnnnnnnnn. 24 is the talker address and R is the
data storage variable.

When the data has been received, the interrupt service routine can return (with

the RETURN statement).

7-2-6 GP-IB Program Example

Preparations

Example 1

Example 2

138

The BASIC Unit controls GP-IB devices by sending “program codes” to them in-
stead of pressing the panel buttons.

For example, to select the DC voltage mode as the measurement mode of Hew-
lett-Packard’s digital multi-meter 3478A, program code “F1” is sent instead of
pressing the DC voltage mode switch.

In this example, the DC voltage function is selected as the measurement func-
tion, the range is set to the auto range, display is set to 5 1/2 digit mode, and the
measured current value is displayed on the terminal.

My-address of the digital multi-meter in this example is 24.

10 PARACT 0

20 AR R b 2 b I A I A b A b I b I I I A b b b b

30 '* GP-IB PROGRAM SAMPLE 1 *

40 ' * DMM = 3478A (ADDRESS "24") *

50 AR R S I b I O S S S e I I b b S b b b b Sk S S b b

60 ISET TIFC . vivrrrvnnnnnnnnn Transfer interface clear command to ini-
tialize GP-IB interface

70 ISET RENovvvvennnn... Make REN (remote enable) line true
(low) to enable GP-IB to be remotely
controlled

80 WBYTE &H14;cooon.. Send device-clear command (&H14) to

initialize 3478A

90 FOR J=0 TO 5000:NEXT J Wait until 3478A has finished initializa-
tion

100 PRINT@ 24; "F1RAN5ST4” Send program codes to set DC voltage
function (F1), auto-range (rR2), 5 1/2 dig-
it display (N5), and trigger hold (T4)

110 PRINT@ 24; "T3" Send single trigger (T3) to 3478A
120 INPUT@ 24; I . .ooco..... Receive data from 3478A

130 PRINT T . 'vveieiiannnnn. Print data on terminal

140 END

150 END PARACT

In this program, the two-line resistor function is selected as the measurement
function, the range is set to auto range, the display is set in 5 1/2 digit mode, and
the internal trigger is set. When the service request button on the front panel is
pressed, the measured resistance is displayed on the terminal.

My-address of the digital multi-meter in this example is 24.

10 PARACT O

20 AR b b S b b b e I b b b b b b b b b b e b I b b b b b b

30 '*GP-IB PROGRAM SAMPLE 2 *

40 '+ DMM = 3478A (ADDRESS "24") *

50 A R b I b I A b A R b b I I S A b b 2

60 ISET IFC . tivrriiinnnnnnn Transfer interface clear command to ini-
tialize GP-IB interface

70 ISET REN . ..ovvinnnnnnnnn. Make REN (remote enable) line true
(low) to enable GP-IB to be remotely
controlled

80 WBYTE &H14;covven.. Send device-clear command (&H14) to

initialize 3478A
90 FOR J=0 TO 5000:NEXT J Wait until 3478A has finished initializa-
tion

GP-IB Programming

Section 7-2

100 PRINT@ 24; "F3RANST1”

110 PRINTE@ 24; ”"KM20”

120
130
140
150
160

ON SRQ GOSUB *SBOT
SRQ ON
PRINT
*LOOP

GOTO

"SRQ KEY ON!"”

*LOOP

170 mmm e

180
190
200
210

*SBOT
POLL 24, S
IF S<64 THEN 230
INPUTE@ 24;R

220
230
240
250
260

WBYTE SHS5F;
PRINT "R=";R
RETURN

END

END PARACT

Note

Send program codes to set 2-line resis-
tor function (£3), auto-range (rR2), 5 1/2
digit display (N5), and internal trigger
(T1)

Clear serial poll register (K) and set
mask (M20) so that SRQ is generated
only when SRQ button on front panel is
pressed

Define SRQ interrupt service routine
Enable SRQ interrupts

. Display "SrRQ KEY ON!” on terminal

Wait here until SRQ key is pressed

SRQ interrupt service routine

Read device status

Make sure the device generated SRQ
Read data from the 3478A and display it
on the terminal.

If the sampling cycle of the 3478A’s internal trigger is short, the previously held

data may be transferred. If this occurs, it is necessary to clear the serial poll reg-
ister. Change line 220 of the sample program as follows:

220 PRINT@24;"K”

Program Code Example for Digital Multi-meter 3478A

Type Program code Function
Measurement function F1to F7 DC voltage, AC voltage, 2-line resistor, 4-line resistor, DC current, AC
current, expansion resistor
Range R-2 30 mvVDC
R-1 300 mV, 300 mA AC/DC
RO to R2 3V,30V, 300V AC/DC or 3 A, 30 Q, 300 €, 30 kQ, 30 kQ, 300 kQ, 3 MQ,
R3 to R7 30 MQ
RA Auto range
Display N3 to N5 31/2,41/2,5 1/2 display
Trigger T1toT5 Internal trigger, external trigger, single trigger, trigger hold, first trigger
Auto zero Z0 Auto zero off
Z1 Auto zero on
Write to display D2 text Displays message
D3 text Displays message (display updating stopped)
D1 Normal display (D2, D3 display mode canceled)
Preset command HO Sets DC voltage, auto range, single trigger, 4 1/2 digit display, and auto
H1 zero ON. INPUT@ command disabled.
H2 to H7 Same, except INPUT@ command enabled.
DC voltage, 2-line resistor, 4-line resistor, DC current, AC current,
expansion current. Others same as H1
Binary status B Outputs status currently programmed by RBYTE command
Others K Clears serial poll register
E Reads error register
MXX Sets serial mask register (SRQ)
S Reads front rear switch
C Calibration

139

SECTION 8
Troubleshooting and Maintenance

This section provides the error messages and indications required for troubleshooting as well as general maintenance proce-
dures for the BASIC Unit.

8-1 Troubleshooting i 142
8-1-1 EITOr MSSAZES .« o\ttt ettt e e et e et e e e e 142
8-1-2 Error Indication and Status 146
8-2 MAINteNANCE . . .« oottt 147
8-2-1 Replacing Units 147
8-2-2 Battery Replacement i 147
8-2-3 INSPECHIONottt 149

141

Troubleshooting Section 8-1

8-1 Troubleshooting

8-1-1 Error Messages

If an error occurs while a program is being entered or executed, an error mes-
sage will be displayed on the terminal and the BASIC Unit will wait for operator
input. At this time, an error code corresponding to the error message is set in
ERR. This error code can be checked with the ERR function.

This table lists error messages, error codes, causes, and remedial actions.
Some error messages do not have error codes. When these error messages are
displayed, no error code is set in ERR.

-RDIM is declared without global variable.

-Number of arguments to FN function is
different from the number declared.

-System variable other than MIDS$, DATES,
and TIMES is used on the left side of an
assignment statement.

-Incorrect line numbers are used in GOTO
or GOSUB.

-Multi-dimensional array variable was used
ina PC READ or PC WRITE.

-Number of arguments to a system
function is wrong.

-Character string is used for arithmetic
operation other than addition.

Error message Error Cause Remedy
code
NEXT without FOR 1 FOR and NEXT are not correctly used in Use FOR and NEXT in pairs.
pairs
Syntax error 2 Instruction not used properly Check the Reference Manual for the

correct syntax and correct the
program.

RETURN without GOSUB 3

GOSUB and RETURN are not correctly used
in pairs.

This error occurs if a RETURN
statement is encountered in a routine
that was not called by GOSUB. Always
call subroutines with GOSUB.

Out of DATA 4

No more data for a READ statement.

Match the number of data in DATA
statements with the number used by
READ. Check whether RESTORE is
used correctly.

lllegal function call 5

A function was used incorrectly: an

argument exceeds range permitted by the

function, or the result exceeds the range of

function.

-Negative or 0 argument is specified for
LOG function.

-Negative argument is specified for SQrR
function.

-Incorrect argument is used for MIDS,
LEFTS, RIGHTS, SPACES, or INSTR.

-Incorrect interrupt, signal, or key number
is used for ON PC GOSUB, ON SIGNAL
GOSUB, or ON KEY GOSUB.

-Value of expression of ON GOSUB or ON
GOTO is negative.

-PC READ or PC WRITE variable and
format types do not match.

-FIELD, PUT, or GET was used on a
non-random access file.

Check the Reference Manual to see
how to use the function correctly.

Overflow (OV) 6

Operation result or numeric constant
exceeds permitted range.

Check if data type and permitted
range of values are correct.

142

non-existent device.

Troubleshooting Section 8-1
-
Error message Error Cause Remedy
code
Out of memory 7 Memory capacity exceeded; program is Review program and remove
too long. unnecessary portions.
Memory capacity of compiler area, Use PARACT to increase the work
general-purpose memory area, S code area for the task.
area, E code area, and stack area
exceeded.
Undefined line number 8 The line number in a GOTO, GOSUB, or IF Check line number.
... THEN ... ELSE does not exist.
Non-existent line number specified in an
EDIT command.
Subscript out of range 9 Value of subscript of array variable Check range of subscript defined by
exceeds range defined by DIM and array variable and range of array
OPTION BASE. variable to be referenced.
Duplicate definition 10 An attempt was made to re-define an array | Use a different array name.
or type. Define type once.
More than one OPTION BASE, OPTION Use OPTION BASE, OPTION
LENGTH, or OPTION ERASE statement LENGTH, or OPTION BASE only once.
was found. Check name of argument.
More than one argument with the same
name and type was defined by DEF FN.
Division by Zero (/0) 11 The program attempted to divide by 0. Do not divide by 0.
lllegal direct 12 Attempted to use a BASIC statement as an | Use statements in programs.
immediate mode command.
Type mismatch 13 Types of variables do not match between Check data type.
right and left members of expression or in
arguments of function.
Out of string space 14 Too much memory used by character Reduce character string length or
strings. character string array size.
String too long 15 One or more character strings is longer Make sure that no character string is
than 538 characters. longer than 538 bytes. (Long
character strings may be split into
several shorter strings).
Increase the size of the work area
allocated by PARACT.
Can’t continue 17 When execution is stopped by the sTop If you wish to use CONT, do not
statement or by CTRL+C or CTRL+X and change the program while it is
the program is changed, execution cannot | stopped. (There may also be places
be resumed with CONT. from which execution cannot be
continued even if the program is not
changed.)
Undefined user function |18 Undefined user function or machine Define functions with DEF FN or DEF
language function is referenced. USR before using them.
RESUME without error 20 RESUME was encountered outside of an Don’t use RESUME outside of an error
error processing routine defined with oN processing routine defined with ON
ERROR GOTO. ERROR GOTO.
FOR without NEXT 26 FOR and NEXT are not correctly used in Use FOR and NEXT in pairs.
pairs.
WHILE without WEND 29 WHILE and WEND are not correctly used in | Use WHILE and WEND in pairs.
pairs.
WEND without WHILE 30 WHILE and WEND are not correctly used in | Use WHILE and WEND in pairs.
pairs.
Duplicate label 31 The same label was defined more than Change labels so that each label is
once in the program. only defined once.
Undefined label 32 Undefined label was referenced. Make sure that all labels referenced
are defined.
Feature not available 33 The program attempted to use a Make sure all necessary hardware

exists.

143

Troubleshooting Section 8-1
-
Error message Error Cause Remedy
code

Routing error 37 The network specified by a PC READ or PC | Correct routing table or specify a
WRITE statement was not found in the different network.

CPU Unit’s routing table.

READ Or WRITE 38 PC READ/WRITE command without area Use pC READ and SEND(192), or pC

mismatch specified and SEND(192) or RECV(193) WRITE and RECV(193), in pairs.
instruction of CPU Unit are not correctly
used.

Not required from FINS | 39 PC READ/WRITE was executed without Define a PC interrupt service routine
area specified when SEND(192) and with ON PC and use PC READ or PC
RECV(193) instruction of CPU Unit WRITE in the routine.
program is not executed.

FIELD overflow 50 FIELD length of more than 256 bytes was | Field length must be less than 257
specified as the record length of a random | bytes.
file.

Bad file number 52 The program attempted to use a file Check the file number and reduce the
number outside the range 1 to 15. number of files open simultaneously if

necessary.

File not found 53 Specified file was not found while Specify correct file name.
executing a file manipulation command
such as LOAD, SAVE, KILL, Oor NAME.

File name specified by LOC or LOF was not
found.

An attempt was made to open a
non-existent file in APPEND or INPUT
mode.

File already open 54 OPEN, KILL, or NAME was executed on an | Close the file before re-opening,
open file. deleting, or renaming it.

Input past end 55 There is no more data in the file. Use functions such as EOF and LOF to

detect end of file.

Bad file name 56 Incorrect file name was specified for a file | Specify correct file name.
manipulation command such as LOAD,

SAVE, KILL, Or OPEN.

Direct statement in file 57 A direct statement (statement with no line | Check file contents to see if line
number) was found when loading an ASCII | numbers have been damaged.
program file.

Sequential 1/0 only 59 I/O command other than sequential 1/0 Use sequential I/O command.
command was used. Only ASCII file may be MERGEd.
Binary file was specified for MERGE.

File not open 60 The program attempted to use a file Open file before executing I/O
number which has not been opened in a command.
command such as PRINT#, INPUT#,

WRITE#, GET, or PUT.

File write protected 61 The program attempted to write to a Turn off write protection.
write-protected file, or to write to a memory
card whose write-protect switch is ON.

Disk offline 62 The device specified in a file manipulation | Set the memory card correctly.
command such as LOAD, SAVE, KILL, Oor
OPEN was not found.

Disk 1/O error 64 There was not enough space available in Check to see if the Memory Card is
the Memory Card. correctly formatted and contains valid
An error occurred during memory card data
input or output.

File already exists 65 File name specified by NAME already Specify a different file name or change
exists. the name of the existing file.

Disk full 68 There is no more room on the memory Delete any unnecessary files or insert
card for a SAVE, PRINT#, or PUT new memory card.
instruction.

Bad drive number 70 Incorrect drive was specified in file name. Drive number must be 0.

144

simultaneously.

Troubleshooting Section 8-1
-
Error message Error Cause Remedy
code
Rename across disks 73 A file cannot be renamed from one drive to | Do not attempt to rename files from
another. one drive to another.
lllegal operation 74 The program attempted to perform a file Check the mode used in the OPEN
operation which is not allowed by the file’'s | statement
OPEN mode.
RS232C board not ready | 82 DSR is OFF. Check connected device.
No Message queue 101 Message queue is missing or full. A task Reduce the number of messages
may have more than 4 message queues. used by the task.
Message queue not 102 Message queue specified by SEND or Use correct message number. Be sure
found RECEIVE was not found. to allocate the message number with
MESSAGE before using it.
Message queue can’t 103 An error occurred during I/O. This is Check program.
release probably a result of internal stack
manipulation.
Cannot allocate 111 No message queue is assigned. Reduce number of message queues
message queue in use to eight or less.
Fatal Error 120 An error occurred during I/O. This is Check program.
probably a result of internal stack
manipulation.
GPIB BIOS Error 121 An error occurred during GP-IB I/0. Check GP-IB connections.
IEEE time out 128 Time out while processing time monitoring | Check GP-IB connections and status
of GP-IB. of GP-IB devices.
IEEE interface clear 129 IFC was received during execution. Correct the GPIB application so that
IFC only goes ON once.
IEEE not controller 130 Command used by controller (master Set controller (master mode).
mode) is used.
IEEE not active device 131 Specified GP-IB device is not connected. Check GP-IB devices and addresses.
1/0 Timeout 200 Peripheral device is inoperable and Check device connections and status.
monitor time (60 seconds) is exceeded.
lllegal task number 201 Undefined or illegal task number was Make sure the task number is
specified for TRON, TROFF, @ (current task | between 0 and 15, and that the task is
switching), TASK, TWAIT, EXIT, or defined in the program.
SENDSIG.
lllegal format 202 Incorrect characters were found in a PC Check syntax of PC READ or PC
READ or PC WRITE statement. WRITE.
Task already END 203 TWAIT was used to wait for a task that has | Check program.
already finished.
Task already RUN 204 TASK was used to start a task that was Check program.
already executing.
Timer nothing 205 Timer cannot be acquired from system. Check program.
Floating point exception | 206 Valid range was exceeded in a Make sure that data does not exceed
floating-point operation. valid range.
FINS error response 207 Error occurred during execution of network | Check devices on network. For
instruction. Another error code is stored in | details, refer to the descriptions of
ERR2 Or ERR3. FINS.
ERR2: Main response code
ERR3: Sub-response code
Too many files OPEN 208 Too many files were opened Check program.

Undefined Array

The program used an array that was not
defined with DIM or RDIM.

Define arrays before they are used.

lllegal line number

A line number outside the range 0 to
65535 was referenced, or the program
attempted to branch to a different task with
GOTO or GOSUB.

Line numbers must be between 0 and
65535. Do not branch from one task to
another.

145

Troubleshooting Section 8-1

Error message Error Cause Remedy
code
Verify Error Contents of current program area do not Check program area and file.
coincide with contents of file specified for
verification.
Program is protected --- User program area is memory-protected. Turn off memory protection with the
DIP switch on front panel.
Undefined taskO --- The program has no task 0. The program’s main task must be task
Too many variables --- Space used by variables exceed memory | Reduce number of variables.
capacity.
Compiler error --- Error in system ROM. Contact your OMRON representative.
Not enough memory --- Out of memory during compilation in RUN | Increase program capacity, number of
status. variables, or size of variable.
Switch is STOP --- Attempt was made to RUN the program Set switch to RUN.
with RUN/STOP switch set to STOP.
System has fatal error --- Error occurs during initialization. Program | Refer to 8-1-2 Error Indication and
cannot be executed. Status.
END PARACT without END PARACT was encountered without a Check and correct program.
PARACT corresponding PARACT.
PARACT without END END PARACT statement is missing. Check and correct program.
PARACT
Undefined line %u Branch destination for GOTO or GOSUB was | Check program.
not found when RESUME was executed.
Invalid ECODE Execution code (ECODE) is wrong and ECODE is assumed to be missing
program cannot be run. during next RUN, and ECODE is
created again and program is
executed.

8-1-2 Error Indication and Status

Error List
Error Problem Correction
All indicators do not light | Power to PC is turned OFF. Turn ON power to PC.
BASIC Unit is not securely mounted. Correctly mount BASIC Unit.
Initialization between CPU Unit and BASIC Clear cause of error and restart Unit by using
Unit is not correctly performed. the Restart Bit in Auxiliary Area word AR0O1
CPU Bus Unit error corresponding to Unit (turn the bit ON, and
’ then OFF).
BASIC Unit will not start at this time but CPU It ist | Unit
Unit can operate. error persists, replace Unit.
Malfunctioning of Power to connected devices is turned OFF. Turn ON power to devices.
connected devices Cable disconnected. Connect cable and tighten screws.
Break in cables, wrong wiring, or faulty Repair or replace cable.
connections.
Baud rate and communication parameters do | Check baud rate and communication
not match. parameters.
BAT LOW lights Battery is not properly connected. Check battery connections.
Battery is discharged. Replace battery.

Note The program area can be disturbed if a machine language program is run out of
control. Re-initialize the program area using the following procedure if required.

o If the BASIC Unit operates with power turned on, but LIST or EDIT cannot be
executed, input the following and then turn the power supply off and on:

MON— Enters machine language monitor
*RDS0=40- Sets segment register to 40 (address 400)
*D0.37 Displays the first four bytes

0000 - 04 12 90 19

*W0:0.0.0.07 Overwrites the above four bytes.

146

Maintenance

Section 8-2

o If the BASIC Unit does not operate at all, contact your OMRON representative.

The following errors may occur if the unit number is set incorrectly or if the
memory switches cannot be read or written correctly. The BASIC program can-
not be executed if any of these errors occur.

The error codes will be indicated as a binary value on the user indicators 0
through 7, with each indicating a binary digit between 20 and 27, i.e., indicator 0
turns ON to indicate a 1 in the 1’s digit, indicator 1 turns ON to indicate a 1 in the

2’s digit, indicator 2 turns ON to indicate a 1 in the 4’s digit, etc.

Error code (on user Problem Correction
indicators)

11 The same unit number has been set fortwo | Check I/O table with CVSS and set I/O table
CPU Bus Units. correctly.

12 The unit number is already used for another | Check I/O table with CVSS and set I/O table
Unit. correctly.

13 Unit is not registered in 1/O table. Update I/O table.

14 Unit number is not read correctly from CPU Rotate unit number setting switch once and
Unit. set correct unit number. If error still persists,

Unit may be defective.
15 and 16 Cyclic interface operation error. Turn the PC OFF and then ON. If error

persists, BASIC Unit or CPU Unit may be
defective.

07 through 09

Error occurs while reading or writing the CPU
Unit’s memory switches.

BASIC Unit will operate with default memory
switch values.

Turn the PC OFF and then ON. If error
persists, Unit may be defective.

8-2

8-2-1

8-2-2

Battery Life and
Replacement Period

Maintenance

Replacing Units

» Before replacing the Unit, be sure to turn off the power.

o After replacing the Unit with a new one, check again to see if the old Unit is
really defective.

¢ When sending a defective Unit to OMRON for repair, describe the symptoms of
the error as clearly as possible.

o When the BASIC Unit malfunctions, the program in the internal RAM or EE-
PROM of the BASIC Unit cannot be read at all. It is therefore recommended
that the program be saved to a memory card of the CPU Unit or to a floppy disk.
For details, refer to Section 4-4 Program Save and Load.

» For quick recovery in case of trouble, always have at least one spare Unit avail-
able.

Battery Replacement

The maximum life of the battery is 5 years, regardless of whether or not power is
supplied to the Unit.

The battery life when power is not supplied to the Unit varies significantly with
ambient temperature. The higher the temperature, the shorter the life of the bat-
tery.

147

Maintenance

Section 8-2

The guaranteed and typical values for battery life when the power is not supplied
to the Unit are shown below. The guaranteed value is based on memory backup
at 55°C when the power is not supplied to the Unit. The typical value is based on
memory backup at 25°C when the power is not supplied to the Unit

Effective life of battery 5 years

Memory backup battery life Guaranteed 9,500 hours (Approx. 1 year)
when power is not supplied value

Typical value 43,000 hours (Approx. 5 years)

5
Total time during ' \
which power is not 4 L \
suppliedtothe Unit 3fp===-2---- -
(years)) ! :\
1 : LN
] ' '
25 20 55
Ambient tem-

perature (°C)

If the memory backup battery lifetime is exceeded, the BAT LOW indicator will
light and the Battery Error Flag at bit 15 of word n+1 of the cyclic area input status
will turn ON.

Replace the battery with a new one within 1 week after the BAT LOW indicator
turns ON using the following replacement battery.

Name Model no.
Battery Set C500-BAT08

Battery Replacement Procedure

148

1,2, 3.

&Caution

@)
JPOP\’ 2 D
Rs-232

O

Press the cover

while sliding it down ‘
I i

1. Turn OFF the power to the Unit. If the power is already OFF, turn it ON for at
least 1 minute and then turn OFF.

It is possible to replace the battery with the power turned ON, but it is very dan-
gerous because short-circuiting can easily occur.

Maintenance Section 8-2

2. While pressing the upper part of the battery compartment cover, slide it
down and remove it.

3. Pull out the battery and connector and replace it with a new one. This proce-
dure must be completed within 5 minutes.

4. Replace the battery compartment cover.

/N DANGER The battery may leak, catch fire, or explode if disposed of in fire. Do not
short-circuit, charge, disassemble, heat, or incinerate the battery.

8-2-3 Inspection

Item of Inspection The main inspection items are as follows:

Item Criteria Check With
Ambient Is the temperature (in the control box) Must be 0° to 55°C Thermometer
temperature appropriate?

Is the humidity (in the control box) appropriate? | Must be 10% to 90% with no Hygrometer
condensation
Is the Unit clean? Must be free from dust Visual
inspection
Mounting status | Are the cable connector screws tight? Must not be loose Screwdriver
Is the cable okay? Appearance must be normal Visual
inspection

149

BASIC Unit

Appendix A
Standard Models

Name

Specifications

Model number

BASIC Unit

Two RS-232C interfaces, RS-422 interface

CV500-BSC11

Two RS-232C interfaces, RS-422 interface,
EEPROM

CV500-BSC21

Two RS-232C interfaces, Centronics interface

CV500-BSC31

Two RS-232C interfaces, Centronics interface,
EEPROM

CV500-BSC41

RS-232C interface, GP-IB interface

CV500-BSC51

RS-232C interface, GP-IB interface, EEPROM

CV500-BSC61

Option and Maintenance Parts

Name

Specification

Model number

Battery Set

Backup battery

3G2A9-BAT08

Connecting Cable

For connecting 14-pin and 36-pin connectors
(printer cable)
Cable length: 1.5 m

CV500-CN127

151

Ratings

Appendix B
Specifications

Conform to the SYSMAC CV-series Programmable Controllers.

Characteristics

Item

Specification

CPU

uPD79011 (V25 + internal OS)

Operating system

Real-time monitor (NEC)

Program language

Interpreter-type multitasking BASIC and machine language (V25)

Number of user tasks

16 (can be executed in parallel)

Inter-task communication

Message transfer by SEND and RECEIVE instructions. Data sharing by global variable

Inter-task synchronization

Notification of event occurrence by SENDSIG, ON SIGNAL GUSOB, and TWAIT instructions

Task control method

Started by TASK instruction, and stopped by END, STOP, or EXIT instruction

Debugging function

Tracing by TRON instruction, one-instruction execution by STEP instruction, pause and
resumption by STOP, BREAK, and CONT instructions

Memory

RAM Source code area: 63K bytes

Variable area + executable code area: Approx. 110K bytes
32K bytes of variable area reserved for non-volatile variables.

EEPROM To save source program: 63K bytes (BSC21, 41, and 61 only)
The number of times the program can be written to the EEPROM is limited

to 5,000. Do not exceed this limit.

Interface with PC’s CPU
Unit

Cyclic Total of 384 I/O words possible

Default: 10 input words and 15 output words (via CPU Unit’s I/O refresh)

CPU bus Default: No CPU bus link. To link CPU bus, CPU bus link must be set with
link the CVSS.

Number of words read from CPU Unit: 128 max.

Number of words read between CPU Bus Units: 8 max

(The CPU Bus Link Area is refreshed by CPU Unit at 10-ms intervals.)

Event When PC READ or PC WRITE instruction is executed:
512 bytes max. each for read and write
When PRINT instruction is executed:
538 bytes max. each for read and write
External interface Interface CV500-BSC11/BSC21 CV500-BSC31/BSC41 | CV500-BSC51/BSC61
RS-232C 2 ports 2 ports 1 port
RS-422 1 port
Centronics | --- 1 port
GP-IB - 1 port
Diagnosis function BASIC Unit | Watchdog timer, low battery voltage detection
PC interface | Bus check, transfer/receive data horizontal parity check
Battery life 5 years

When the memory is backed up with no power applied, the life expectancy depends on the
ambient temperature. When the BAT LOW indicator on the front panel of the Unit is i,
replace the old battery with a new one within 1 week.

Current consumption

CV500-BSC11/BSC21/BSC51/BSC61: max. 0.5 A
CV500-BSC31/BSC41: max. 0.3 A

Dimensions

250 x 34.5 x 93 mm (HxWxD)

Weight

550 gram max.

153

Specifications

Appendix B

I/O Interfaces

RS-232C (Port 1 or Port 2)

Item Specification
Communication Half duplex
Synchronization Start-stop

Baud rate

300/600/1,200/2,400/4,800/9,600/19,200 bps

Transmission method

Point-to-point

Transmission distance

15 m max.

Interface

Conforms to EIA RS-232C

RS-422 (Port 3)
ltem Specification
Communication Half duplex
Synchronization Start-stop
Baud rate 300/600/1,200/2,400/4,800/9,600/19,200 bps
Transmission method 1:N

(connection)

Up to 32 Units can be connected to a PC. Termination resistance can be set by DIP
switch.

Transmission distance

Total extension: 500 m max.

Interface (electrical
characteristics)

Conforms to EIA RS-422 (Driver IC conforming to RS-485 is used.)

Termination resistance

220 Q (built-in)

Centronics
Item Specification
Communication Unidirectional communication
Handshake 2-line handshaking with STROBE and BUSY lines

Data transmission

8-bit parallel transmission

Interface TTL level L level: Output<0.5V, Input<0.8V
H level: Output=2.4V, Input=2.0V
Timing Chart
H - - - - _— OO O - - - - - - - - - - - - - - - - - - -
DATA1t08 e
L ,,,,,,,,,,,,,,,,,,,,,,,,,
1 us (min.) 2 us (min.) 1 us (min.)
H ,,,,,,,,,,
STROBE
1
H-------------- - {—-------
BUSY
1 |

154

Specifications Appendix B
GP-IB
Item Specification
Communication Half duplex
Baud speed Varies depending on device connected
Handshake Three-line handshaking

Data transmission

8-bit parallel transmission

Total cable length

20 m or number of devices connected to bus x 2 m, whichever is shorter

Cable length between devices

4 m max.

Number of devices connectable

15 max. including this Unit

Interface Conforms to IEEE Std 488-1978 (with 24-pin piggyback connector)
Signal lines Data lines: 8 (DIO1 through DIO8)

Handshake lines: 3 (DAV, NRFD, NDAC)

Control lines: 5 (ATN, REN, IFC, SRQ, EOQI)

Signal system ground: 8
Signal logic Negative logic | True: L level (max. 0.8 V)

False: H level (min. 2.0 V)

GP-IB Interface

Operation Symbol Sub- Function
function
Source handshake SH SH1 sH all functions
Acceptor handshake AH AH1 aH all functions
Talker T T6 Basic talker
Serial polling
Talker cancellation by MLA
Expansive talker TE TEO No TE function
Listener L L4 Basic listener
Listener cancellation by MTA
Expansive listener LE LEO No LE function
Service request SR SR1 SR all functions
Remote-local RL RL1 RL all functions
Parallel poll PP PP1 pP function by remote message
Device clear DC DC1 DC all functions
Device trigger DT DT1 DT all functions
Controller C Cc1l System controller function
Cc2 Transmission of IFC
C3 Controller in charge
c4 Transmission of REN
Cc26 Transmission of message of interface responding to SRQ.
Execution of parallel polling

The BASIC Unit can be set in two modes: Master Mode and Slave Mode. In the Master Mode, the Unit always serves as
the system controller. In the Slave Mode, the Unit only serves as the talker or listener.

155

Appendix C
Hardware Interfaces

RS-232C Interfaces

Pin Configuration
Port 1 and Port 2 are RS-232C interfaces and are configured as follows:

1\(\ 6

! O

| o1 |

| O |

| O |

19 o |

-
| ’O ~—9
Pin No. Signal symbol Signal name Signal flow

1 FG Frame ground
2 SD (TXD) Send data Output
3 RD (RXD) Receive data Input
4 RS (RTS) Request to send Output
5 CS (CTS) Clear to send Input
6 Unused
7 DR (DSR) Data set ready Input
8 ER (DTR) Data terminal ready Output
9 SG Signal ground --
Connector FG Frame ground --
washer

Applicable Connector

Plug: XM2A-0901 (OMRON)

Hood: XM2S-0911 (OMRON) or equivalent —

Recommended Cables

AWG28 x 5P IFVV-SB (Fujikura Densen)

CO-MA-VV-SB 5P x AWG28 (Hitachi Densen)

Cable length: 15 m max.

One plug and one hood are supplied for each port.
Connectors other than those on the left cannot be used.

157

Hardware Interfaces

Connection Examples

Personal Computers

BASIC Unit Personal computer
FG Connector frame e I — 1 FG
SG 9 7 SG
SD 2 2 SD
RD 3 >< 3 RD
RS 4 4 RTS
CSs 5 >< 5 CTS
DR 7 6 DSR
ER 8 >< 20 DTR
Shielded cable
Numbers indicate pin numbers.
Printers
BASIC Unit Printer
FG Connector frame ﬁlj 1 FG
SG 9 7 SG
SD 2 3 RD
Cs 5 20 DTR
DR 7 J
Shielded cable
Plasma Displays
BASIC Unit Plasma display
FG Connector frame 1
SG 9 7 SG
SD 2 >< 2 SD
RD 3 3 RD
RS 4 4 RTS
Cs 5 % 8 CD
DR 7 20 DTR

CPU Unit Host Interface/Host Link Unit

Shielded cable

Host Interface/Host Link Unit

—

BASIC Unit
FG Connector frame
SG 9
SD 2
RD 3
RS 4
CS 5
DR 7
ER 8

HRR

158

L

Connector frame FG
9 SG
2 SD
3 RD
4 RS
5 CSs

Shielded cable

Appendix C

Hardware Interfaces Appendix C

Note 1. If the cable is connected or disconnected while the power is being supplied to the BASIC Unit and periph-
eral device, the BASIC Unit may malfunction. Be sure to turn OFF the power before connecting the
cable.

2. The above connection examples do not necessarily apply to all devices. Be sure to consult the manual
for the peripheral device you are connecting.

RS-422 Interface

Pin Configuration

Port 3 is an RS-422 interface and is configured as follows:

Qo] !
12 o
19 ol |
|10 O

Signal name Abbreviation Pin No. Signal flow

Send data SD- (SDA) 9 Output

SD+ (SDB) 5
Receive data RD- (RDA) 6 Input

RD+ (RDB) 1
Frame ground FG 7
Frame ground FG Connector fixture

Send data Receive data

Ps— T

Plug: XM2A-0901 (OMRON)

Connector

One plug and one hood are
Hood: XM2S-0911 (OMRON) or equivalent ——— supplied for port 3.

Recommended Cables

AWG28 x 5P IFVV-SB (Fujikura Densen)
CO-MA-VV-SB 5P x AWG28 (Hitachi Densen)
Cable length: 500 m max.

Note 1. Connect only one side of the shield cable to FG so that no current flows through the shield. To connect
the shield to FG, connect it to pin 7 of the connector or to the hood.

2. Turn ON the termination resistance (220 €, built-in) of the BASIC Units at both ends of the RS-422 com-
munication line or Link Adapter. Turn OFF the termination resistance of the other Units. If the termination
resistance is not set correctly, communications will not be possible.

3. Ground the FG terminal of the CPU Unit to less than 100 Q.

159

Hardware Interfaces Appendix C

Wiring the Connector

Connect and solder the cable according to the following procedure. Keep the cable length to within the length
shown in the following figures.

Preparation when Connecting the Shield to FG

| Cut the cable to the required length. Remove the
sheath with a razor. Take care not to damage the

25 mm (RS-422) shield (mesh).
40 mm (RS-232C) i

Cut the shield with scissors.
Lw mm-
= todeteretyd Expose the core with a stripper.
5 mm

Turn the shield over the cable and wind the cable

B= | | with aluminum-foil tape.

Aluminum foil
tape

Preparations When Not Connecting the Shield to FG

| Cut the cable to the necessary length.
Remove the sheath with a razor.

25 mm (RS-422) 40
mm (RS-232C) Remove the exposed shield with scissors.

S=—————————

:E— Expose the core with a stripper.

5mm
== 1 | | Wind the cut portion of the shield with vinyl tape.
Vinyl tape
Soldering
1,2,3... 1. Pass each line through a heat-shrinking tube.

2. Apply preliminary solder to each line and connector pin.

160

Hardware Interfaces Appendix C

3. Solder each line.

L
' , > Solder iron
Thermal contrac-
tion tube (Tube
F, 1.5 1D, I=10)

4. Slide the heat-shrinking tube over the soldered portion and heat the tube to shrink it into place.

\

[

LY

]

Heat shrinking tube

Hood Assembly
Assemble the connector hood as follows.

o . -
n Nl — -\l
e
=]
_m:f ~ - J Aluminum foil tape Jﬁcﬁ)—:ﬁ
—_—

Shield connected to FG Shield not connected to FG

2P

Point-to-point Connection
This section describes how to connect one BASIC Unit to one host computer.

BASIC Unit
CV500-BSC11/21

Link Adapter
3G2A9-AL004-(P)E

Host computer CV-series PC

500 m max.

| 15 m max.
RS-232C RS-422

161

Hardware Interfaces Appendix C

Connection Example

Host computer RS-232C BASIC Unit
B Bin [Sym- RS-422 Shield CV500-BSC11/21
no. no. |bol Pin [Sym- wire Sym- | Pin
1 1 FG |1 no. |bol ,\7\ bol no.
2 /"‘\ 2 [sb = OR/ T—/O\r 9 | SDA - \ SDA [9
selec-
RS-232C—2 13 | RD —o fon 5 | SDB I ; SDB | 5 | port3
interface 4 1 4 RS circuit oV 6 RDA [] RDA 6 RS-422
5 5 | CS — 1 [RDB RDB | 1 | Interface
6 6 | DR Outer 3 | SG \JA‘J_ NC | 3
7 7 SG ij cTs connection 7 FG FG 7
8 8 CD selection
20 50 | ER oV 1 See Note 1.
Shield
wire oV
Termination resistance
1
Trans- 5V
mission g ,j) AC power
Recep- supply
tion { 24V %
| Fuse
LG Ground (for the
B = FG JLink Adapter only)

Link Adapter 3G2A9-AL004-(P)E

Turn ON the internal termination resistance (220 Q) by using the DIP switch (pin 4) on the front panel.
Setting Link Adapters

Turn ON the internal termination resistance (220 Q). To keep ON the CTS (clear to send) signal, set the Link Adapt-
erto 0 V. To receive the CTS signal from an external source, set to external. The Link Adapter is usually setto O V.

Note 1. Connect only one end of the shield to FG so that no current flows through the shield. To connect the
BASIC Unit with a Link Adapter, connect the shield of the BASIC Unit to FG. To connect the shield to FG,
connect it to pin 7 of the connector or to the connector hood.

2. Be sure to cap all unused optical connectors. Errors will occur due to external light disturbances if un-
used connectors are left open.

Multidrop Connection, Example 1

In a multidrop connection, more than one RS-422 device can be connected to one BASIC Unit.

BASIC Unit (CV500-BSC11/21) Temperature Controllers (RS-422 compatible)

Link Adapter Link Adapter
3G2A9-AL001 3G2A9-AL001

162

Hardware Interfaces Appendix C

Connection Example

BASIC Unit CV500-BSC11/21 Link Adapter 3G2A9-AL001 Temperature Controller
Signal | Pin no. Pin no. | Signal Signal | Pin no. Pin no.
SDA 9 9 SDA SDA 9 9
Port 3 SDB 5 5 SDB RS-422 SDB 5 5 RS-422
RS-422 RDA 6 6 RDA | interface RDA 6 6 interface
Interface | RDB 1 1 RDB RDB 1 1
NC 3 3 SG SG 3 3
FG 7 7 FG FG 7 \‘/— 7
See Note. [Signal | spa | spg|RDA|RDB| SG | Fa
Pinno- g | 5 [6|1 3] 7
< \>J
_—
Pin no. Temperature Controller
9 5 6 1 3 7
Pin no.
Pin no. Pin no.
9 9 9
RS-422
To Temperature Controller 5 RS-422 5 2 interface
or next Link Adapter (13 interface ? .
3 3 \ , 3
7 7 7

Link Adapter 3G2A9-AL001

Note Connect the shield from the BASIC Unit to FG at the Link Adapter only.

Multidrop Connection, Example 2

In multidrop connection, more than one BASIC Unit can be connected to one host computer. In the following dia-
gram, “Yes” means that the shield is connected to FG (frame ground) of the Unit, and “No” means that the shield is
not connected to FG.

BASIC Unit
CV500-BSC11/21

Host computer

Link Adapter
3G2A9-AL004(-

Yes No| No| | Yes No| No No

Link Adapter Link Adapter
3G2A9-AL001 3G2A9-AL001

163

Hardware Interfaces Appendix C

Connection Example

To other Link Adapter
3G2A9-AL001 or BASIC

Unit I
Pin

Host .
compurer RS-292¢ Flalsle]1]s|7| cveosBeCHe:
Pin| Pin| Sym- RS422 shield Shield
no. no. | bol Pin | Sym- | wire [Pin Pin| wire |Pin
1 1 FG | no. | bol no. no. no.
2] /A\ 2| sb |- OR/ 9 | SDA El 9 9
s [3] 3| RD |—o || selec- 5 | SDB (5| Rs-422 [5] 5 |rons
ﬁﬁgr- | 4 | 1 4 RS gic;guit ov 6 RDA | | 6 | interface [6 | 6 |Rs-422
face | 5 | 5| cs :L{>°1 o 1 | RDB 1] (1] 1| nter
| 6 | 6| DR Outer l_ 3 | SG | 3 | [3 | 3
| 7 | 7 SG CTS connection 0 VJ._ 7 FG 7 7 7
| 8 | 8| CD selection = See Note 2. See Note 1.
20 %L‘ 20] ER ov T L _ . 1 Link Adapter
Shield . 3G2A9-AL001
wire |
Termination resistance

~) AC power
supply

oV
|
Trans- 5V
mission
> 3
24V

tion
| Fuse
LG Ground (for the
= FG JLink Adapter only)

Link Adapter 3G2A9-AL004-(P)E

Note 1. Connect the shield from the BASIC Unit to FG at the Link Adapter only.
2. Connect the shield to FG at only one Link Adapter for lines connecting two Link Adapters.

164

Hardware Interfaces Appendix C

Cable Length and Termination Resistance in Multidrop Configurations
Use shielded twisted pair cables. Route the cables keeping them separate from other signal lines. Keep the total
cable length, including branch lines, to within 500 m. Keep the branch lines to within 10 m.

Turn on the termination resistance of the BASIC Units at both ends of the trunk line and that of the Link Adapters.
Turn OFF the termination resistance of the other BASIC Units to OFF. Communications will not be possible if termi-
nation resistance is not set correctly.

Wire the system so that the branch lines extend from the trunk line.

Host computer RS-232C (15 m max.)

Link Adapter .
3G2A9-AL004-(P)E Q Trunk line
Y/

Link Adapter Link Adapter
3G2A9-AL001 3G2A9-AL001
Termination re- € 7
sistance setting RS-422 p p
has to be ON. 2 \
RS-422
Branching L N
max.10 m max.10 m Ter_mlnatlon Ter_mlnatlon
resistance resistance
setting has setting has

to be OFF. to be ON.

Termination re-
sistance setting
has to be OFF.

BASIC Unit BASIC Unit BASIC Unit

\ CV500-BSC11/21 CV500-BSC11/21 CV500-BSC11/21 /
Total of cable length is up to 500 m.

165

Hardware Interfaces

Appendix C

3G2A9-AL001 Link Adapter Specifications

Dimensions

Four, 3.5 dia. holes

/
746 58 1=
H (1] 4

O

[

63 20.5
77 Approx. 100 —=
87
Signals
Pin Pin
no. no.
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
: Pin
v no. 28456789
RS-422 Link Adapter 3G2A9-AL001
Applicable Connector
Connector: XM2A-0901
Connector cover: XM2S-0901

Three RS-422 connectors are supplied with 3G2A9-AL001.

166

Hardware Interfaces Appendix C

3G2A9-AL004-(P)E Link Adapter Specifications

Dimensions
E :
AL0O4 I Il
s AALTE T H
52.5 5 o 3 4.5
= : ——
= B ‘ _
--{\. - —— S e ———q}
120 7 g b —of ! 7
' :-‘:&‘@ B : .
| - : .
) - : 10 dia.
. | == :
1 HU H
164 63
174
188 le—— Approx. 140 —
Internal Configuration
l_RS-ZSZC —l
Pin [Symbol BA-422 '
no. Pin [Symbol
1 FG [T 1 no.
= 9 SDA
2| sb cl OR/ ﬁ
selec- Y 5 SDB
3 RD O<} tion
4 RS |_ circuit 6 RDA
5 cs >c | 1 RDB
3 SG
6 DR | _ CTS QOuter con-
selection nection 7 FG
7 SG [_O -|-
s| co || 0vz
t==rrl-l--- [
20 ER [oV f :
0 R |
\\Transmis- M A X
sion Termination resis-
W tance
:| Reception :| >

AC power
supply

Ground (for the
! Link Adapter only)

Link Adapter
3G2A9-AL004-(P)E

167

Hardware Interfaces Appendix C

Cable Lengths (max.)

Cable unit 3G2A9-AL004-PE | 3G2A9-AL004-PE
APF (All Plastic optical Fiber) 20m Not connectable
PCF (Plastic Clad optical Fiber) 200 m 800 m

Note Be sure to cap all unused optical connectors.

Selecting CTS (CS)

To keep ON the CTS (clear to send) signal, set to 0 V. To receive the signal from an external source, set to external.

Setting Termination Resistance

To connect the internal termination resistance (220 Q), set the selector switch to ON. If the resistor is not to be
connected, set the switch to the OFF position.

Power Supply

| 100 VAC 200 VAC

-1; N2 <— Ground line

—-1) N1| <— Ground line

-? H <— Hotline <«— Hot line
T

A fuse is provided at the common. Connect the AC hot line to the common terminal side when connecting the
power supply.

Installing Link Adapters
To avoid electric shock, do not touch the terminal block when installing the Link Adapter in an office or on a desk.

Note 1. Do not use the Link Adapter with the terminal cover removed.
2. Securely mount the terminal block cover.

168

Hardware Interfaces Appendix C

Centronics Interface

Communication Specifications
Conforms to Centronics specifications

Pin Configuration

O

1| \\— —// ?

| 10 I

| 1 H I

| H I

| H H I

| H H |

! L] [~ |

R

G

Pin no. | Abbreviation Name Signal flow
1 STROB Strobe Output
2 DATA 1 Send data Output
3 DATA 2 Send data Output
4 DATA 3 Send data Output
5 DATA 4 Send data Output
6 DATA 5 Send data Output
7 DATA 6 Send data Output
8 DATA 7 Send data Output
9 DATA 8 Send data Output
10 NC Not used
11 BUSY Busy Input
12 NC Not used
13 NC Not used
14 GND (0 V) Ground

Applicable Connector

Connector: 57-30140 (DDK)
Cable: CV500-CN127 (optional, cable length: 1.5 m, 14P-36P)

The cable supplied with the printer can also be used.

Note If the cable is connected or disconnected while power is being supplied to the BASIC Unit and the Centron-
ics device, the BASIC Unit may malfunction. Be sure to turn OFF the power before connecting or discon-
necting the cable.

169

Hardware Interfaces Appendix C

GP-IB Interface

Pin Configuration

SHIELD SRQ NDAC DAV DIO4 DIO2

ATN IFC | NRFD| EOI | DIO3| DIO1

121110 9 8 7 6 5 4 3 2 A1
Q 24 23 22 21 20 19 18 1716 15 14 13 Q

GND| GND | GND| REN | DIO7| DIO5

LOGIC GND GND GND DIO8 DIO6
GND

Signal Lines

Line Bus

Data bus DIO 1 (Data Input/Output 1 Transmit data
DIO 2 (Data Input/Output 2 Example: Address, Command, Measured data, Program data, Display

)

) data, Status
DIO 3 (Data Input/Output 3)
DIO 4 (Data Input/Output 4)
)
)
)
)

DIO 5 (Data Input/Output 5
DIO 6 (Data Input/Output 6
DIO 7 (Data Input/Output 7
DIO 8 (Data Input/Output 8

Transfer bus DAV (Data Valid) Signal indicating validity of data | Perform acceptor and handshaking
NRFD (Not Ready For Data) | Reception ready signal
NDAC (Not Data Accepted) | Reception completion signal

Control bus ATN (Attention) Signal indicating that data on data bus is address or command
IFC (Interface Clear) Signal initializing interface
SRQ (Service Request) Signal requesting service
REN (Remote Enable) Remote/local specifying signal
EOQI (End Of Identify) Indicates last byte of data, or indicates execution of parallel polling

Note If the cable is connected or disconnected while power is being supplied to the BASIC Unit and the GP-IB
device, the BASIC Unit may malfunction. Be sure to turn OFF the power before connecting or disconnecting
the cable.

170

Hardware Interfaces Appendix C

Recommended Cables

Maker Model
DDK 408JE-10P5 (50 cm)
408JE-101 (1m)
408JE-102 (2m)
408JE-104 (4 m)
Honda Tsushin Kogyo ADS-GP24-050 (50 cm)

ADS-GP24-100 (1 m)
ADS-GP24-200 (2 m)
ADS-GP24-300 (3 m)
ADS-GP24-400 (4 m)

Note Turn off the power to both the GP-IB and BASIC Unit before connecting or disconnecting the GP-IB and
BASIC Unit. Otherwise, the BASIC Unit may malfunction.

171

Appendix D
Program Examples and Reserved Words

Single Task Program

Operation Calculates and displays the square root of an input numeric value.

If no data is input for 10 seconds, an error occurs, an error message is displayed.
At this stage, the BASIC Unit waits for input.

The program is terminated when E is input.

Configuration

BASIC Unit

|

i e

ECR FCA B im|

U
[

o

CPU Unit Power Supply

Computer with terminal mode

Example Program

10
15
20
30

PARACT O

ON ERROR GOTO *INERROR
CLS:LOCATE 20,10

INPUT WAIT 100, ”“Input numeric value whose square root is to be calculated.

(End: E)”,VS$ Input numeric value. If no input is made for 10 seconds, error message is displayed

40
50
55
60
70
80
90
100
110
120
130
140
150
160
170
180

IF VS="E” OR VS$="e” THEN ENDcvivvrinnnnnnnn. Terminates when E or e is input

GOSUB *DSPLY
GOTO 20

*INERROR GOSUB *MESS

RESUME 20
END

’

a7 PP Message output subroutine
CLS

FOR K=0 TO 19

LOCATE 20, K:PRINT “OMRON'’s PC is best!”

FOR J= 0 TO 200:NEXT J

NEXT K

LOCATE 20,20:WRITE ”“BASIC UNIT is also good.”

FOR J=0 TO 1000:NEXT J

RETURN

173

Program Examples and Reserved Words Appendix D

190
200
210
220

230
240
250
260
270

’

*DSPLY . .ovviiinnn..
OV$=VAL(VS$)
ANS#=SQR (OV%)

CLS:LOCATE 20,20
PRINT ”"Square root

.................................. Calculation result display subroutine
.................................. Converts character into integer

.................................. Calculates square root. Result is
double-precision integer

of ";V$;” is ";ANS#;”.” Resultis displayed

FOR K=0 TO 10000:NEXT K

RETURN
END PARACT

Multitask Program

Operation

Con

figuration

Task 0O creates data in a random-access file and sends a message to task 1. Task
1 then waits for a message from task 0. When the message is received from task
0, data from the random file is read and displayed.

Task 0 waits until task 1 is terminated.

BASIC Unit

|

oz

+
E@ig_mw

i

CPU Rack

=

Example Program

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180

174

Ik kk,kk,kk,kk,k*k* k) k* * **x*x*%x
' *MULTI TASK (0)*
1% *

Ik *kkk k kkkhhkxk,k*x*x%

DIM BUF1$10,
DIM MESS$30
PARACT O
TASK 1

CPU Unit Power Supply

[

Computer with terminal mode

BUF2$10, BUF3$10, BUF4s510

OPEN “testfile” AS #1
FIELD #1, 10 AS BUF1$, 10 AS BUF2S$

LSET BUF1$="0OMRONCV500”
LSET BUF2$="BASIC UNIT”
PUT #1,1
CLOSE #1

MESSAGE 0,10

MESSS$S="DATA is written to testfile”

SEND 10, MESSS$
TWAIT 1

Program Examples and Reserved Words Appendix D

190 END

200 END PARACT

210 AR R I 2 2 R R S kS I I 2 2 O

220 ’"*MULTI TASK (1)~*

230 '* *

240 Fhk,*kk,k*xk),k *xk,*,kh*x**x*%x

250 PARACT 1

260 'Data is received from common memory and message is transferred
270 MESSAGE 0,10

280 RECEIVE 10, MESS$S

290 MESSAGE 1,10

300 PRINT ”Slave task”

310 PRINT “Message is received from master task.”
320 PRINT ”“Message is as follows: ”;MESSS

330 OPEN “testfile” AS #1

340 FIELD #1,10 AS BUF3$,10 AS BUF4S$

350 GET #1,1

360 CLOSE #1

370 KILL "testfile”

380 PRINT ”"Do you want to see this data?”

390 INPUT “Press Y key, if YES: ”;AS$
400 IF AS="y” OR AS$="Y” THEN GOTO *SEE ELSE GOTO *E
410 *SEE

420 PRINT BUF3$

430 PRINT BUF4S

440 PRINT “"That is all for data.”
450 *E

460 END

470 END PARACT

175

Program Examples and Reserved Words Appendix D

Input/Output of Each Port

Operation RS-232C Interface
Receives RS-232C data by means of an interrupt, and decides whether recep-
tion, transmission, or termination is to be performed according to the input data.
RS-422 Interface
Communicates with the C-series Host Link System, and writes data to the CPU
Unit’s data memory on the Host Link System.
Centronics Interface
Outputs a square root to the printer.

IBM PC/AT
or compat-
ible with ter-
minal mode

Configuration Possibilities

BASIC Unit (BSC11 to BSC41)

(1)
IBM PC/AT
& CPU _FE or compat- CJ
ible with ter-
/’D minal mode -

E

BASIC Unit (BSC11 or BSC21) Host Link Unit

()

cPU|Ps cPu|Ps
d

=

CV-series PC C1000H

BASIC Unit (BSC31 or BSC41)

3) Printer

O
O
[

Example Program

10 FThxkk,dkkhkhhkhkhkhhrhkhhkrhdhdrdkhhkrrkddrxkhhkx*x

20 "*RS-232C serial communication*
30 x *

40 Fhkkkhhkkhkkhhkhkhkhhrhkhhkhrhdhrhhkhkrrkhdxkkxx

50 PARACT 0
60 OPEN "COM2:N,8,2" AS #1 ...ttt Sets RS-232C port to non-parity, 8 bits,
and 2 stop bits

176

Program Examples and Reserved Words Appendix D

70

80
90
100

ing:

110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360

10
20
30
40
50
60
70
80
90
100
110
120
130
140

150
160
170
180
190
200
210
220
230
240
250
260
270
280

ON COM (2) GOSUB *COMPRO . tivvrnirerrinnennnnnennnnn Branches if interrupt is input to RS-232C
port
(0] (527 T) PP Enables port input of RS-232C
*START
INPUT "Reception processing: R, transfer processing: T, termination process-
E”;AS
IF A$="R” OR A$="r” THEN GOSUB *RCV To reception processing
IF A$="T” OR A$="t” THEN GOSUB *TRNSFR To transfer processing
IF A$="E” OR A$="e” THEN GOSUB * . ..eerriuienneunn. To termination processing
GOTO *START
*E
COM (2) OFF i ttietie e ttee et tee s tte s iee e eiaaennanns Disables RS-232C port input
CLOSE #1
END
*TRNSFR
COM (2) OFF & ittt ettt tte ettt e st e ittt eaaanns Disables RS-232C port input
INPUT "Input transfer data”;DATAS
PRINT #1, DATAS & ittt tie e iee e aaeaaaennannn Output to RS-232C port
COM (2) ON
RETURN
*RCV
INPUT “Stop reception? (Y/else)”;BS
IF B$="Y” OR B$="y” THEN COM (2) OFF ELSE COM (2) ON
RETURN
*COMPRO
INPUT #1,DATAS o it ttietttae e eaaaeaaeeennn Input from RS-232C port
PRINT ”Sent data is: ”;DATAS
RETURN
END PARACT

AR IR Sk I I I S I S IR I S I 2 I R I 2 S 2 SR R R S S S SR IR S S S S IR I I SR S S S
'*RS-422 Host Computer Program for C-series Host Link*
1 x *

IR EEEEEEEEEEEEEEESEEEEEESEEEEEEEEEEEEEEEEEEEEEEEEEEE S

OPTION LENGTH 100
PARACT 0
OPEN "COM3:E,7,2" AS #1 . t0iiriiieeiiinennannnnn. Open RS-422C port
*SND?
INPUT ” " . TDS
TC$="@00WD0O001"”

T$=TCS+TDS

GOSUB *FCSSET

TXDS=TS$+FCSS+"+"

PRINT “TXDS=" ;TS v e tttttttt ettt eeeanenns Data transferred to Host Link Unit Trans-

fer

PRINT #1, TXDS & ittt ettt it et ie i et i Transmission

*RCV

TUP=0

ON ALARM 100 GOSUB *TIMEUP

ALARM ON

INPUT #1,RXDS & ittt ittt et et eeaaeeenns Reception wait
ALARM OFF

IF TUP=1 GOTO *ERPRINT . .itttuumnnnnnnennnnnnnnnns Judgment of reception timeout
R$=MIDS (RXDS, 6,2)

IF R$<>700”7 GOTO *ER & tititiiinn i iieianannnnn Response error
PRINT ”RXD$=";RXDS+" OK”

*CMPLT

CLOSE #1

END

177

Program Examples and Reserved Words Appendix D

290

300 *TIMEUP & tittitttiesiieeeteeeaeeenaeannasenaaannannns Reception timeout processing
310 ER$="TIME UP”

320 TUP=1

330 RETURN

340 -

350 FER & ittt e e, Response error processing
360 ERS=RXDS+" NG”

370 GOTO *ERPRINT

380 '

390 *ERPRINT & ttottteeeteeseneeennesenaeennaasenaeennneens Display of error

400 PRINT ”"ERROR”

410 PRINT “RXD$=";ERS

420 GOTO *RCV

430 -

440 FEFCSSET & v ttteeee e eteaee et e Calculation of data for frame check
450 L=LEN(T$)

460 A=0

470 FOR J=1 TO L

480 TJ$=MIDS (T$,J,1)

490 A=ASC(TJS$) XOR A

500 NEXT J

510 FCS$=HEXS (A)

520 IF LEN(FCS$)=1 THEN FCS$="0"+FCSS$S

530 RETURN

540 END PARACT

10 T hhkdkhkhhhkhhhrhkkhhrhdhrhkhhrhhrrkhhxhkxxx

20 ’'*Example Program of Printer Port*

30 % *
AQ TRRKAK KK KAA AR KKK A ARk kAR A Ak kkkhx &
50 PARACT

60 FOR I=0 TO 10

70 ATAI=SQR(I)

80 TEXTS$=STRS (ATAI)

90 LPRINT I;”Square root”+TEXTS
100 NEXT I

110 END PARACT

Note Memory switch bit 13 must be ON before using the Kaniji printer (Kl or KO). Refer to 3-3 Memory Switches.

178

Program Examples and Reserved Words Appendix D

PC Communications

Operation Writes or reads data to or from the PC connected through a network.
Writes data to the memory of the node 1 PC in network 1.
The CPU Unit checks whether data has been written, and sends back the data
as is. The BASIC Unit reads the data sent from the CPU Unit by means of an

interrupt.
Configuration
—
o
CPU Rack ——
L]
BASIC CPU Power
[::::J Unit Unit Supply
L
Network
Network 1
Node 1
-
: CPU Rack T
&
g
E,
GLLj | L
Link Unit CPU Power
Unit Supply
Example Program
10 AR I I S I I I I I b i b I b I b b b S b b I b b b b b S R b I b I b b b I b b b b I I b b b

20 '* Data 1s written to CPU Unit and same data is sent back to Basic *

30 '* Unit, read in a interrupt, and compared with original data. *

40 AR R I b b I 2 I I I S A b S I S b b b b b S I b S I I S 2 I R I b S b b

50 PARACT O

60 DIM DM(3),R(3)

70 A=1 : B=&H10 : C=&H100

80 PC WRITE "#1.1,@D,0,3,3H4";A,B,C . civieereennnnn.. Writes data memory of network 1 and
node 1

90 ON PC (1) GOSUB *RCV

100 PC (1) ON

179

Program Examples and Reserved Words Appendix D

110
120
130
140

150
160
170
180
190
200
210
220

PAUSE
PC READ "#1.1,@D,0,3,S3H4”;DM(0) . vevrrruinnnnnnnn Reads data memory
FOR I=0 TO 2

IF DM(I) <> R(I) THEN PRINT “Comparison error”;I

Comparison of receive data

NEXT I
END
*RCV
PC READ “S3HA”;R(0) v terrtettiiiaeeeeeeeaanannns Reads data transferred from PC
RETURN

’

END PARACT

CPU Unit Ladder Diagram

180

In the following program, the SEND (192) instruction is executed if DO0O000 con-
tains anything but all-zeros, i.e., if data has been sent from the BASIC Unit. A
differentiated condition is used to execute SEND (192) so that it is executed only

once.
0010 A500 0010
10 (020 06 11
1 Y4
—“—CCMP D0000 #0000] # O—
0010
11| - (040
— 1} [XFER #0003 ~ DO0000 D00010 }—
- (192)
[SEND D0010 0000 D00100 J—

The following work bits and flags are used in this program: CIO 001010 enables
operation; CIO 001011 is used to signal when the content of DO000O is non-zero;
and A50006 is the Equals Flag.

The control data for SEND (192) must be set in advance as follows:

D00100 0003
D00101 0100
D00102 001F
D00103 0000
D00104 0000

Program Examples and Reserved Words Appendix D

Communicating Between BASIC Units
Operation Communication is performed between two BASIC Units mounted on the same
PC. Data is sent from Unit 0 and Unit 1 processes the data.

Configuration

BASIC CPU
Unit 2 i
Basic UM

R
s
ﬁ]
Bl........
]
[

]
L0
(A EAm|
F__pg

o) | zemic] iy

e

— CPU Rack

-]

XX |

=

Computers with
terminal mode

Example Program

10 Thkkkhhkkhkhhkhkhhhhhdhhdhhdhhddhdddrrhdrx*

20 ’'*Communication between BASIC Units*

30 ’*Execute this Program on Unit 0 *

40 AR R I b 3 b I I R I b S b b 2 2 I b I b

50 PARACT O

60 '

70 OPEN "FINS:00.00.17" AS #1 . ciiiiiiiiniennnnnannn. Open BASIC Unit of network 0, node
0, and Unit 0

80 PRINT #1, "Please return this data.”

90 INPUT #1,REVERSES

100 PRINT ”“Returned data is " ; REVERSES

110 CLOSE #1

120 END PARACT

10 AR R I b I I I b I R I b I S b b b b b b b A b b S I S I S b b b b b b b b b b b b b b

20 '*Program for communication between BASIC Units*

30 "*Execute this program on Unit 1 *

40 AR I b I S b S R b b S b A R R R R S R S R S b S b I b I I S

50 PARACT 0

60 '

70 OPEN “FINS:00.00.16" AS #1 . tuviiirinnennnnnnnnnnn. Open BASIC Unit of network 0, node 0,
and Unit 0

80

90 ON FINS GOSUB *RCV
100 FINS ON

110 PAUSE

120 CLOSE #1

181

Program Examples and Reserved Words Appendix D

130
140
150
170
180
190
200
210
220

END

*RCV

INPUT #1,RCVDS
PRINT ”"Received:
PRINT #1,RCVDS
RETURN

’

END PARACT

" ;RCVDS

Note Start the program for Unit #1 first

File Input/Output

Operations
1,2, 3.
1,2, 3.
Configuration
|

Sequential File:

1. Opens a file in the Memory Card of the CPU Unit.

2. Using the keyboard, sequentially reads and writes data to the file. To end,
999 is input.

3. Reads the written sequential file and displays the data.

Random-access File:

1. Opens a file in the memory card of the CPU Unit.

2. Identifies whether data input from the keyboard is to be read from or written
to the file, and writes to or reads from a specified record number.

BASIC Unit

=

1+
:[-jeﬁ @

CPU Rack

Example Program

10
20
30
40
50
60
70

182

A R b b b b b b I I b b
"*Sequential file*
3 *

I hk*kkkhhkkhkhhkk khhkk k*k**%

PARACT O
DIM E$50,Fs$50,G$50

CPU Unit Power Supply

[

Computer with terminal mode

OPEN ”1:DATA2” FOR OUTPUT AS #1 . ceuuivrrreennnnnn. Open new sequential file to be output on

data memory of CPU Unit

Program Examples and Reserved Words Appendix D

80
90
100
110
120

130
140
150
160
170
180

190
200
210
220
230
240
250
260

270
280
290
300
310
320

330
340
350
360
370

10
20
30
40
50
60
70
80
90
100
110
120
130

140
150
160
170
180
190
200
210
220
230
240
250
260

A$=" OMRON ”
BS=" CV500 ”~
C$="VERSION 1”
D$="BASIC UNIT”
WRITE #1,88,BS & iiittttiiteeee e iiiiaaaaeaanns Output data to sequential file (data com-
pression)
PRINT #1,USING "& & & &";Cs,D$ Output data to sequential file with format
GOSUB *WRT
(70 = Close opened file
OPEN “0:DATA2” FOR INPUT AS #1cviiinenennnn. Open sequential file to be input
PRINT “Contents of data file are as follows:”
LINE INPUT #1,FS & tttiiinttettiiiaanaeaannnnnns Read one entire line to character vari-
able (F$)
PRINT F$
LINE INPUT #1,FS
PRINT F$
GOSUB *RD
CLOSE
END
a2 P Processing to output data to sequential
file
INPUT "Input data (to end writing, input 999)”;ES$
IF E$="999” THEN RETURN
PRINT #1,ES & ittt ittt ittt ie e enaeaeenns Output data to sequential file
GOTO *WRT
a0 05 Processing to input data from sequential
file
IF EOF (1) THEN RETURN . tiitttiiiiennnenannnnnnnnns Branch if data has run out
INPUT #1, GBS & ittt ittt ettt et et e e Read data
PRINT G$
GOTO *RD
END PARACT
Fhkkkkhkkkhkkhkkhkx
"*Random file*
I % *
Ik k*xk,k*xk*xk*xk*k*%x
OPTION LENGTH 100 . tuutitttiieeeeeeaiaaneeannnnnns Set default character length of 100
PARACT 0
ON ERROR GOTO *OCCR
OPEN "0:DATA3" AS #1 . ottt Open random file on memory card
FIELD #1,50 AS AS & ttiuiiitiiiiiiitiiaannn Assign variable area
PRINT "Input [W] to write file”
PRINT “Input [R] to read file”
PRINT “Input [E] to end”
BS=INPUTS (1) & ettt iiiiaaeeeeeannn Input condition from buffer to character
string
IF B$="w” OR BS$="W” THEN GOSUB *WRT
IF B$="r” OR B$="R” THEN GOSUB *RD
IF B$="e” OR BS$S="E” THEN GOTO *E
GOTO 100
*E
PRINT “The size of data file is ”;LOF(1) .. Size depends on file record no.
CLOSE H L o ettt e ettt ettt e Closing the file
END
o130 AP PP Write subroutine
INPUT ”Specify record number (1-999):”,REC%
IF REC%>999 THEN ERROR 1 . tuniiiiiineennnnnnnnnnnnn Set error generation number (ERR=1)
IF REC%<1 THEN ERROR 2 . t1iittiiirieeennnaannnnnn Set error generation number (ERR=2)

183

Program Examples and Reserved Words

270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500

LINE INPUT ”“Data: ”;C$

PRINT "Write the data? (Y/[ELSE])~”
DS=INKEYS

IF DS$S=""THEN GOTO 290

IF D$<>"Y"” AND DS$<>"y” THEN RETURN

L BT AS=CS i ittt ettt et Set data in buffer

PUT #1, RECS o+ ettt ettt it ettt et ettt i e Write buffer data
RETURN & ittt et ettt et et et ettt et End of write subroutine
R D 4 ettt e e Read subroutine
INPUT ”Specify record number (1-999):”;REC%

IF REC%>999 THEN ERROR 1

IF REC%<1 THEN ERROR 2
GET #1, RECE o vttt ettt et ettt et ettt e Read data to buffer

PRINT A$
RETURN & ttttttttttetteeeeeeeeeeeeeeeeeeeeeeeeeeenennns End of read subroutine
Lo L]0 2 P Error processing subroutine

IF ERR=1 THEN PRINT ”“Record number is too large”

IF ERR=2 THEN PRINT ”“Record number is too small”

ENUM=ERL

IF ENUM=400 THEN PRINT ”“No data exists in specified record number”
RESUME 100

END PARACT

Reserved Words

ABS DATES GOTO
ACOS DEF FN HEXS
ALARM ON / OFF / STOP DEF USR IEEE (0)
ASC DEFINT / DEFSNG/ DEFDBL / IEEE(1)
ASIN DEFSTR IEEE (2)
ATN DEG SEG TEEE (4)
AUTO DELETE IEEE (5)
BITON / BITOFF DIM IEEE (6)
BREAK EDIT IEEE (7)
CALL END IF... GOTO...
CDBL END PARACT INKEYS
CHRS$ ECF INPUT
CINT ERL/ERR INPUT #
CLOSE ERROR INPUT @
CLS EXIT INPUTS
CMD DELIM EXP INSTR
CMD PPR FIELD INT

CMD TIMEOUT FILES / LFILES INTRB
COM ON / OFF / STOP FINS ON / OFF / STOP INTRL
CONT FIX INTRR
cos FOR... TO... STEP... IRESET REN
CSNG FRE ISET IFC
CVI / CVS / CVD GET ISET REN
DATA GOSUB / RETURN ISET SRQ

184

Appendix D

ELSE. ..

Program Examples and Reserved Words

Appendix D

KEY ON / OFF / STOP
KILL

LEFTS

LEN

LET

LINE INPUT
LINE INPUT #
LINE INPUT @
LIST / LLIST
LOAD

LOC

LOCATE

LOF

LOG

LPRINT

LPRINT USING
LSET/RSET
MERGE

MESSAGE

MID$S

MKIS$ / MKS$ / MKDS$S
MON

MSET

NAME

NEW

NEXT

OCTS$

ON ALARM GOSUB
ON COM GOSUB
ON ERROR GOTO
ON FINS GOSUB
ON GOSUB

ON GOTO

ON KEY GOSUB
ON PC GOSUB

ON SIGNAL GOSUB
ON SRQ GOSUB
ON TIMES GOSUB

ON TIMER GOSUB
OPEN

OPTION BASE
OPTION ERASE
OPTION LENGTH
PARACT

PAUSE

PC ON / OFF / STOP
PC READ

PC WRITE

PEEK

PGEN

PINF

PNAME

POKE

POLL

PPOLL

PRINT #

PRINT # USING
PRINT / ?
PRINT @

PRINT USING
PUT

RANDOMIZE
RBYTE

RDIM

READ

RECEIVE

REM

RENUM

RESTORE
RESUME

RIGHTS

RND

ROMLOAD
ROMSAVE
ROMVERIFY
RUN

RUNr

SAVE

SEARCH

SEND

SENDSIG

SGN

SIGNAL ON / OFF / STOP
SIN

SPACES

SPC

SOR

SRQ ON/OFF/STOP
STATUS

STEP

STOP

STRS

STRINGS

SWAP

TAB

TAN

TASK

TIMES

TIMES ON / OFF / STOP
TIMER ON / OFF / STOP
TROFF

TRON

TWAIT

USR

VAL

VARPTR

VERIFY

VLOAD

VSAVE

WBYTE
WHILE/WEND
WRITE

WRITE #

185

Appendix E
BASIC Instructions

The instructions of the BASIC Unit are broadly classified into commands, statements, functions, and GP-IB in-
structions.

Commands can be typed in and executed directly from the console in edit or debug mode. Some commands can
also be used as statements.

Statements are used in BASIC programs to do most of the program’s work and to control the program’s execution.

Functions perform a specified calculation and return the result of the calculation to the program. Many functions
require one or more arguments.

GP-IB instructions, which control the GP-IB interface, are sub-divided into statements and functions. The GP-IB
instructions can be used with the CV500-BSC51 and CV500-BSC61 only.

How to Use this Table

Instruction: This column lists the names of the commands, statements, and functions in alphabetical order.

Syntax: This column describes the form(s) in which the instruction appears in a program, using the follow-

ing notation:
e Words and symbols in typewriter font should be entered exactly as written.
e Items in square brackets ([]) may be omitted.

e Items in curly brackets ({ }) indicate choices; alternatives are delimited from each other with the vertical bar
character (|). Select one of the alternatives.

¢ An asterisk (*) indicates that the preceding item or items may be repeated.

¢ _ indicates a required space. (Spaces can also be used between words and symbols to increase program read-
ability.)

» Words in jtalics are English descriptions of the element that should be substituted. For example, line-no. should
be replaced with an actual line number.

Purpose: This column presents a brief description of the instruction.

Command List

These instructions may be used in EDIT or DEBUG mode. Instructions marked with a diamond (e) may also be
used as statements in programs.

Instruction Syntax Purpose
@ @ [task-numben] Selects a task to be debugged.
AUTO AUTO [start-line-no.] [, increment] Automatically generates line numbers when a
program is typed in.
BREAK BREAK [{DELETE {ALL | line-no.[, line-no.]*}| | Sets, deletes, or lists breakpoints.
line-no. [, line-no.]™}]
CLS ¢ CLS Clears screen.
CONT CONT Resumes execution of program.
DELETE DELETE [start-line-no.] [-[end-line-no.]] Deletes program lines.
EDIT EDIT [line-no.] Edits one line of program.

FILES / LFILES

FILES [drive-no.]

Displays names and size of files in drive.

LFILES [drive-no.]

Prints names and sizes of files in drive.

KILL ¢

KILL ”file-name”

Deletes file.

LET ¢

[LET] variable-name = expression

Stores value of expression in variable.

LIST / LLIST

LIST [start-line-no.] [- [end-line-no.]]

Displays all or part of program.

LLIST [start-line-no.] [- [end-line-no.]]

Prints all or part of program.

187

BASIC Instructions Appendix E

Instruction Syntax Purpose

LOAD LOAD “file-name” Reads BASIC program into current program
area.

MERGE MERGE “ file-name” Reads BASIC program to current program
area. Program is merged with any existing
program.

MON MON Sets monitor mode.

MSET MSET [address] Sets upper limit of BASIC program area to
allocate machine language program area.

NAME ¢ NAME ” old-file-name” AS " new-file-name” Changes file name.

NEW NEW Deletes program and variables.

PGEN PGEN [program-no.] Selects current program area.

PINF PINF Displays information on program area.

PNAME PNAME “program-name” Registers or deletes name of current program
area.

PRINT ¢ PRINT [expression] [{,|:|_} [expression]]* Displays value of expression.

LPRINT ¢ LPRINT [expression] [{,|:|_} [expression]]* Prints value of expression.

PRINT USING ¢ PRINT USING format ; expression [{,|;|_} | Displays value of expression in specified

[expression]]* format.
LPRINT USING# - ; — =
LPRINT USING format ; expression [{,|;|_} | Prints value of expression in specified format.
[expression]]*
RENUM RENUM [new-line-no.] [, [old-line-no.] Re-numbers program lines.
[, increment]]

ROMLOAD ROMLOAD Reads information in EEPROM to user program
area.

ROMSAVE ROMSAVE Writes information in user program area to
EEPROM.

ROMVERIFY ROMVERIFY Verifies between EEPROM and user program
area.

RUN ¢ RUN [”file-name”] [, ERASE] Starts program execution.

SAVE SAVE " file-name” Saves BASIC program to file.

STEP STEP Executes program one step at a time.

TROFF ¢ TROFF [{task-no.|ALL}] Stops output of line number trace.

TRON TRON [{task-no.|ALL}] Starts output of line number trace.

VERIFY VERIFY ”file-name” Verifies program.

VLOAD ¢ VLOAD ”file-name” Reads contents of non-volatile variable from
file.

VSAVE ¢ VSAVE ”file-name” Saves contents of non-volatile variable to file.

WRITE ¢ WRITE expression[{,|;|_}expression]* Displays value of expression.

+The command can also be used as a statement in a program.

Statement List

Instruction Syntax Purpose
ALARM ALARM {ON | OFF | STOP} Enables, disables, or stops time interrupt.
ON / OFF / STOP
BITON / BITOFF {BITON | BITOFF} integer-variable, Turns ON (1) or OFF (0) the specified bit of an
bit-position integer variable.
CALL CALL name [(argument|[, argumenf]*)] Calls a machine language program
(subroutine) stored in memory.
CLOSE CLOSE [#file-no. [, #file-no.]*] Closes file.
CLS CLS Clears screen.
COM ON / STOP coM [(port-no.)] {ON | sTOP} Enables or stops interrupt from communication
(OFF is same as line.
STOP)

188

BASIC Instructions

Appendix E

Instruction

Syntax

Purpose

DATA

DATA constant [, constanf]*

Stores numeric and character constants for
use by READ statements.

DEF FN DEF FNfunction-name Defines function.
[(argument [, argument]*)] =
function-definition-expression
DEG SEG DEF SEG = segment-address Declares segment address.
DEF USR DEF USR [no.] = start-address Defines execution start address of machine
language USR function.
DEFINT/DEFSNG/ {DEFINT | DEFSNG | DEFDBL | DEFSTR} Declares variable type.
DEFDBL/DEFSTR {variable-name | character-character}
[, {variable-name | character-character}]*
DIM DIM variable-name Declares an array variable or fixed-length
[(subscript [, subscripfl*)] string.
[maximum-number-of-characters]
[, variable-name [(subscript[, subscripf]*)]
[maximum-number-of-characters]]*
END END Terminates task.
END PARACT END PARACT Declares the end of a task.
ERROR ERROR error-no. Simulates generation of error.
EXIT EXIT task-no. Terminates specified task.
FIELD FIELD #file-no., width AS Assigns field variable to random file buffer.

character-string-variable
[, width As character-string-variable]*

FINS ON / STOP
(OFF is same as
STOP)

FINS {ON | STOP}

Enables or stops interrupts from network.

FOR... TO... FOR variable = initial-value TO final-value Repeatedly execute group of statements
STEP. .. [sTEP increment] enclosed by FOR and NEXT statements.
NEXT. . . NEXT [variable [, variable]*]

GET GET #file-no. [, record-no.] Reads data from random file.

GOSUB / RETURN

GOSUB {line-no. | label}
RETURN

Calls subroutine / returns from subroutine.

GOTO GOTO {line-no. | label} Branches to specified line or label.
IF... THEN... IF conditional-expression THEN {statement| | Selects statement to be executed according to
ELSE... line-no. | label} [ELSE {statement| line-no. | result of conditional-expression.
IF... GOTO... label}]
ELSE. .. IF conditional-expression
GOTO {line-no. | label}
[ELSE {statement | line-no. | label}]
INPUT INPUT [WAIT expression,] ["prompt” {, | ;}] | Inputs data to specified variable.
variable [, variable]*
INPUT # INPUT #file-number, variable [, variable]* Reads data from file into specified variable.
KEY KEY (key-no.) {ON | OFF | STOP} Enables, disables, or stops interrupts from

ON / OFF / STOP

console numeric keys.

KILL

KILL ”file-name”

Deletes file.

LET

[LET] variable-name = expression

Assigns the value of an expression to a
variable

LINE INPUT

LINE INPUT [WAIT expression,] [”prompt”
{, | ;)] character-variable

Inputs a whole line to a character string
variable.

LINE INPUT #

LINE INPUT #file-no., character-variable

Reads one line from a file into a character
string variable.

LOCATE LOCATE horizontal-position, vertical-position | Moves cursor on screen.
LSET/RSET LSET character-variable = Substitutes data into field variable.
character-expression
RSET character-variable =
character-expression
LPRINT LPRINT [expression] [{,|:|_} [expression]]* Prints value of expression.

189

BASIC Instructions Appendix E
Instruction Syntax Purpose
LPRINT USING LPRINT USING format; expression Output value of expression using specified
U, | ;| .} [expression]]* format.
MESSAGE MESSAGE function, message-no. Allocates and releases message numbers.
MID$ MIDS$ (character-expression, expression Returns or replaces part of character string
[, expression]) [= character-expression] variable.
NAME NAME ” old-file-name” AS " new-file-name” Changes file name.

ON ALARM GOSUB

ON ALARM time GOSUB {line-no. | label}

Specifies interrupt time and defines interrupt
routine.

ON COM GOSUB

ON COM [(port-no.)] GOSUB
{line-no. | label}

Defines subroutine to process interrupts from
communication line.

ON ERROR GOTO

ON ERROR GOTO {0 | line-no. | label}

Defines error processing routine and starts
error trap.

ON FINS GOSUB

ON FINS GOSUB {line-no. | label}

Defines subroutine to process interrupts from
network.

ON GOSUB ON expression GOSUB {line-no. | label} [, Selects and calls one of several subroutines
{line-no. | label]* based on the value of expression.
ON GOTO ON expression GOTO {line-no. | label} Selects and branches to one of several

[. {line-no. | label}]*

locations based on the value of expression.

ON KEY GOSUB

ON KEY (key-no.) GOSUB {line-no. | label}

Defines subroutine to process numeric key
interrupts.

ON PC GOSUB

ON PC (interrupt-no.) GOSUB
{line-no. | label}

Defines subroutine to process interrupts from
CPU Unit.

ON SIGNAL GOSUB

ON SIGNAL (signal-no.) GOSUB {line-no. |
labely

Defines interrupt subroutine for user-defined
or system signal.

ON TIMES GOSUB

ON TIMES = “time” GOSUB {line-no. | label}

Defines subroutine to be executed at a certain
time.

ON TIMER GOSUB

ON TIMER = interval GOSUB {line-no. | label}

Specifies subroutine to be executed after a
certain interval

OPEN

OPEN “file-name”
[FOR {INPUT | OUTPUT | APPEND}]
AS #file-no.

Opens file.

OPTION BASE

OPTION BASE {0 |1}

Declares subscript of first array element.

OPTION ERASE

OPTION ERASE

Declares initialization of non-volatile variables.

OPTION LENGTH

OPTION LENGTH no.-of-characters

Declares default length for fixed character
strings.

PARACT

PARACT task-no. [WORK no.-of-bytes]

Declares beginning of task.

PAUSE

PAUSE

Stops execution of task until interrupt occurs.

PC ON / STOP
(OFF is same as
STOP)

PC (interrupt-no.) {ON | STOP}

Enables or stops interrupt from CPU Unit.

PC READ PC READ [WAIT time,] "[[#network, node,] | Reads data from CPU Unit into variable.
source-area, start-word, no.-of-words,]
format[, formaf]*" ; variable|, variable]*
PC WRITE PC WRITE [WAIT time,] "[[#network, Writes value of variable to CPU Unit.
node,] destination-area, start-word,
no.-of-words,]
format[, formaf]*" ; variable [, variable]*
POKE POKE address, expression Writes data to specified address of memory.
PRINT / ? {PRINT | ?} [expression] Displays value of expression.
. |:1._} [expression]*
PRINT # PRINT i#file-no., [expression) Outputs value of expression to a file.

[{, _} [expression]]*

i

PRINT USING

PRINT USING format ; expression
. |:1_} [expression]*

Output value of expression in specified format.

PRINT # USING

PRINT #file-no., USING format ; expression
i, |: 1.} [expression]]*

Output value of expression in specified format
to a file.

190

BASIC Instructions Appendix E
Instruction Syntax Purpose
PUT PUT #file-no. [, record-no.] Writes data to random file.
RANDOMIZE RANDOMIZE [expression] Initializes random series.
RDIM RDIM variable-name Declares non-volatile variables.
[(subscript [, subscripfl*)]
[maximum-number-of-characters]
[, variable-name [(subscript[, subscripf]*)]
[maximum-number-of-characters]|*
READ READ variable [, variable]” Reads data from DATA statement and stores it
in variable.
RECEIVE RECEIVE message-no., character-variable Receives message.
REM REM [comment-text] Causes the BASIC Unit to ignore the
comment-text.
RESTORE RESTORE [{line-no. | label}] Specifies re-use of values in a DATA statement
RESUME RESUME [{0 | line-no. | label | NEXT}] Exits from error processing routine.
RUN RUN [”file-name”] [, ERASE] Starts program execution.
SEND SEND message-no., character-expression Sends message.
SENDSIG SENDSIG signal-no., task-no. Generates signal.
SIGNAL SIGNAL signal-no. {ON | OFF | STOP} Enables, disables, or stops signal interrupt.

ON / OFF / STOP

STOP

STOP

Stops program execution.

ON / OFF / STOP

SWAP SWAP variable-name, variable-name Swaps values of two variables.

TASK TASK task-no. Starts terminated task.

TIMES TIMES {ON | OFF | STOP} Enables, disables, or stops time interrupt.
ON / OFF / STOP

TIMER TIMER {ON | OFF | STOP} Enables, disables, or stops timer interrupt.

TROFF

TROFF [{task-no. | ALL}]

Stops output of line number trace.

i |

_} lexpression]]*

TRON TRON [{task-no. | ALL}] Starts output of line number trace.

TWAIT TWAIT task-no. Waits for termination of task.

VLOAD VLOAD ” file-name” Reads contents of non-volatile variable from

file.

VSAVE VSAVE “file-name” Saves contents of non-volatile variable to file.

WHILE/WEND WHILE conditional-expression Repeatedly execute series of statements while
WEND condition is satisfied.

WRITE WRITE expression([{, | ; | _} [expression]]* Outputs value of expression.

WRITE # WRITE #file-no., expression Outputs value of expression to a file.

Function List

Instruction Syntax Purpose

ABS ABS (expression) Calculates the absolute value of the expression.

ACOS ACOS (expression) Calculates arc cosine of the expression.

ASC ASC (character-expression) Returns the ASCII code of the first character of
character-expression.

ASIN ASIN (expression) Calculates the arc sine of the expression.

ATN ATN (expression) Calculates the arc tangent of the expression.

CDBL CDBL (expression) Converts expression into a double-precision
real number.

CHRS CHRS (expression) Converts expression into characters.

CINT CINT (expression) Rounds any fractional part of expression

cos COS (expression) Returns cosine of expression.

191

BASIC Instructions Appendix E
Instruction Syntax Purpose
CSNG CSNG (expression) Converts expression into single-precision real

number.

CVI / CVS / CVD

CV1I (2-character-string)
CVS (4-character-string)
CVD (8-character-string)

Converts character string into numeric value.

length [, position])

DATES DATES [= ”year/month/day”] Returns date of internal clock, or sets date.

EOF EOF (file-no.) Returns true (—1) if file-no. has reached end of
file; false (0) otherwise.

ERL/ERR ERL Return line on which error has occurred (ERL)

ERR and error code (ERC).

EXP EXP (expression) Calculates exponential function of expression
(e expression)

FIX FIX (expression) Truncates any fractional part of expression.

FRE FRE (expression) Returns size of unused memory area.

HEXS$ HEXS (expression) Returns a character string with the value of
expression expressed as a hexadecimal
number.

INKEYS INKEYS Returns next character in keyboard buffer.

INPUTS INPUTS (expression [, #file-no.]) Reads character string of specified length from
specified file.

INSTR INSTR ([expression,] character-string, Searches for key-string in character-string and

key-string) returns its position.

INT INT (expression) Returns the largest integer which does not
exceed expression.

INTRB INTRB Variables containing information on an interrupt

INTRL INTRL that has occurred.

INTRR INTRR

LEFTS LEFTS (character-expression, expression) Returns the leftmost expression characters
from character-expression.

LEN LEN (character-expression) Returns length of character-expression.

Loc LOC (file-no.) Returns current logical position in file.

LOF LOF (file-no.) Returns size of file.

LOG LOG (expression) Calculates natural logarithm of expression

MIDS MIDS (character-expression, Returns length characters from

character-expression starting from position.

MKIS / MKSS /
MKDS$

MKIS (integer-value)
MKSS$ (single-precision-value)
MKDS (double-precision-value)

Converts numeric value into character string.

OCTS OCTS (expression) Returns a character string with the value of
expression expressed as an octal number.

PEEK PEEK (address) Returns contents of the specified address.

RIGHTS RIGHTS (character-expression, expression) Returns the rightmost expression characters
from character-expression

RND RND (expression) Returns random number.

SEARCH SEARCH (integer-array [, expression] Searches for first occurrence of the integer

[, start-element] [, increment]) value expression in integer-array and returns

element number.

SGN SGN (expression) Returns —1, 0, or 1 depending on whether
expression is negative, zero, or positive.

SIN SIN (expression) Calculates sine of expression.

SPACES SPACES (expression) Returns a character string containing
expression spaces.

SPC SPC (expression) Outputs expression spaces.

SOR SOR (expression) Calculates the square root of expression.

192

BASIC Instructions Appendix E
Instruction Syntax Purpose

STRS STRS (expression) Returns a character string with the value of
expression expressed as a decimal number

STRINGS STRINGS (expression, Returns a string with expression copies of the

{character-string | character-code}) first character of character-expression or

character-code.

TAB TAB (expression) Moves cursor to specified column.

TAN TAN (expression) Calculates tangent of expression.

TIMES TIMES [= ” hour: minute: second”] Returns time of internal clock, or sets time.

USR USR[func-no.] (argument) Calls a machine language function

VAL VAL (character-expression) Converts character-expression into a numeric
value.

VARPTR VARPTR (variable-name) [, feature] Returns memory address of variable.

GP-IB Instruction List

Statements
Instruction Syntax Purpose

CMD DELIM CMD DELIM = delimiter-code Specifies delimiter.

CMD PPR CMD PPR = mode Selects PPR mode.

CMD TIMEOUT CMD TIMEOUT = timeout-parameter Specifies limit value for timeout check.

INPUT @ INPUT@ [talker-address [, listener-address Receives data sent from specified talker and
[, listener-address]*]]; variable [, variable]* stores it in variable.

IRESET REN IRESET REN Makes REN (remote enable) false.

ISET IFC ISET IFC [, integen Transmits IFC (interface clear).

ISET REN ISET REN Makes REN (remote enable) true.

ISET SRQ ISET SRQ [@] [N] Transmits SRQ (service request).

LINE INPUT @

LINE INPUT@ [talker-address
[, listener-address [, listener-address]*]];
character-string-variable

Receives string data sent from specified talker
and substitutes it into character string variable.

ON SRQ GOSUB

ON SRQ GOSUB {line-no. | label}

Specifies first line of SRQ subroutine.

POLL

POLL talker-address, numeric-variable
[; talker-address, numeric-variable]*

Performs serial polling.

[numeric-variable [, numeric-variable]*

PPOLL PPOLL [PPU] [, listener-address, integen* Assigns response output line for parallel
polling.
PRINT @ PRINT@ [listener-address Transmits data as ASCII character string.
[, listener-address]*]; [data [, data]*] [e]
RBYTE RBYTE [command] [, command]*; Receives binary data after transmitting

multi-line message.

SRQ ON/OFF/STOP

SRQ {ON | OFF | STOP}

Controls reception of SRQ.

WBYTE

WBYTE [command] [, command]*];
[data [, data]*] [e]

Transmits multi-line message and binary data.

193

BASIC Instructions Appendix E

Functions
Instruction Syntax Purpose

IEEE(0) IEEE(0) Checks the delimiter.

IEEE (1) IEEE (1) Checks the initialized status of GP-IB interface.

IEEE (2) IEEE (2) Checks the talker and listener status, and
received interface message.

IEEE (4) IEEE (4) Stores the device status of the device that
transmits the service request during serial
polling.

IEEE(5) IEEE(5) Stores the talker address of the device that
transmits the service request during serial
polling.

IEEE(6) IEEE(6) Stores the talker address of the device that
does not respond to the serial polling.

IEEE(7) IEEE(7) Stores the data byte obtained as a result of
parallel polling.

STATUS STATUS Stores device status.

194

Appendix F
Machine Language Commands

Each of the machine language monitor commands is described in detail on the following pages. In the de-
scription, the following syntax is used:

e ltems in brackets [] may be omitted.
¢ An item followed by an asterisk (*) may be repeated.
» Words in italics are English descriptions of the value that must be supplied.

Note 1. All commands must be entered in upper case.

2. DSO0 is generally used for address calculation. The target address is the specified address (offset) +
DSO0.

3. If any start address is greater than an end address, an error will occur.

4. Addresses (offsets) must be entered as numbers of 4 digits or less. (A 5-digit address will cause an er-
ror.) Leading 0’s may be omitted.

5. Data must be entered as numbers of 1 or 2 digits. (3-digit data values will cause an error.) Leading 0’s
may be omitted.

6. If the monitor detects an input error, it will display a question mark (?).
7. The program counter (PC) and program segment (PS) are used for the G, T, and B commands.
8. The Backspace Key can be used to correct inputs until the carriage return is input.

Command: D

Function Displays the contents of memory in hexadecimal notation.
Syntax D [start-address][. end-address]
Explanation Display the contents of the memory from a specified start address to end ad-

dress (example 1). If the end address is omitted, only the byte at the start ad-
dress is displayed (example 2) If both the start and end addresses are omitted, 8
bytes are displayed, starting from the address after that displayed previously
(example 3). If the start address is omitted, the memory contents from the ad-
dress after that displayed previously and ending at the specified end address
(example 4).

To suspend the display, press CTRL+S. To resume, press CTRL+Q.

Examples

1,2,3... 1.*D4001.4005-
4001-20 30 40 50 60

2. *D4010~
4010-23
3. *Do
4011-34 56 78 9A BC DE FO 12

4. *D.4021
4019-31 32 33 34 35 36 37 38

4021-39
Command: W
Function Writes new values into memory.
Syntax W start-address: data . data]*
Explanation Stores the specified data in memory beginning at start-address (example 1).

Up to 80 values can be stored with one w command.

195

Machine Language Commands Appendix F

Example

Command: M

Function
Syntax
Explanation

Example

Command: C

Function
Syntax
Explanation

Example

Command: A

Function

Syntax

Explanation

Example

Command: |

Function

196

Note

*W4000:12.34.56.78.9A5
*D4000.4004>
4000-12 34 56 78 9A

Moves a specified block of memory to another place in memory.

M destination-address < block-start. block-end

The source block and destination address must be in the same segment.
Make sure the source and destination areas do not overlap.

*M000<4000.403F>

Compares the contents of two blocks of memory.
C block-2-start < block-1-start. block-1-end

The contents of blocks 1 and 2 are compared and any differences are displayed.
If no differences are found, only the next prompt is displayed.

This command will compare memory locations from &H4000 to &H401A to loca-
tions from &H5000 to &H501A.

*C5000<4000.401A
4009-FF (FB)
4013-56(34)

*

The lines before the next * prompt show that differences were found at &H4009
(which contains &HFF) and &H5009 (which contains &HFB), and at &H4013
(&H56) and &H5013 (&H34).

Start assembling mnemonic codes.

A
The prompt will change to an exclamation point (!). Enter the mnemonic codes:
! [address : lmnemonic-code*

Enter x to exit from the mnemonic assembler.

The CPU’s mnemonics and operands are described in the NEC V25
(uPD70322) manual. (Some mnemonics and operands are slightly different.
See the list on page 185 for details.)

The assembler’s location counter is updated appropriately each time a line has
been entered, so it is not necessary to enter a new address in order to assemble
into consecutive memory locations.

*AJ
13000:MOV IX,TIY-
3000-89 FE MOV IX, IY

MOV AW, B
3002-89 D8 MOV AW,BW

X2
*

Disassembles and displays the machine language program at a specified ad-
dress.

Machine Language Commands Appendix F

Syntax

Explanation

Example

Command: S

Function

Syntax

Explanation

Examples

I[start-address][. end-address]

Disassembles and displays the memory contents between start-address and
end-address (example 1). If end-address is omitted, 20 instructions are dis-
played (starting at start-address) (example 2). If both start- and end-address are
omitted, 20 instructions are displayed starting from the address after the one dis-
played immediately before (example 3). To display only one instruction, specify
the same start-address and end-address (example 4).

1. *I3000.3003~

3000-89FE MOV IX,IY
3002-89D8 MOV AW, BW
2. *I30007
3000-89FE MOV IX,IY
3002-89D8 MOV AW, BW
3004-1000 ADDC [BW+IX],AL
3006-86E0 XCH AL,AH
3008-26 DSl:
3009-8905 MOV [IY], AW
300B-2438 AND AL, 38
300D-COE803 SHR AL, 03
3010-B409 MOV AH, 09
3012-F6E4 MULU AH

1 Displays 20 instructions

3. *Io
3025-50 PUSH AW
3026-8CC8 MOV AW, PS
3028-8EDS MOV DSO, AW

1 Displays 20 instructions

4. *13000.3000>
3000-89FE MOV IX, IY

*

Saves (writes) the contents of the specified address range to a file on a memory
card or to a port connected to a terminal. The format of the saved file can also be
specified.

SR format start-address . end-address

SFH start-address. end-address. file-name

The save destination is indicated by the character after S: R is the terminal port; F
is the CPU Unit memory card.

Format can be s (indicating Motorola S-records) or H (indicating Intel Hex For-
mat). If the destination is the memory card, only the Intel Hex Format can be
used.

File-name does not include the 3-character extension (. XxX)
Transfer is started immediately after the command has been entered.

1. *SRS5000.52FF

*

197

Machine Language Commands Appendix F

Command: L

Function
Syntax

Explanation

Examples

Command: V

Function

Syntax

Explanation

Examples

198

Note

1,2 3.

Note

1,2 3.

2. *SFH4000.41FF.FILE2>

*

To save the contents of memory by specifying save destination r, the CVSS is
necessary. If the CVSS is not installed, the data are only displayed, and not
saved.

Loads (reads) a section of memory from a file on the memory card or from the
port to which a terminal is connected.

LR format [offset]
LFH[offsef]. file-name

The load source is specified by the second letter of the command:

R: terminal connected to port

F: CPU Unit's memory card

If the source is the terminal, format can be either s (for Motorola S-records) or H
(for Intel Hex Format). If the source is the memory card, only Intel Hex Format
can be used.

The address to which the file contents is to be loaded is the specified address +
segment value of DSO + offset.

File-name does not include the extension (. XXX).

To abort this command, press CTRL+Z twice.

1. *LFH.FILE3~
2. *LRHo

3. *LRH1000>

To load the machine language program from a Terminal connected to the port,
the CVSS is necessary. Memory contents cannot be directly loaded from a ter-
minal other than those with CVSS.

Verifies the memory block transferred from the port to which a terminal is con-
nected or the memory card of the CPU Unit against the contents of the BASIC
Unit’s memory.

VR format [offset]
VFH[offsef] . file-name

The source of data to verify is specified by the second letter of the command:
R: terminal connected to port

F: CPU Unit's memory card

If the source is the terminal, format can be either s (for Motorola S-records) or H
(for Intel Hex Format). If the source is the memory card, only Intel Hex Format
can be used.

The address to be verified is the specified transfer address + segment value of
DSO + offset.

The result of the verification can be checked by the x command (refer to the de-
scription of the X command).

To abort this command, press CTRL+7Z twice.

1. *VRS~
2. *VFH1000.FILE4-

Machine Language Commands Appendix F

Command: X

Function

Syntax
Explanation

Example

Command: B

Function

Syntax
Explanation

Examples

Command: N
Function

Syntax

Explanation

Command: G
Function

Syntax

Explanation

Displays the result of the previous s, L, or v command. (The s, L, and v com-
mands do not display an error code even if an error has occurred while these
commands are executed.) The results of executing these commands therefore
must be checked by this command.

X [command]

The results of executing the S, L, and V commands are recorded and may be
displayed by this command, as follows:

Command Normal completion Abnormal completion
S SAVE COMPLETE SAVE ERROR
LOAD COMPLETE LOAD ERROR
VERIFY OK Mis-matched addresses and
data are displayed.

*XSo

SAVE COMPLETE
*

Sets a break point at the specified address, or displays currently set break
points. Up to two break points can be set.

B [address]

Sets a break point at address. Only the two most recently set break points are
valid. If no break points are set, 0000 is displayed. A break point cannot be set at
address 0000.

If address is omitted, currently set break point addresses are displayed.

The PS (program segment) is used and the target address is the specified ad-
dress plus PS.

1,2 3. 1. *B3000~

2. *By
B=3000 0000

3. *B5000~
*By
B=3000 5000

Cancels all break points.
N
Cancels both break points at once.

Begin executing the machine language program at the specified start address.
G[start-address]

Usually, the program is executed with break points set in advance. When the
program execution has stopped at a break point, the break point is cleared and
the current contents of the registers are displayed.

If start-address is omitted, the program is executed starting from the current ad-
dress indicated by the program counter.

199

Machine Language Commands Appendix F

Example

Command: T

Function
Syntax

Explanation

Example

Command: R

Function

Syntax

Explanation

Examples

200

1,2 3.

The PS (program segment) and program counter (PC) are used and the target
address is the specified address plus PS.

The initial values of the stack pointers (SP, SS) for MON are set according to
MSET.

*G4000r

R2 R1 RO V DI B S Z F1A FOP IBC
*

AW-FEDC BW-0000 CW-0000 DW-0000 SP-0000 BP-0000
IX-0000 IY-0000 PS-0000 DS0-0000 SS-0000 DS1-0000 PC-1234
For the flags, * indicates 1 (set) and - indicates 0 (reset)

Executes one step (one instruction) of the machine language program.
T[address]

Executes one instruction at the specified address, and, after execution, disas-
sembles and displays the instruction. Also displays the current contents of the
registers.

If address is omitted, the instruction at the address currently indicated by the pro-
gram counter is executed.

The PS (program segment) and program counter (PC) are used and the target
address is the specified address plus PS.

*T4020-

Changes the contents of a register or flag, or displays the current contents of all
the registers and flags.

R
R register-name = data
R flag-name = flag-state

Register-name must be one of these names:
AW, BW, CW, DW, SP, Bp, IX, IY, PS, DSO, SS, DS1, or PC

Data should be a hexadecimal number.

Flag-name must be one of these names:
R2,R1,R0,V,D,I,B, S, 7, F1,A, FO, P, IB,Or C

Flag-state should be 0 (reset) or 1 (set).

The PS (program segment) and program counter (PC) are used and the target
address is the specified address plus PS.

. *RAW=FEDC>

*RV=1-

*RS=0-

*

rwop o

Ry
RZRIROV DI B S Z FLA FOP IBC
*

AW-FEDC BW-0000 Cw-0000 DwW-0000 SP-0000 BP-0000
IX-0000 IY-0000 PS-0000 DS0-0000 SS-0000 DS1-0000
PC-1234

Machine Language Commands

Appendix F

Command: K

Function

Syntax
Explanation

Example

Command: ESW

Function

Syntax

Explanation

Performs addition or subtraction on 4-digit hexadecimal data.

K value + value
K value - value

Calculates the sum or difference of the two values. Any carry or borrow is ig-
nored.

*K1234+5678~

1234+5678=68AC

Displays or sets the contents of the memory switches in the BASIC Unit, or reads
or writes the memory switches of the CPU Unit.

ESW switch-no. Displays switch settings

ESW switch-no.=data Sets memory switches

S = Displays memory switches from CPU Unit
ESW — Wvriieiineaennn.. Write memory switches to CPU Unit

¢ Display

The switch numbers are as follows:

: System parameters (ESW1)

: Automatic transfer file name (ESW2)

: Terminal, printer ports (ESW3)

: Baud rate for each port (ESW4)

: Terminal specifications (ESW5)

: Cyclic area settings (ESW86) (Groups 1 to 12 displayed.)

: GP-IB setting (ESW?7)

¢ The file name consists of up to eight ASCII characters, a period, and a 3-char-
acter extension. The file name must start with an alphanumeric character. The
file extension is BAS.

¢ Do not leave any blank characters between the file name and period or period
and file extension.

NO O~ WN =

Upper byte Lower byte

Name

Extension

201

Machine Language Commands Appendix F

Example: File name ABC1234.BAS

A (41)
B (42)
C (43)
1@31) | s e Right-justify file name.
2(32)
3(33)
4 (34)
(2E) | ... Place period (&H2E)
B (42) after file name.
A@dl) | e Place extension after period.
S (53)
©] . Fill excess bytes with &HOO.
When setting this area with ma-
chine language monitor command
ESW2, excess bytes are automati-
cally filled.
e Setting

Set switches 1, 3, 4, 5, and 7 as follows:
Eswn=4-digit-hexadecimal-number

Set switch 2 as follows:

Esw2=file-name. file-extension

Set switch 6 as follows:

ESW6—m =dddd-dddd-dddd-dddd

(m: group no. 1to 12, d: decimal digit)

Only the contents of the memory in the BASIC Unit are changed. To change
the contents of the CPU Unit's memory, write the settings to the CPU Unit

(Esw - w).

Reading from CPU Unit The current contents of the memory switches in the CPU Unit are read to the
BASIC Unit. The messages displayed at this time are as shown in the table be-
low.

Status Message
Normal completion MEMORY SWITCH READ COMPLETE
Memory switch information error MEMORY SWITCH ERROR
Memory switch information missing MEMORY SWITCH NONE
Read error MEMORY SWITCH FINS ERROR
Read timeout TIMEOUT ERROR
Error during error logging ERROR LOG WRITE ERROR

Writing to CPU Unit The contents of the memory switches in the BASIC Unit are written to the CPU

Unit. The messages displayed at this time are as shown in the following table:
Status Message

Normal completion MEMORY SWITCH COPY COMPLETE

Write data error MEMORY SWITCH ERROR

Write error MEMORY SWITCH FINS ERROR

Write timeout TIMEOUT ERROR

Examples
1,2, 3... 1. *ESW1=007F~
2. *ESW1,
007F

3. *ESW2=ABCDE123.BAS>

202

Machine Language Commands Appendix F

4, *ESW2-
ABCDE123.BAS
5. *ESW3,
0000

6. *ESW6-7=0080-0032-0000-0005~
7. *ESW6,

0080 1500 0000 0015 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0080 0032 0000 0005 0000 0000 00O0OO 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Machine Language Mnemonics

Instructions that Cannot be
Used

Operand Description
Restrictions

The mnemonics accepted by the machine language monitor’s assembler con-
form to those of the BASIC Unit's CPU, the V25 (NEC uPD70322), with slight
differences.

The following instructions are not used because their functions or operands are
meaningless for the BASIC Unit, or because they are represented by a different
methods:

MOVBK LDM OUTM
CMPBK STM FPO1
CMPM INM FPO2

The operands related to processing outside a segment cannot be used because
the capacity of the user program area of the BASIC Unit is limited.

CALL far-proc

CALL memptr32

RETF pop-value

BR far-label

BR memptr32

BR short-label

The operands cannot be abbreviated. The describe the full name of an operand.
MUL reg, imm8

MUL reg,imm16

An instruction that can be assembled in more than one way is always assembled
in only one way.

MOV reg, reg ... (pattern of instruction reg, reg)

—1000 100W 11reg2 reg1 with direction flagd =0

Only one instruction can be entered on each line. Use separate lines for mul-
ti-opcode instructions. For example, the following entries are illegal:

REPC CMPBKW

MOV DS1: [BW],AW

Operand Representation Rules

Immediate Values

Memory Addressing Modes

xxxx: 4-digit hexadecimal number
Words and bytes are identified by the values.

[BW+IX] [BW+IY] [BP+IX] [BP+IY]
[IX+BW] [IY+BW] [IX+BP] [IY+BP]
[IX] [IY] [BW]
[0000] tOo [FFFF] Direct address
1234 [BWAIX] vvvennnnnn, Enter displacement on the left
Examples MoV [BW+IX], AW

MOV FF12[BW+IY],AW

MOV [4321],AW

203

Machine Language Commands Appendix F

Processing Unit To specify whether an instruction should operate on a byte or word, use the BYTE
Specifications (Word/Byte) or worp qualifiers:
Examples TEST1 BYTE [IX],CL
TEST1 WORD [IY],CL
Branch Instructions Labels cannot be used; specify branch addresses.
Examples 2000 7502 BNE 2004
2002 8B04 MOV AW, [IX}
2004 ES0900 2010

204

A

ABS
ACOS
ALARM
AND
APPEND
AS

ASC
ASIN
AUTO

BASE
BITOFF
BITON
BREAK

C

CALL
CDBL
CHDIR
CHR $
CINT
CLOSE
CLS
CMD
COM
CONT
COS
CSNG
CvD
CvI
CVvS

Appendix G

Reserved Words

D

DATA
DATE $
DEF
DEFDBL
DEFINT
DEFSNG
DEFSTR
DIM
DELIM
DELETE

E

EDIT
END
EOF
EQV
ERASE
ERL
ERR
ERR2
ERR3
ERROR
EXIT
EXP

FIELD
FINS
FILES
FIX
FN
FOR
FRE

GET
GO
GOSuUB
GOTO

H
HEX $

IEEE

IF

IFC
IMP
INKEY $
INPUT
INPUT $
INPUT @
INSTR
INT
INTR
INTRB
INTRL
INTRR
IRESET
ISET

K

KEY
KILL
KYBD

L

LEFT $
LEN
LENGTH
LET
LFILES
LIST
LLIST
LOAD
LOC
LOCATE
LOF
LOG
LPRINT
LPRT
LSET

205

Reserved Words Appendix G
M R SRQ
MERGE RANDOMIZE ggpus
MESSAGE REN TP
MID $
MKD $ RBYTE STR$
MKI $ RDIM STRING $
MKS $ READ SWAP
MOD RECEIVE T
MON REM TAB
MSET REN TAN
N RENUM TASK
NAME RESTORE THEN
NEW RESUME mg Ff
NEXT RETURN
NOT T0
RIGHT $ TROFF
(o) RND TRON
OCT $ ROMLOAD TWAIT
OFF ROMSAVE TIMEOUT
SEEN ROMVERIFY U
OPTION RSET USING
oR RUN USR
P S v
PARACT SAVE VAL
PAUSE VARPTR
oC SCRN VERIFY
PEEK SEARCH VLOAD
PGEN SEG VSAVE
PINF SEND w
PNAME SENDSIG WAIT
POKE SGN WBYTE
POLL SIGNAL WEND
on S WRITE
PRINT SPACE $
PRINT @ SPC X
PUT SQR XOR

206

Appendix H

Controlling RS-232C Communications Lines

RS-232C communications lines are controlled using the OPEN statement as follows:

OPEN” COMN:

[, XON/XOFF]

OFF —

OFF —

RS
CS
DS0
XON/XOFF
DTR (Out) ON
ON
DSR (in) O
RTS (Out) ON
CcTS(n) ON
OFF
TXD (Out) ON
OFF
RXD (In) ON
OFF
(1) and (2)
(3) and (4)

[speed] [, parityl [, data_lengthl [, stop_bits]
[, RS] [, csmll [, DSO] [, LF1” As#file-no.

If RS control is designated, the RTS signal will be turned ON when the 1/0 com-
mand is executed and will be turned OFF otherwise. If RS control is not desig-
nated, the RTS signal will remain ON.

If CSO0 or nothing is designated, there will be no limit to the wait for the ON CTS
signal or end of transmission. If a value between CS100 and CS30000 is desig-
nated, a wait will be for 100 ms to 30 s maximum.

If DSO is designated, the DSR signal will not be checked. If nothing is desig-
nated, the DSR signal will be checked.

If XON/XOFF or nothing is designated, XON/XOFF control will be performed. If
XN is designated, XON/XOFF control will not be performed.

{

N

Q) %3)

8W % @

Open

Without

RS

£ s

. ‘
A

Print Input Close Open Print Input Close
With
RS

Not checked if DSO is designated. Checked if nothing is designated (i.e., a
RS-232C not ready error will occur if OFF when checked).

If CSO0 or nothing is designated, the signal will be turned ON and an indefinite
wait will be made until printing has ended. If a value between CS100 and
CS30000 is designated, the signal will be turned ON and a wait of 100 ms to 30 s
will be made until printing ends. If the signal turns ON during printing or the time
expires, a wait of 60 s will be made. If the 60 s also expire, an I/O timeout error will
occur.

Note Communications control using RTS/DTR signals is not possible for the ports set as the terminal and printer
ports. This point particularly applies to BCS11/12 Units, for which port 1 is default set to terminal port and
port 2 is default set to printer port.

207

Appendix |

Programming with Windows 95

HyperTerminal

Overview

Previously, an FIT10 Terminal Pack or N88-DISK-BASIC was required to program the BASIC Unit. Now, how-
ever, it is possible to program using HyperTerminal and other accessories that have been added to the stan-

dard Windows 95 package.

When creating programs using HyperTerminal, only the backspace key can be used in operations on the ter-

minal screen. The cursor keys cannot be used.

Setup

Connections

Provide a connecting cable for connecting the BASIC Unit to the computer. Connector specifications and the

connection configuration are shown below.

IBM PC/AT or compatible

Connector

(a) D-sub 9-pin female Hood: XM2S-0913
Connector: XM2D-0901

(b) D-sub 9-pin male Hood: XM2S-0911

Connector: XM2A-0901

DIP Switch Settings

C200H-ASCO02

a[s0 | —. e[

2| RD 3| RD

7| RTS :>C 4| RTS
8| CcTs 5| CTS
6| DSR 7| DSR
4 DR~ Ig| DR
5| GND 9| GND

Make the settings shown below using the DIP switch in the lower part of the front of the Unit.

Pin 1: Memory protect

Pin 2: Memory switch disabled
Pin 3: ---

Pin 4: ---

OFF

OFF

OFF

(b)

209

HyperTerminal Startup

Location Information

Programming with Windows 95 HyperTerminal Appendix |
¢ Start up HyperTerminal via Start/Programs/Accessories.
o After starting up HyperTerminal, make the settings shown below.

Connect To EHE

Area code: Enter the area code and select OK.
HyperTerminal

A message prompting you to install a modem will be dis-
played. Select No.

Connection Description

Name: Enter the desired name and select OK.
Connect To

Connect using: Select COM1 and OK.

COM1 Properties

Bits per second: Set to 9,600.
Data bits: Set to 8.

Parity: Set to “None”.

Stop bits: Set to 1.

Flow control: Set to “Xon/Xoff”.
Select OK.

¢ Default settings can be used for all the other settings.

Enter detailz for the phone number that you want to dial:

Country code:; IJapan [21] j

Area code: IE'I

Phone number: I

Connect using: I ComM1 j

O T
COM2

| (] I Cancel

¢ These settings do not have to be repeated each time you use HyperTerminal. Simply select the icon with the

required name.

o If the modem settings have already been made for the computer you are using, only the settings from Con-

nection Description onwards are required.

Confirming Connection

Key in Ctrl + X at the computer. The following message will be displayed indicating that connection is com-

plete.

BASIC UNIT Version 1.18 1994/03/25
(C) Copyright OMRON Corporation 1991
ok

Memory Switch Settings for BASIC Unit

Set the control method for terminal connection. The backspace key will be enabled by this.

ok

MON.

*ESW5=1200.

*ESW-W.J

MEMORY SWITCH COPY COMPLETE
*Q,l

ok

|

-

-

-

Moves to monitor mode
VT-100 insert mode

Writes settings to EEPROM

Exits MONITOR mode

With IBM PC/AT or compatible machines, turn OFF the Scroll Lock key.

This completes the setup.

210

Programming with Windows 95 HyperTerminal Appendix |

Operation

Creating Programs
Programs are created using text editors, such as Notepad, and are saved as text.

Transferring Programs from the Computer
1,2, 3... 1. Delete the program currently in the BASIC Unit memory using the NEW
command.
2. Transfer the program saved by selecting Send Text File... from the
Transfer menu as shown below.

&BASIC UNIT - HyperTerminal

File Edit View Call JUEGECE Help

02| 5|3 [} Send File

Receive File
Capture Test...
Send Text File...

Capture to Frinter

Transferring Programs to the Computer
1,2, 3... 1. Input the following on the terminal screen. (Do not press the Enter Key
yet.)

SAVE “COM1l:”

2. Select Capture Text from the Transfer menu, and specify the name of

the file for saving the program.

Press the Enter Key.

4. When program transfer has finished, select Stop in Transfer/Capture
Text.

w

& BASIC UNIT - HyperT erminal

File Edit Wiew Call QEEGEEE Help

= =) gl Send File. |

BReceive File...

LCaplure Text.

Send Test File.

Capture to Printer

211

Appendix J
Setting Memory Switches

With BASIC Units, serial port settings and other settings are performed using memory switches. This appendix
explains how to make memory switch settings.

The following two methods can be used to set memory switches. Explanations for both methods are given below.

1. From the Terminal

2. Using Support Software (e.g., CVS, SSS)

1. Setting Memory Switches from the Terminal

After the BASIC Unit is connected to the terminal, go into monitor mode as shown below.

Ok

MON. - - - - Goes into monitor mode

Next, make the memory switch settings as shown below.

*ESW1=1101. - - - - Sets ESW1 to 1101

*ESW7=0125.1 - - - - Sets ESW7 to 0125

When the settings have been completed, write the settings to the Unit and exit monitor mode.

*ESW-W.! - - - - Writes the memory switch settings

MEMORY SWITCH COPY COMPLETE

*Q, - - - - Exits monitor mode

213

Setting Memory S

witches

Appendix J

2. Setting Memory Switches Using Support Software

1. After the Support Software has been connected online to the PC, select “T: CPU SIOU Unit System Setup” from
the Communications and CPU Bus Unit Setup Menu. The following screen will be displayed.

Use the PageUp —
and PageDown

Keys to select the
Unit to be set.

[CPU SIOU Unit System Setup]

unit # 00 BA
BYTE b7 b0
+0 [0000 0000]
+1 [0000 0000]
+2 [0000 0000]
+3 [0000 0000]
+4 [0000 0000]
+5 [0000 0000]
+6 [0000 0000]
+7 [0000 0000]
+8 [0000 0000]
+9 [0000 0000]

HEX
00
00
00
00
00
00
00
00
00
00

BYTE
+10
+11
+12
+13
+14
+15
+16
+17
+18
+19

b7
[0000 0000]
[0000 0000]
[0000 0000]
[0000 0000]
[0000 0000]
[0000 0000]
[0000 0000]
[0000 0

b0

0 0000]

[0000 0000]

HEX
00

00
00

00
00

00
00

Use the PageUp, Page-
Down, and Cursor Keys to
select the address to to
be set.

The setting will be written
directly to the CPU Unit.

— Press the Shift+Right

Cursor Keys to make
input in hexadecimal.
Press the Shift+Left
Cursor Keys to return to
decimal input.

2. Perform the memory switch settings from this screen. (For details of the settings, refer to 3-3 Memory Switches.)

[CPU SIOU Unit System Setup]
unit # 00 BA ESW2
(Automatic
BYTE b7 b0 HEX BYTE b7 b0 HEX transfer file
+0 [0000 0000] 00 +10 [0000 0000] 00 / name)
ESwW1 ’[+1 [0000 0000] 00 +11 [0000 0000] 00
(System +2 [0000 0000] 00 +12 [0000 0000] 00 ESw
parameters) | | .3 [0000 0000] 00 +13 [0000 0000] 00 o 3t. nter/
+4 [0000 0000] 00 +14 [0000 0000] 00]/ § elec 'I"g prt”” er
+5 [0000 0000] 00 +15 [0000 0000] 00 erminal ports)
ESwz2 — +6 [0000 0000] 00 +16 [0000 0000] 00]Fi ESW4
(Automatic +7 [0000 0000] 00 +17 [0000 0000] 00 B
:::g?f file || .8 [0000 0000] 00 +18 [0000 0000] 00]\ (Baud rate)
+9 [0000 0000] 00 +19 [0000 0000] 00 ESW5
(Terminal
specifications)
[CPU SIOU Unit System Setup]
unit # 00 BA
BYTE b7 b0 HEX BYTE b7 b0 HEX
+100 [0000 0000] 00 +110 [0000 0000] 00
+101 [0000 0000] 00 +111 [0000 0000] 00
+102 [0000 0000] 00 +112 [0000 0000] 00 |- Eswe-12
ESW6-11 — |- +103 [0000 0000] 00 +113 [0000 0000] 00 (Cyclic area
(Cyclic area +104 [0000 0000] 00 +114 [0000 0000] 00 settings,
settings, +105 [0000 0000] 00 +115 [0000 0000] 00 input area 6)
input area 5) +106 [0000 0000] 00 +116 [0000 0000] 00] B
+107 [0000 0000] 00 +117 [0000 0000] 00 T Eswyz
+108 [0000 0000] 00 +118 [0000 0000] 00 (GP-1B
ESW6-12 — 1 4109 [0000 0000] 00 +119 [0000 0000] 00 setting)
(Cyclic area
settings,

input area 6)

Saving Memory Switch Settings

e The memory switch settings cannot be saved to a file from the CPU SIOU Unit System Setup Screen. If a
memory card is installed in the CPU Unit, save the settings to the memory card using the online memory card
operations, and then save them to a computer.

* The memory switch settings are saved to the CPU Unit's EEPROM. For this reason, if the CPU Unit is replaced, it
is necessary to make the memory switch settings again.

214

active controller

address

address command

advanced instruction

allocation

alphanumeric character

analog

Analog I/O Unit

AND

area

area prefix

argument

arithmetic operator

array element

array subscript

array variable

ASCII

Glossary

The device on a general-purpose interface bus that is currently controlling com-
munications on the bus.

A number used to identify the location of data or programming instructions in
memory or to identify the location of a network or a unit in a network.

A command sent to a specific address on a general-purpose interface bus.

An instruction input with a function code that handles data processing opera-
tions within ladder diagrams, as opposed to a basic instruction, which makes up
the fundamental portion of a ladder diagram.

The process by which the PC assigns certain bits or words in memory for various
functions. This includes pairing I/O bits to 1/0 points on Units.

An upper- or lower-case letter, digit, or underscore (_). The underscore is con-
sidered to be a letter.

Something that represents or can process a continuous range of values as op-
posed to values that can be represented in distinct increments. Something that
represents or can process values represented in distinct increments is called
digital.

I/O Units that convert I/0 between analog and digital values. An Analog Input
Unit converts an analog input to a digital value for processing by the PC. An Ana-
log Output Unit converts a digital value to an analog output.

A logic operation whereby the result is true if and only if both premises are true.
In ladder-diagram programming the premises are usually ON/OFF states of bits
or the logical combination of such states called execution conditions.

See data area and memory area.

A one or two letter prefix used to identify a memory area in the PC. All memory
areas except the CIO area require prefixes to identify addresses in them.

A value passed to a function when the function is called.

A character indicating to the BASIC Unit that it should perform some sort of cal-
culation; for instance, “+” indicates addition, and “*” indicates multiplication.

One part of an array variable. An array element can be another array (for mul-
ti-dimensional arrays) or a simple variable (an integer, floating-point, string, etc.)

An integer expression used to designate an array element for some operation.
A variable which consists of a collection of parts called array elements. Each ele-
ment can be another array (for multi-dimensional arrays) or a simple variable (an

integer, floating-point, string, etc.)

Short for American Standard Code for Information Interchange. ASCII is used to
code characters for output to printers and other external devices.

215

Glossary

assembler

asynchronous execution

Auxiliary Area
auxiliary bit

back-up

BASIC
basic instruction
BASIC Unit

baud rate

BCD

binary

binary-coded decimal

bit

bit address

breakpoint

buffer

building-block PC

bus

bus link

byte

216

A program which converts machine-language mnemonics to machine instruc-
tions.

Execution of programs and servicing operations in which program execution
and servicing are not synchronized with each other.

A PC data area allocated to flags and control bits.
A bit in the Auxiliary Area.

A copy made of existing data to ensure that the data will not be lost even if the
original data is corrupted or erased.

A common programming language. BASIC Units are programmed in BASIC.
A fundamental instruction used in a ladder diagram. See advanced instruction.
A CPU Bus Unit used to run programs in BASIC.

The data transmission speed between two devices in a system measured in bits
per second.

Short for binary-coded decimal.

A number system where all numbers are expressed in base 2, i.e., numbers are
written using only 0’s and 1’s. Each group of four binary bits is equivalent to one
hexadecimal digit. Binary data in memory is thus often expressed in hexadeci-
mal for convenience.

A system used to represent numbers so that every four binary bits is numerically
equivalent to one decimal digit.

The smallest piece of information that can be represented on a computer. A bit
has the value of either zero or one, corresponding to the electrical signals ON
and OFF. A bit represents one binary digit. Some bits at particular addresses are
allocated to special purposes, such as holding the status of input from external
devices, while other bits are available for general use in programming.

The location in memory where a bit of data is stored. A bit address specifies the
data area and word that is being addressed as well as the number of the bit with-
in the word.

Used during program debugging to mark places where the BASIC Unit should
stop executing the program and allow the programmer to check the state of the
program’s variables.

A temporary storage space for data in a computerized device.

A PC that is constructed from individual components, or “building blocks.” With
building-block PCs, there is no one Unit that is independently identifiable as a
PC. The PC is rather a functional assembly of Units.

A communications path used to pass data between any of the Units connected
to it.

A data link that passed data between two Units across a bus.

A unit of data equivalent to 8 bits, i.e., half a word.

Glossary

central processing unit

channel
character code
character constant

character expression

character string

checksum

CIO Area

command

command format

comment statement

communications port interrupt

constant

control bit

control signal

Control System

controlled system

controller

CPU

A device that is capable of storing programs and data, and executing the instruc-
tions contained in the programs. In a PC System, the central processing unit ex-
ecutes the program, processes I/O signals, communicates with external de-
vices, etc. The Unit containing the CPU is called the CPU Unit.

See word.
A numeric (usually binary) code used to represent an alphanumeric character.
A character expression which contains no string variables.

An expression involving only character strings, string variables, functions re-
turning character strings, and the “+” operator.
A sequence of characters delimited by double quotes (”).

A sum transmitted with a data pack in communications. The checksum can be
recalculated from the received data to confirm that the data in the transmission
has not been corrupted.

A memory area used to control I/O and to store and manipulate data. CIO Area
addresses do not require prefixes.

A BASIC Unit instruction which is usually used in immediate mode (e.g. LIST,
RUN, or NEW).

The syntax required for use in a command and specifying what data is required
in what order.

A statement which is ignored by the BASIC Unit. They may be included in a pro-
gram to describe the program or to explain how it is supposed to work. Lines be-
ginning with the REM instruction are comments, and the single quote character
(") begins a comment which extends to the end of the current line.

An interrupt that occurs when a character is received by one of the communica-
tions ports.

An input for an operand in which the actual numeric value is specified. Constants
can be input for certain operands in place of memory area addresses. Some op-
erands must be input as constants.

A bit in a memory area that is set either through the program or via a Program-
ming Device to achieve a specific purpose, e.g., a Restart Bit is turned ON and
OFF to restart a Unit.

A signal sent from the PC to effect the operation of the controlled system.

All of the hardware and software components used to control other devices. A
Control System includes the PC System, the PC programs, and all /O devices
that are used to control or obtain feedback from the controlled system.

The devices that are being controlled by a PC System.

A device on a general-purpose interface bus that is capable of controlling com-
munications.

See central processing unit.

217

Glossary

CPU Bus Unit

CPU Rack

C-series PC

CTS signal

CV Support Software

CV-series PC
CVSS

cycle

cycle time
cyclic (data) transfer
data area

data link

data register

data transfer

debug

decimal

decimal integer constant

declarator

decrement

default

218

A special Unit used with CV-series PCs that mounts to the CPU bus. This con-
nection to the CPU bus enables special data links, data transfers, and process-

ing.

The main Rack in a building-block PC, the CPU Rack contains the CPU, a Power
Supply, and other Units. The CPU Rack, along with the Expansion CPU Rack,
provides both an I/O bus and a CPU bus.

Any of the following PCs: C2000H, C1000H, C500, C200H, C40H, C28H, C20H,
C60K, C60P, C40K, C40P, C28K, C28P, C20K, C20P, C120, or C20.

A signal used in communications between electronic devices to indicate that the
receiver is ready to accept incoming data.

A programming package run on an IBM PC/AT or compatible to serve as a Pro-
gramming Device for CV-series PCs.

Any of the following PCs: CV500, CV1000, CV2000, or CVM1

See CV Support Softwatre.

One unit of processing performed by the CPU, including SFC/ladder program
execution, peripheral servicing, I/O refreshing, etc. The cycle is called the scan
with C-series PCs.

The time required to complete one cycle of CPU processing.

A transfer of data that occurs at a specific interval.

An area in the PC’s memory that is designed to hold a specific type of data.

An automatic data transmission operation that allows PCs or Units within PC to
pass data back and forth via common data areas.

A storage location in memory used to hold data. In CV-series PCs, data registers
are used with or without index registers to hold data used in indirect addressing.

Moving data from one memory location to another, either within the same device
or between different devices connected via a communications line or network.

A process by which a draft program is corrected until it operates as intended.
Debugging includes both the removal of syntax errors, as well as the fine-tuning
of timing and coordination of control operations.

A number system where numbers are expressed to the base 10. In a PC all data
is ultimately stored in binary form, four binary bits are often used to represent
one decimal digit, via a system called binary-coded decimal.

An integer constant expressed in decimal notation. Such a constant uses only
the numerals 0 through 9.

A special character added to a variable to specify the type of variable, e.g., a
character, a single-precision real number, etc.

Decreasing a numeric value, usually by 1.
A value automatically set by the PC when the user does not specifically set

another value. Many devices will assume such default conditions upon the appli-
cation of power.

Glossary

destination

destination line

destination variable

digit

DIP switch

distributed control

DM Area

DM word

double-precision constant

double-precision variable

downloading

DSR signal

EEPROM

elapsed-time interrupt

electrical noise

EM Area

EPROM

error code

The location where an instruction places the data on which it is operating, as op-
posed to the location from which data is taken for use in the instruction. The loca-
tion from which data is taken is called the source.

The target of a GOTO or GOSUB statement.

The variable which is to receive the results of a calculation or operation (the vari-
able in which the results are to be stored).

A unit of storage in memory that consists of four bits.

Dual in-line package switch, an array of pins in a signal package that is mounted
to a circuit board and is used to set operating parameters.

A automation concept in which control of each portion of an automated system is
located near the devices actually being controlled, i.e., control is decentralized
and ‘distributed’ over the system. Distributed control is a concept basic to PC
Systems.

A data area used to hold only word data. Words in the DM area cannot be ac-
cessed bit by bit.

A word in the DM Area.

A floating-point constant which has at least one of these properties: a trailing
hash mark (e.g. 123 .45#); an exponent declared with D or d instead of E or e
(e.g. 1.2345D2); or more than 15 digits in the mantissa (e.g.
123.450000000000).

A variable which can hold a double-precision value.

The process of transferring a program or data from a higher-level or host com-
puter to a lower-level or slave computer. If a Programming Device is involved,
the Programming Device is considered the host computer.

Data Set Ready signal; sent by a modem to indicate that it is functional.

Electrically erasable programmable read-only memory; a type of ROM in which
stored data can be erased and reprogrammed. This is accomplished using a
special control lead connected to the EEPROM chip and can be done without
having to remove the EEPROM chip from the device in which it is mounted.

An interrupt which occurs after a specified period of time.

Random variations of one or more electrical characteristics such as voltage, cur-
rent, and data, which might interfere with the normal operation of a device.

Extended Data Memory Area; an area that can be optionally added to certain
PCs to enable greater data storage. Functionally, the EM Area operates like the
DM Area. Area addresses are prefixes with E and only words can be accessed.
The EM Area is separated into multiple banks.

Erasable programmable read-only memory; a type of ROM in which stored data
can be erased, by ultraviolet light or other means, and reprogrammed.

A numeric code generated to indicate that an error exists, and something about

the nature of the error. Some error codes are generated by the system; others
are defined in the program by the operator.

219

Glossary

error generation number

event (data) transfer

event processing

executable statement

Expansion CPU Rack

Expansion I/O Rack

expression

FA

factory computer

fatal error

FINS

flag

floating-point decimal

floating-point format
floating-point constant

force reset

force set

frame checksum

function

220

A number used to identify an error generated by a program.

A data transfer that is performed in response to an event, e.g., an interrupt sig-
nal.

Processing that is performed in response to an event, e.g., an interrupt signal.

A statement which causes the BASIC Unit to perform some operation, rather
than one which changes the way the BASIC Unit interprets the program. (For
example, PRINT is an executable statement, but REM is not.)

A Rack connected to the CPU Rack to increase the virtual size of the CPU Rack.
Units that may be mounted to the CPU Backplane may also be mounted to the
Expansion CPU Backplane.

A Rack used to increase the I/0O capacity of a PC. In CV-Series PC, either one
Expansion 1/0 Rack can be connected directly to the CPU or Expansion CPU
Rack or multiple Expansion I/O Racks can be connected by using an I/O Control
and /O Interface Units.

The translation of a mathematical formula into BASIC notation. For example, the
formula for the area of a circle is: A=nr? the BASIC expression to calculate the
area of a circle is: AREA=3.1415*RADIUS"2.

Factory automation.

A general-purpose computer, usually quite similar to a business computer, that
is used in automated factory control.

An error that stops PC operation and requires correction before operation can
continue.

See CV-mode.

A dedicated bit in memory that is set by the system to indicate some type of oper-
ating status. Some flags, such as the carry flag, can also be set by the operator
or via the program.

A decimal number expressed as a number (the mantissa) multiplied by a power
of 10, e.g., 0.538 x 1075,

The layout of a single- or double-precision value in memory.
A numeric constant which has a fractional or exponential part.

The process of forcibly turning OFF a bit via a programming device. Bits are usu-
ally turned OFF as a result of program execution.

The process of forcibly turning ON a bit via a programming device. Bits are usu-
ally turned ON as a result of program execution.

The results of exclusive ORing all data within a specified calculation range. The
frame checksum can be calculated on both the sending and receiving end of a
data transfer to confirm that data was transmitted correctly.

A BASIC Unit instruction which calculates a value based on its arguments and
returns the value to the program. The programmer can define new functions with
the DEF FN statement.

Glossary

general-purpose interface busA bus used to connect various devices to a computer.

generation line
global variable
GPC

GP-IB

Graphic Programming Console

handshake line

handshaking

hexadecimal

hexadecimal constant

host interface

Host Link System

Host Link Unit

1/0 allocation

I/0 Block

1/0 Control Unit

I/O delay

I/0 device

The line in a program that generates an event, e.g., an interrupt.

A variable which can be accessed from any of the tasks in a program.
An acronym for Graphic Programming Console.

An acronym for general-purpose interface bus.

A programming device with advanced programming and debugging capabilities
to facilitate PC operation. A Graphic Programming Console is provided with a
large display onto which ladder-diagram programs can be written directly in lad-
der-diagram symbols for input into the PC without conversion to mnemonic
form.

A line in a program or a physical connection between devices used for hand-
shaking.

The process whereby two devices exchange basic signals to coordinate com-
munications between them.

A number system where all numbers are expressed to the base 16. In a PC all
data is ultimately stored in binary form, however, displays and inputs on Pro-
gramming Devices are often expressed in hexadecimal to simplify operation.
Each group of four binary bits is numerically equivalent to one hexadecimal digit.

An integer constant expressed in hexadecimal notation. Hexadecimal constants
must begin with the characters &H or &h and contain only hexadecimal digits (nu-
merals 0 through 9 and letters a through £ or A through F).

An interface that allows communications with a host computer.

A system with one or more host computers connected to one or more PCs via
Host Link Units or host interfaces so that the host computer can be used to trans-
fer data to and from the PC(s). Host Link Systems enable centralized manage-
ment and control of PC Systems.

An interface used to connect a C-series PC to a host computer in a Host Link
System.

The process by which the PC assigns certain bits in memory for various func-
tions. This includes pairing 1/O bits to I/O points on Units.

Either an Input Block or an Output Block. I/O Blocks provide mounting positions
for replaceable relays.

A Unit mounted to the CPU Rack to monitor and control I/O points on Expansion
CPU Racks or Expansion I/O Racks.

The delay in time from when a signal is sent to an output to when the status of the
output is actually in effect or the delay in time from when the status of an input
changes until the signal indicating the change in the status is received.

A device connected to the I/O terminals on I/O Units, Special I/O Units, etc. I/O

devices may be either part of the Control System, if they function to help control
other devices, or they may be part of the controlled system.

221

Glossary

I/0 Interface Unit

I/O point

I/O refreshing

I/O response time

I/0 Terminal

I/0 Unit

I/0 verification error

1/0 word

IBM PC/AT or compatible

initialize

input

input bit

Input Block

input device

input point

input signal

Input Terminal

instruction

222

A Unit mounted to an Expansion CPU Rack or Expansion 1/0 Rack to interface
the Rack to the CPU Rack.

The place at which an input signal enters the PC System, or at which an output
signal leaves the PC System. In physical terms, I/O points correspond to termi-
nals or connector pins on a Unit; in terms of programming, an I/O points corre-
spond to I/O bits in the IR area.

The process of updating output status sent to external devices so that it agrees
with the status of output bits held in memory and of updating input bits in memory
so that they agree with the status of inputs from external devices.

The time required for an output signal to be sent from the PC in response to an
input signal received from an external device.

A Remote I/O Unit connected in a Wired Remote I/O System to provide a limited
number of I/O points at one location. There are several types of I/O Terminals.

The most basic type of Unit mounted to a Backplane. I/O Units include Input
Units and Output Units, each of which is available in a range of specifications.
I/0 Units do not include Special I/O Units, Link Units, etc.

A error generated by a disagreement between the Units registered in the 1/0
table and the Units actually mounted to the PC.

A word in the CIO area that is allocated to a Unit in the PC System and is used to
hold I/O status for that Unit.

A computer that has similar architecture to, that is logically compatible with, and
that can run software designed for an IBM PC/AT computer.

Part of the startup process whereby some memory areas are cleared, system
setup is checked, and default values are set.

The signal coming from an external device into the PC. The term input is often
used abstractly or collectively to refer to incoming signals.

A bit in the CIO area that is allocated to hold the status of an input.

A Unit used in combination with a Remote Interface to create an I/O Terminal. An
Input Block provides mounting positions for replaceable relays. Each relay can
be selected according to specific input requirements.

An external device that sends signals into the PC System.

The point at which an input enters the PC System. Input points correspond phys-
ically to terminals or connector pins.

A change in the status of a connection entering the PC. Generally an input signal
is said to exist when, for example, a connection point goes from low to high volt-
age or from a nonconductive to a conductive state.

An 1/O Terminal that provides input points.

A direction given in the program that tells the PC of the action to be carried out,
and the data to be used in carrying out the action. Instructions can be used to
simply turn a bit ON or OFF, or they can perform much more complex actions,
such as converting and/or transferring large blocks of data.

Glossary

integer constant

integer variable

Intel HEX record

Intelligent Signal Processor

interface

interrupt (signal)

Interrupt Input Unit
interrupt service routine

inter-task communication

interval interrupt
IOIF

IOM (Area)

JIS

jump

keyword

label
least-significant (bit/word)
LED

leftmost (bit/word)

line number

A numeric value which has a percent sign (%) appended, or an expression con-
taining only integer constants.

A variable that can hold an integer value.

Hexadecimal data recorded according to the Intel standard.

A control-panel interface used to access and control signals. The Processor is
capable of processing the signals according to specifications, and thus the
name.

An interface is the conceptual boundary between systems or devices and usual-
ly involves changes in the way the communicated data is represented. Interface
devices such as NSBs perform operations like changing the coding, format, or

speed of the data.

A signal that stops normal program execution and causes a subroutine to be run
or other processing to take place.

A Rack-mounting Unit used to input external interrupts into a PC System.
A BASIC subroutine which is called in response to an interrupt.

Communication (transfer of data or status information) between two tasks in a
BASIC Unit program.

An interrupt which occurs each time a certain amount of time has elapsed.
An acronym for I/O Interface Unit.

A collective memory area containing all of the memory areas that can be ac-
cessed by bit, including timer and counter Completion Flags. The IOM Area in-
cludes all memory area memory addresses between 0000 and OFFF.

An acronym for Japanese Industrial Standards.

A type of programming where execution moves directly from one point in a pro-
gram to another, without sequentially executing any instructions in between.
Jumps in ladder diagrams are usually conditional on an execution condition;
jumps in SFC programs are conditional on the step status and transition condi-

tion status before the jump.

A word that has special meaning to the BASIC Unit. Programs cannot use key-
words for variable or label names.

A name attached to a program line for use in GOTO and GOSUB statements.
See rightmost (bit/word).

Acronym for light-emitting diode; a device used as for indicators or displays.
The highest numbered bits of a group of bits, generally of an entire word, or the
highest numbered words of a group of words. These bits/words are often called

most-significant bits/words.

An integer which uniquely identifies a line within a program. Line numbers may
be used in GOTO and GOSUB statements.

223

Glossary

line

link

Link System

Link Unit

listener

listener address

load

local variable

logical expression

logical operation

logical operator

loop

LSI
machine code

machine language

MCR Unit
megabyte
memory area

memory switch

most-significant (bit/word)

Motorola S-record

224

One portion of a BASIC program. A line consists of a line number and one or
more statements.

A hardware or software connection formed between two Units. “Link” can refer
either to a part of the physical connection between two Units or a software con-
nection created to data existing at another location (i.e., data links).

A system used to connect remote 1/O or to connect multiple PCs in a network.
Link Systems include the following: SYSMAC BUS Remote I/0 Systems, SYS-
MAC BUS/2 Remote I/O Systems, SYSMAC LINK Systems, Host Link Systems,
and SYSMAC NET Link Systems.

Any of the Units used to connect a PC to a Link System. These include Remote
I/0O Units, SYSMAC LINK Units, and SYSMAC NET Link Units.

A device on a general-purpose interface bus that is receiving data from another
device on the bus.

The addresses on a general-purpose interface bus of a device that is receiving
data from another device on the bus.

The processes of copying data either from an external device or from a storage
area to an active portion of the system such as a display buffer. Also, an output
device connected to the PC is called a load.

A variable which can only be accessed by the task in which it is declared.

An expression made up of one or more logical operations, which has “TRUE” or
“FALSE” as its value.

An operation on one or more “TRUE” or “FALSE” values (a Boolean operation),
or an operation which returns a “TRUE” or “FALSE” indication.

A keyword or symbol which instructs the BASIC Unit to perform some calculation
that returns a “TRUE” or “FALSE” value.

A group of instructions that can be executed more than once in succession (i.e.,
repeated) depending on an execution condition or bit status.

An acronym for large scale integration.
The binary program code that is actual executed by a CPU.

A programming language in which the program is written directly into machine
code.

Magnetic Card Reader Unit.
A unit of storage equal to one million bytes.
Any of the areas in the PC used to hold data or programs.

A bit or bits in memory that are used to set operating parameters similar to the
way a hardware switch would be.

See leftmost (bit/word).

A format standardized by the Motorola company to store programs.

Glossary

MS-DOS
multi-dimensional array

multidrop configuration

multitasked program

multitasking

my-address

nesting

network interrupt

Network Service Board

Network Service Unit

noise interference

non-executable statement

nonfatal error

non-volatile variable

NOT

null string

numeric constant

numeric expression

numeric key interrupt
numeric variable

object code

An operating system in common use on smaller computers.
An array in which more than one subscript is required to access an element.

A bus configuration in which all devices are connected in series, but across, not
through, each device.

A program which consists of two or more sub-programs or “tasks” executing
concurrently.

Describes a computer which can run more than one program at a time, or which
can give the illusion that several programs are running simultaneously.

The address of a device on a general-purpose interface bus.

Programming one loop within another loop, programming a call to a subroutine
within another subroutine, or programming an IF-ELSE programming section
within another IF-ELSE section.

An interrupt that occurs when data is received on the network interface.

A device with an interface to connect devices other than PCs to a SYSMAC NET
Link System.

A Unit that provides two interfaces to connect peripheral devices to a SYSMAC
NET Link System.

Disturbances in signals caused by electrical noise.
A statement that changes the way the BASIC Unit processes the program, but
does not cause the Unit to perform any particular operation. For example, the

REM statement causes the Unit to ignore the rest of the line.

A hardware or software error that produces a warning but does not stop the PC
from operating.

A variable that is stored in battery-backed memory. Non-volatile variables retain
their values even if power to the Unit is turned off.

A logic operation which inverts the status of the operand. For example, AND
NOT indicates an AND operation with the opposite of the actual status of the op-
erand bit.

A string containing no characters (”).

A number (integer or floating-point) or a numeric expression containing no vari-
ables or function calls.

A sequence of numbers, variables, and arithmetic operators that instructs the
BASIC Unit to calculate a numeric value.

An interrupt that occurs when the user presses one of the numeric keypad keys.
A variable that can hold a numeric value.

The code that a program is converted to before actual execution. See source
code.

225

Glossary

octal

octal constant

OFF

OFF delay

offset

ON

ON delay

operand

operating error

operator

operator priority

OR

0os

output

Output Block

output device

226

A number system where all numbers are expressed in base 8, i.e., numbers are
written using only numerals 0 through 7.

An integer constant expressed in octal notation. Octal constants must begin with
&, &0, or &o and contain only octal digits (numerals 0 through 7).

The status of an input or output when a signal is said not to be present. The OFF
state is generally represented by a low voltage or by non-conductivity, but can be
defined as the opposite of either.

The delay between the time when a signal is switched OFF (e.g., by an input
device or PC) and the time when the signal reaches a state readable as an OFF
signal (i.e., as no signal) by a receiving party (e.g., output device or PC).

A positive or negative value added to a base value such as an address to specify
a desired value.

The status of an input or output when a signal is said to be present. The ON state
is generally represented by a high voltage or by conductivity, but can be defined
as the opposite of either.

The delay between the time when an ON signal is initiated (e.g., by an input de-
vice or PC) and the time when the signal reaches a state readable as an ON sig-
nal by a receiving party (e.g., output device or PC).

The values designated as the data to be used for an instruction. An operand can
be input as a constant expressing the actual numeric value to be used or as an
address to express the location in memory of the data to be used.

An error that occurs during actual PC operation as opposed to an initialization
error, which occurs before actual operations can begin.

A character that instructs the BASIC Unit to perform some calculation. For ex-
ample, the “+” character indicates that the BASIC Unit should add two numeric
values (or concatenate two strings).

Controls the order of evaluation for sub-expressions in a numeric expression.
For example, 2+3*4 is interpreted as 2+ (3*4) or 14 (and not (2+3) *4 or 20),
because the operator priority for * is higher than that for +. Parentheses may be
used to change the order in which sub-expressions are evaluated.

A logic operation whereby the result is true if either of two premises is true, or if
both are true. In ladder-diagram programming the premises are usually ON/OFF
states of bits or the logical combination of such states called execution condi-
tions.

Operating system; the basic software the drives a computer and on which all oth-
er software is executed.

The signal sent from the PC to an external device. The term output is often used
abstractly or collectively to refer to outgoing signals.

A Unit used in combination with a Remote Interface to create an I/O Terminal. An
Output Block provides mounting positions for replaceable relays. Each relay can
be selected according to specific output requirements.

An external device that receives signals from the PC System.

Glossary

output point

output signal

Output Terminal
overflow
overwrite

pad byte

parallel polling

parity

parity check
PC

PC configuration

PC System

PCB
PC Setup

Peripheral Device

peripheral servicing

PID Unit

placeholder

pointer

present value

printed circuit board

The point at which an output leaves the PC System. Output points correspond
physically to terminals or connector pins.

A signal being sent to an external device. Generally an output signal is said to
exist when, for example, a connection point goes from low to high voltage or from
a nonconductive to a conductive state.

An 1/O Terminal that provides output points.
The state where the capacity of a data storage location has been exceeded.
Changing the content of a memory location so that the previous content is lost.

An extra byte added at the end of a string to make the total number of characters
in the string even.

A polling method in which all devices in a system are polled at the same time.

Adjustment of the number of ON bits in a word or other unit of data so that the
total is always an even number or always an odd number. Parity is generally
used to check the accuracy of data after being transmitted by confirming that the
number of ON bits is still even or still odd.

Checking parity to ensure that transmitted data has not been corrupted.
An acronym for Programmable Controller.

The arrangement and interconnections of the Units that are put together to form
a functional PC.

With building-block PCs, all of the Racks and independent Units connected di-
rectly to them up to, but not including the I/O devices. The boundaries of a PC
System are the PC and the program in its CPU at the upper end; and the 1/O
Units, Special I/0O Units, Optical I/O Units, Remote Terminals, etc., at the lower
end.

An acronym for printed circuit board.

A group of operating parameters set in the PC from a Programming Device to
control PC operation.

Devices connected to a PC System to aid in system operation. Peripheral de-
vices include printers, programming devices, external storage media, etc.
Processing signals to and from peripheral devices, including refreshing, com-
munications processing, interrupts, etc.

A Unit designed for PID control.

A zero that is required to indicate the place value of other digits in a numeral,
e.g., the zeros to the right of the decimal point in the following number: 0.0045.

A variable or register which contains the address of some object in memory.
The current value registered in a device at any instant during its operation. Pres-
ent value is abbreviated as PV. The use of this term is generally restricted to tim-

ers and counters.

A board onto which electrical circuits are printed for mounting into a computer or
electrical device.

227

Glossary

program code

Programmable Controller

Programming Console

Programming Device

PROM

PROM Writer

prompt

protocol

PV

Rack

rack number

Rack PC

RAM

random access file

RAS

228

The representation of a program used internally by the BASIC Unit.

A computerized device that can accept inputs from external devices and gener-
ate outputs to external devices according to a program held in memory. Pro-
grammable Controllers are used to automate control of external devices. Al-
though single-unit Programmable Controllers are available, building-block Pro-
grammable Controllers are constructed from separate components. Such Pro-
grammable Controllers are formed only when enough of these separate compo-
nents are assembled to form a functional assembly, i.e., there is no one individu-
al Unit called a PC.

The simplest form or programming device available for a PC. Programming
Consoles are available both as hand-held models and as CPU-mounting mod-
els.

A Peripheral Device used to input a program into a PC or to alter or monitor a
program already held in the PC. There are dedicated programming devices,
such as Programming Consoles, and there are non-dedicated devices, such as
a host computer.

Programmable read-only memory; a type of ROM into which the program or
data may be written after manufacture, by a customer, but which is fixed from
that time on.

A peripheral device used to write programs and other data into a ROM for per-
manent storage and application.

A message or symbol that appears on a display to request input from the opera-
tor.

The parameters and procedures that are standardized to enable two devices to
communicate or to enable a programmer or operator to communicate with a de-
vice.

See present value.

An assembly that forms a functional unit in a Rack PC System. A Rack consists
of a Backplane and the Units mounted to it. These Units include the Power Sup-
ply, CPU, and I/O Units. Racks include CPU Racks, Expansion I/O Racks, and
I/0 Racks. The CPU Rack is the Rack with the CPU mounted to it. An Expansion
I/O Rack is an additional Rack that holds extra I/O Units. An I/O Rack is used in
the C2000H Duplex System, because there is no room for any 1/O Units on the
CPU Rack in this System.

A number assigned to a Rack according to the order that it is connected to the
CPU Rack, with the CPU Rack generally being rack number 0.

A PC that is composed of Units mounted to one or more Racks. This configura-
tion is the most flexible, and most large PCs are Rack PCs. A Rack PC is the
opposite of a Package-type PC, which has all of the basic /O, storage, and con-
trol functions built into a single package.

Random access memory; a data storage media. RAM will not retain data when
power is disconnected.

A file that can be accessed at any desired point, and not only sequentially.

An acronym for reliability, assurance, safety.

Glossary

record

refresh

register

relative expression

relative operator

relay-based control

reserved bit

reserved word

reset

Restart Bit

restart continuation

retrieve

retry

rightmost (bit/word)

rising edge

ROM

round-robin

routine

row-major form

One block or unit of data in a sequential access file.

The process of updating output status sent to external devices so that it agrees
with the status of output bits held in memory and of updating input bits in memory
so that they agree with the status of inputs from external devices.

A special memory location inside the BASIC Unit's CPU.

A logical expression concerning the magnitudes of two numeric or string expres-
sions (for example, A>B is a relative expression which is TRUE if the value of A is
greater than the value of B, and FALSE otherwise).

A character (e.g. >, <, =) or pair of characters (e.g. >=, <=) used in a relative
expression.

The forerunner of PCs. In relay-based control, groups of relays are intercon-
nected to form control circuits. In a PC, these are replaced by programmable cir-
cuits.

A bit that is not available for user application.

A word in memory that is reserved for a special purpose and cannot be accessed
by the user.

The process of turning a bit or signal OFF or of changing the present value of a
timer or counter to its set value or to zero.

A bit used to restart a Unit mounted to a PC.

A process which allows memory and program execution status to be maintained
so that PC operation can be restarted from the state it was in when operation
was stopped by a power interruption.

The processes of copying data either from an external device or from a storage
area to an active portion of the system such as a display buffer. Also, an output
device connected to the PC is called a load.

The process whereby a device will re-transmit data which has resulted in an er-
ror message from the receiving device.

The lowest numbered bits of a group of bits, generally of an entire word, or the
lowest numbered words of a group of words. These bits/words are often called
least-significant bits/words.

The point where a signal actually changes from an OFF to an ON status.
Read only memory; a type of digital storage that cannot be written to. A ROM
chip is manufactured with its program or data already stored in it and can never
be changed. However, the program or data can be read as many times as de-
sired.

In order, completing one item before moving on to the next.

A section of a program; often one which may be called by other parts of the pro-
gram as a subroutine.

Describes the layout of the elements of an array variable in memory.

229

Glossary

RS-232C interface
RS-422 interface

RTS signal

scan

scan time

secondary command

segment

self diagnosis

sequential access file

serial polling

series

service request

servicing

set

set value

signal interrupt

simple variable

single-precision constant

single-precision variable

software error

230

An industry standard for serial communications.
An industry standard for serial communications.

Request To Send: the BASIC Unit can be programmed to assert this signal when
it wishes to send data through a communications port.

The process used to execute a ladder-diagram program. The program is ex-
amined sequentially from start to finish and each instruction is executed in turn
based on execution conditions. The scan also includes peripheral processing,
I/O refreshing, etc. The scan is called the cycle with CV-series PCs.

The time required for a single scan of a ladder-diagram program.

A command sent with a listener address to specify the address of another listen-
er or talker.

A 64K-byte block of memory beginning on a 16-byte boundary. The BASIC
Unit's CPU has several registers that can hold the address of the beginning of a
segment.

A process whereby the system checks its own operation and generates a warn-
ing or error if an abnormality is discovered.

A file that can be read or written only sequential from the beginning to the end.

A polling method in which each device being polled is polled one at a time in se-
quence.

A wiring method in which Units are wired consecutively in a string. In Link Sys-
tems wired through Link Adapters, the Units are still functionally wired in series,
even though Units are placed on branch lines.

A signal from a device requesting that some sort of processing occur.

The process whereby the PC provides data to or receives data from external de-
vices or remote I/O Units, or otherwise handles data transactions for Link Sys-
tems.

The process of turning a bit or signal ON.

The value from which a decrementing counter starts counting down or to which
an incrementing counter counts up (i.e., the maximum count), or the time from
which or for which a timer starts timing. Set value is abbreviated SV.

An interrupt caused by another task activating a SIGNAL instruction.

A non-array variable. Simple variables have only one value and cannot be sub-
scripted.

Any number which is not specifically designated as an integer or double-preci-
sion floating point value, or which is designated as a single-precision value by a
trailing exclamation point (!), or a numeric expression containing only integer
and single-precision constants.

A variable that can hold a single-precision floating point value.

An error that originates in a software program.

Glossary

software protect

software switch

source code

Special I/0O Unit

SRAM
SRQ

stack

statement
suboperand

subroutine

subscript

substitution statement

SV

synchronous execution

syntax

syntax error

system configuration

system error

system error message

A means of protecting data from being changed that uses software as opposed
to a physical switch or other hardware setting.

See memory switch.

The code in which a program is written, e.g., ASCII. Source code must be con-
verted to object code before execution.

A Unit that is designed for a specific purpose. Special /0O Units include Position
Control Units, High-speed Counter Units, Analog I/O Units, etc.

Static random access memory; a data storage media.
See service request.

A data structure in memory which is maintained automatically by the BASIC
Unit’'s CPU. The stack is used in GOSUB and RETURN instructions, as well as dur-
ing interrupts.

The smallest complete unit of a BASIC program.
See operand.

A group of instructions placed separate from the main program and executed
only when called from the main program or activated by an interrupt.

An integer expression that designates an element of an array variable.

A statement that uses the “=" operator to substitute the value of a second vari-
able for that of the first variable.

Abbreviation for set value.

Execution of programs and servicing operations in which program execution
and servicing are synchronized so that all servicing operations are executed
each time the programs are executed.

The form of a program statement (as opposed to its meaning). For example, the
two statements, LET A=B+Band LET A=B*2 use different syntaxes, but have
the same meaning.

An error in the way in which a program is written. Syntax errors can include
‘spelling’ mistakes (i.e., a function code that does not exist), mistakes in specify-
ing operands within acceptable parameters (e.g., specifying read-only bits as a
destination), and mistakes in actual application of instructions (e.g., a call to a
subroutine that does not exist).

The arrangement in which Units in a System are connected. This term refers to
the conceptual arrangement and wiring together of all the devices needed to
comprise the System. In OMRON terminology, system configuration is used to
describe the arrangement and connection of the Units comprising a Control Sys-
tem that includes one or more PCs.

An error generated by the system, as opposed to one resulting from execution of
an instruction designed to generate an error.

An error message generated by the system, as opposed to one resulting from
execution of an instruction designed to generate a message.

231

Glossary

system variable

talker

talker address

task

task block

task program

terminator

three-line handshaking

timer

timer interrupt

TR Area

TR bit

transfer

transmission distance

UM area

uni-line message

Unit

unit address

232

A variable that contains information about the system (e.g. the current date and
time, or the line number on which the last error occurred).

A device on a general-purpose interface bus that is sending data to other de-
vices on the bus.

The addresses on a general-purpose interface bus of a device that is sending
data to other devices on the bus.

A complete sub-unit within a BASIC program. Each task has its own variables,
stack, and so on, and is completely independent of any other tasks in the pro-
gram, although it may use inter-task communication to exchange data with
these other tasks. The BASIC Unit can execute several tasks simultaneously.

Each task is delimited the TASK and END TASK statements; all statements be-
tween these statements are part of the task block.

A program written to perform a task.

The code comprising an asterisk and a carriage return (* CR) which indicates the
end of a block of data in communications between devices. Frames within a mul-
ti-frame block are separated by delimiters. Also a Unit in a Link System desig-
nated as the last Unit on the communications line.

A handshaking method that uses three communications lines to perform hand-
shaking.

A location in memory accessed through a TC bit and used to time down from the
timer’s set value. Timers are turned ON and reset according to their execution
conditions.

An interrupt caused by the BASIC Unit’s timer.

A data area used to store execution conditions so that they can be reloaded later
for use with other instructions.

A bitin the TR Area.

The process of moving data from one location to another within the PC, or be-
tween the PC and external devices. When data is transferred, generally a copy
of the data is sent to the destination, i.e., the content of the source of the transfer
is not changed.

The distance that a signal can be transmitted.

The memory area used to hold the active program, i.e., the program that is being
currently executed.

A message transferred on the control bus using only one signal line.

In OMRON PC terminology, the word Unit is capitalized to indicate any product
sold for a PC System. Though most of the names of these products end with the
word Unit, not all do, e.g., a Remote Terminal is referred to in a collective sense
as a Unit. Context generally makes any limitations of this word clear.

A number used to control network communications. Unit addresses are com-
puted for Units in various ways, e.g., 10 hex is added to the unit number to deter-
mine the unit address for a CPU Bus Unit.

Glossary

unit number

universal command

uploading

user indicator

user program

variable

variable-length character string

volatile variable

watchdog timer

WDT

wildcard

wire communications

word

word address

word allocation

work area
work bit

work word

write protect switch

A number assigned to some Link Units, Special /0 Units, and CPU Bus Units to
facilitate identification when assigning words or other operating parameters.

A command sent to all devices on a general-purpose interface bus.

The process of transferring a program or data from a lower-level or slave com-
puter to a higher-level or host computer. If a Programming Devices is involved,
the Programming Device is considered the host computer.

Indicators on a device that can be controlled by a user, e.g., from a user program
being run on the device.

A program written by the user as opposed to programs provided with a product.

An area of memory in which a value can be stored; also refers to the name used
in the program to designate that memory area.

A character string variable which can hold a string of any length (up to a sys-
tem-defined maximum length).

A variable which is not stored in battery-backed memory. Volatile variables lose
their contents whenever power to the Unit is turned off.

A timer within the system that ensures that the scan time stays within specified
limits. When limits are reached, either warnings are given or PC operation is
stopped depending on the particular limit that is reached.

See watchdog timer.

A special character used in a filename or extension to indicate zero or more pos-
sible characters.

A communications method in which signals are sent over wire cable. Although
noise resistance and transmission distance can sometimes be a problem with
wire communications, they are still the cheapest and the most common, and per-
fectly adequate for many applications.

A unit of data storage in memory that consists of 16 bits. All data areas consists
of words. Some data areas can be accessed only by words; others, by either
words or bits.

The location in memory where a word of data is stored. A word address must
specify (sometimes by default) the data area and the number of the word that is
being addressed.

The process of assigning I/0 words and bits in memory to 1/0 Units and termi-
nals in a PC System to create an I/O Table.

A part of memory containing work words/bits.
A bit in a work word.

A word that can be used for data calculation or other manipulation in program-
ming, i.e., a ‘work space’ in memory. A large portion of the IR area is always re-
served for work words. Parts of other areas not required for special purposes
may also be used as work words.

A switch used to write-protect the contents of a storage device, e.g., a floppy
disk. If the hole on the upper left of a floppy disk is open, the information on this
floppy disk cannot be altered.

233

Glossary

write-protect A state in which the contents of a storage device can be read but cannot be al-
tered.

234

Index

A

addresses, GP-1B, 133

allocating
memory, machine language programming, 108
message number, 106
program areas, 62

AND, 49
applications, precautions, Xiii

arrays
character variables, 82
declaring variables, 81
multi-dimensional, 81
one-dimensional, 81
subscripts, setting lower-limit value, 82

ASCII, GP-IB, 135

automatic transferring, file name, memory switch settings, 35,
36

BASIC programming, general, 2

battery
life, 147
replacement procedure, 148

baud rates, memory switch settings, 38

changing

line numbers, 66

program flow, 56
calling subroutines, 59
ending subroutines, 59
executing same processing at different locations, 58
processing according to conditions, 60
processing according to value of an expression, 60
repeating same process, 57
specifying conditions for repetition, 57

clearing, program areas, 62

commands

general list, 187
machine language

A, 196

B, 199

C, 196

D, 195

ESW, 201

G, 199

I, 196

K, 201

L, 198

M, 196

N, 199

R, 200

S, 197

T, 200
V, 198
W, 195
X, 199

communications
controlling RS-232C lines, 207
PC, 120

data from the PC, 121
data to the PC, 122
interrupt processing, 120

constants, 48

copying, in programs, 65
CPU Bus Link Area, 28

CV-series Commands, 123

cyclic transfer areas, 24
memory switch settings, 39

data

D

arrays

multi-dimensional arrays, 81
one-dimensional arrays, 81
variables, 81

character, 79

creating identical characters, 80
retrieving part of string, 79
rewriting part of string, 80
searching a string, 79

converting

character string into numeric value, 80
numeric value into character string, 80

displaying, 51

ending program, 53
format, 52
output data to printer, 53

files, 84
input/output

reading DATA command using READ command, 83
simplifying data, 83

numbers

decimal, 76

double-precision real numbers, 76
exponential, 77

hexadecimal, 76

number precision, 77

octal, 76

operation functions, 78
single-precision real numbers, 76
type conversion, 77

time

current time, 82
date, 82

transferring with the PC, 2, 30

CPU Bus Link timing, 33
cyclic timing, 32

data flow, 31

event timing, 32

PC operation, 32

235

Index

debugging, 2
programs, preparations, 67

deleting, in programs, 65
characters, 65
lines, 65

DIP switch, 7

displaying data, 51
ending program, 53
output data to printer, 53
specitying display format, 52

E

editing
key operations, 67
programs, 64

changing overwrite/insert mode, 64

inserting characters, 65
overwrite mode, 64

EEPROM, 2
entering, programs, preparations, 62
EQV, 50

errors
indicators, 146
messages, 142
processing, 96
status, 147

executing, programs, 68
displaying result, 68
preparations, 67
resuming, 69
step, 70
stopping, 69
tracing, 70

execution, precautions, 13

expressions
character, 49
logic, 49
numeric, 49
relative, 49

F

files

closing, 86

data, 84

names, 85

opening, 85

program, 84

random access, 84, 88
program example, 89
programming sequence, 88

sequential access, 84, 86
program example, 87

FINS commands, 123

236

front panel
indicators, 7
nomenclature, 6
ports, 6

functions
GP-IB, 136
GP-IB list, 194
list, 191
returning character strings, 51
returning numeric values, 50

G

GP-1B
commands
addresses, 133
ASCII codes, 135
codes in command mode, 134
codes in data mode, 135
data reception, 136
data transfer, 136
interface control, 136
interface messages, 133
multi-line messages, 134
SRQ interrupt, 136
uni-line messages, 134
functions, 136
initializing, 137
memory switch settings, 42
program codes, 136
example, 139
programming, 130
examples, 138
receiving, 137
service requests
interrupt processing, 137
parallel polling, 136
serial polling, 135
signal lines, 132
data, 132
handshake, 132
interface control, 132
three-line handshaking, 132
system configuration, 131
controller, 131
listener, 131
talker, 131
transferring, 137

hardware configuration, block diagram, 10

IMP, 50

indicators
errors, 146
front panel, 7

inputting data, keyboard, 53
character data, 54
displaying messages while data is input, 54
numeric data, 53
reserved words, 54
variable names, 54

Index

installation
BASIC Unit
dimensions, 17
mounting, 16
precautions, xiii

instructions, interrupt-related, 93

inter-task communications, 104
signals
interrupts, 105
processing routine, 105
program example, 105
sending, 104

interfaces, 2
Centronics
applicable connector, 169
pin configuration, 169
GP-IB
pin configuration, 170
signal lines, 170
hood assembly, 161
Link Adapter specifications
3G2A9-AL001, 166
3G2A9-AL004(-P), 167
multidrop connection
cable length, 165
examples, 162, 163
termination resistance, 165
point-to-point connection, 161
example, 162
RS-232C
applicable connectors, 157
connection examples, 158
pin configuration, 157
recommended cables, 157
RS-422
connector, 159
pin configuration, 159
recommended cables, 159
wiring the connector, 160

interrupts, 92
instructions, 93
interrupt service routine, 92
PC communications, 120
processing details, 96
programming, 93
example, 94
service requests, GP-1B, 137
signal, 105
types
communication port, 95
error processing, 96
network, 95
numeric key, 94
PC, 95
signal, 95
timer, 94

L

labels, 46

line numbers, 46

changing, 66
generating, 63

loading

EEPROM, 71

Floppy Disk, 71

machine language programs, 110
memory cards, 71

M

machine language, 2, 107

calling a subroutine, 112
CALL, 113
USR, 112
mnemonics, 203
monitoring commands, 119
offsets, 108
programming, 108
allocating memory, 108
checking, 109
common mistakes, 111
displaying memory, 110

displaying register contents, 110

entering, 108

loading, 110

running, 109

saving, 110

summary, 118
reading, memory, 111
saving format, 114

arrays, 116

character strings, 116

double-precision floating point values, 115

integers, 114
multi-dimensional arrays, 117

single-precision floating point values, 115

segments, 108
writing, memory, 111

maintenance, 147

battery replacement, 147
inspection, 149
replacing BASIC Units, 147

memory

configuration, 11
non-volatile variable area, 11

user program executable code area, 11
user program source code area, 11

variable, 11
CPU Bus Link Area, 28
cyclic transfer areas, 24
reading, machine language, 111
Restart Bits, 30
writing, machine language, 111

memory switches, 21, 33

automatic file transfer file name, 36

baud rates, 38
changing settings, 21
cyclic transfer areas settings, 39
default settings, 21
system parameters, 21
terminal and printer ports, 21
GP-IB settings, 42

237

Index

precautions, 12 safety, xii
printer, ports, 37

. rinter, ports, memory switch settings, 37
setting procedure, 42 P P y &

system parameters, 35 printer ports, 21
terminals program areas
ports, 37 allocating, 62
specifications, 39 clearing, 62
messages precautions, 12
allocating message number, 106 programming, precautions, 12, 13

program example, 106
receiving, 106

releasing message number, 106
transmitting, 106

programs
examples
communicating between BASIC Units, 181
file input/output, 182

models input/output of each port, 176
BASIC Units, 151 multitask, 174
with EEPROM, 3 PC communications, 179
without EEPROM, 3 single-task, 173
maintenance parts, 151 merging, 66
options, 151 program areas, 11

program numbers, 11
starting/stopping, 21
multitasking, 2, 97 automatic starting, 22
precautions, 14 from terminal, 21
RUN/STOP switch, 21

N-P R

modes, BASIC Unit, 103

naming, programs, 66

rear view, 8
NOT, 49 RECV(193), 120
operating environment, precautions, Xiii replacing BASIC Units, 147
opergtions) reserved words, 54, 184, 205, 206, 207
arithmetic, 55
character, 56 Restart Bits, 30
operator priority, 56 RS-232C, 207
OR, 50 RUN/STOP switch, 7
PC interface, precautions, 12
PC interrupts, 95 S
peripheral devices, 126
communication ports, 127 safety precautions. See precautions
computer with terminal mode, 3 saving
display, 3 EEPROM, 71
terminal, 3 ’

Floppy Disk, 71
machine language programs, 110
memory cards, 71

Host Link Unit, 3
Intelligent Signal Processor, 3
opening a device, 126

printer, 3 SEND(192), 120
temperature controller, 3 specifications
user indicators, 128 characteristics, 153

I/0 interfaces

ports ;
Centronics, 154

front panel, 6

general, 6, 127 GP-IB, 155
printer, 21, 37 RS-232C, 154
program example, 176 RS—422, 154
terminal, 21, 37 ratings, 153
statements

precautions, 12
applications, xiii
general, xi
operating environment, xiii status, BASIC Unit, 103

general list, 188
GP-IB list, 193

238

Index

switches
DIP switch, 7
general settings, 18
RUN/STOP, 7
settings
DIP switch, 9
RUN/STOP, 9
UNIT number, 8

UNIT number setting, 7

syntax, 46

system
configuration, 3
expanded, 4
single, 4
parameters, 21

T

tasks, 97
aborting, 99
end of task program, 99
multiple, 99
single, 99

start of task program, 98

starting, 99

starting/ending example, 101

status, 103
switching, 102
waiting, 100

terminals, 12

connecting, 20
getting ready, 19
ports, 21

memory switch settings, 37

preparation, 20
specifications, 21

memory switch settings, 39

transitions, BASIC Unit, 103

troubleshooting, 142

U-X

UNIT number setting switch, 7

user indicators, 128

variables, 46
global, 106

communication with non-volatile variables, 107
program example, 107

names, 54
storage, 2

words
input status, 27
output status, 27

writing, programs
example, 63
preparations, 62

XOR, 50

239

Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

Cat. No. W206-E1-04

Revision code

The following table outlines the changes made to the manual during each revision. Page numbers refer to the

previous version.

Revision code Date Revised content
1 June 1992 Original production
1A November 1992 Page 10: Details of configuration between $18000 and $3FFFF Page 57: Information was added to end of 4-3-1 Preparations.
corrected. X ' Page 179: Note added to introduction to Appendix.
Page 25: Information on cyclic transfers corrected. Pages 179 and 180: command description rewritten.
Page 27: Description of manual starting under Starting Mode Bit (b0)
changed.
2 Ju|y 1993 Minor corrections to add CV2000 and CVM1, precautions subsection ~ Page 98: Information added on Memory Cards and EEPROM.
added to Section 1, FINS commands added to Section 6, appendix . . I N
added on controlling RS-232C communications lines, and appendix Pagﬁ_wt}. Note 3’?»"3“' line 20 modified; and first and next to last
of reserved words added. machine fine modified.
Page 3: Note added on FINS commands. ;;gme ;I‘Dg;elalnes 40, 50, and 70 altered and machine language pro-
sgggi;ggrl‘néaraﬂgtel%? added. Non-volatile variable and variable areas Page 107: Notes added and “B” line in table corrected.
Page 14: DIP switch settings corrected. angee 113: Information on CTS (transmission monitor) corrected and
Page 18: Note added. Page 122: “IEEE(8)’ corrected to “IEEE(7)” in first line under Func-
Page 21: Information added to Battery Error Flag, Error Code, and tions.
Fatal Error Flag. Pages 129 to 132: Corrections made to 7, 62, 64, 68, 70, 111, 129,
Page 26: CPU Bus Link Transfers fixed; information added to 200, and “Compiler error.”
Memory Switches. X - Page 139: RAM memory specifications corrected.
?:ﬂ;:;',&‘gégfnd caution added and mode definitions added to Page 144: Host interface example for CV-series PCs added.
Page 31: Information added at top of page. Page 149: Lower right portion of top diagram corrected.
Page 33: Step 5 removed. Page 153: “Outer connection” part of diagram corrected.
Page 37: Character variable classification corrected in the top chart. Pages 159 and 160: Corrections made in lines 120, 170, and 250.
Note was added. Page 163: Line 290 corrected.
Page 38: Single-precision data range corrected. Pages 165 and 166: Lines 70, 80, 90, 100, 120, and 130 corrected
Page 55: Information added on merging programs. and ladder diagram added.
Page 59: Note expanded. Biggu}g;rlégzc}.eo removed; note added, and 1st step in File Input/
Page 61: Section added on saving/loading PC programs. Page 168: Lines 130 and 160 corrected
CP:#:C?:&Range of numeric data for single-precision real numbers Page 170: Reserved words added.
Page 73: Caution added. Pages 173 to 175: Information for coM, FINS, and PC corrected.
Page 81: Information on interrupt-related instructions rewritten. Page 180: Example for A corrected.
Page 82: Information added on communications port interrupts. Page 181: Syntax of s corrected.
Page 83: Information added on network and PC interrupts. Page 182: Syntax of L. and V and examples for s and L corrected.
. Page 183: Syntax of x corrected; addition made on PSto B and G,
Page 84: Example program altered. on stack pointers to G; example corrected.
Page 94: Limit to the number of possible message numbers stated. Page 184: PS information added to
Page 96: Information on PS added to top of page. Page 185: Syntax of Esw corrected
Page 97: HALT changed in first two programs; “300B” changed to .
“300F” under Run the Program. Page 186: Examples #6 and #7 corrected.
2A December 1 996 Precautions added before Section 1. Zakzz 105: Point added to the end of Common Programming Mis-
Page 13: Send and receive buffer information added to the end of g
Execution.
3 May 2000 Changes were made on the following pages.

All pages: “PC” and “CPU” changed to “CPU Unit” where appropriate.
Page v: Changes to symbols and minor changes in wording.

Pages xii, xiii: Major changes to safety operation.

Pages 21, 121, 201: Information on RTS/DTR signals added.
Page 30: Sentence added to define “CPU Bus Unit System Setup.”
Pages 31 to 36: Graphics/tables added/changed in several places.
Page 87: Information on interrupts added.

Page 110: Information on mantissa changed; information added to graphics.

Page 121: Information on processing time added.

Page 139: Information on FINS error response codes added.
Page 148: One line added to second table.

Page 153: Information on termination resistance added.

Page 196: Top graphic changed.
Appendix | and Appendix J added.

241

Revision History

Revision code

Date

Revised content

04

August 2003

Changes were made on the following pages.

Page xii: Added information on safety precautions for external circuits.

Page xiii: Added "Power Supply Units” to application precaution.

Page 24: Added information on specifying cyclic areas and reading and writ-
ing from cyclic areas using the PC READ and PC WRITE instructions.
Information on output words also added.

Page 25: Added information on input words.

Pages 32, 33: Changed "+0” to "+1” in diagram.

Page 34: Changed "+14” to "+15” in top diagram and changed "+15” to "+14”
in bottom diagram.

Page 35: Changed "+16” to "+17” in top diagram and changed "+17” to "+16”
in bottom diagram.

Page 36: Changed "+18” to "+19” in top diagram and changed "+19” to "+18”
in bottom diagram.

Page 39: Changed "+116” to "+117” in top diagram and changed "+117” to
”+116” in bottom diagram.

242

OMRON Corporation

FA Systems Division H.Q.

66 Matsumoto

Mishima-city, Shizuoka 411-8511

Japan

Tel: (81)55-977-9181/Fax: (81)55-977-9045

Regional Headquarters

OMRON EUROPE B.V.

Wegalaan 67-69, NL-2132 JD Hoofddorp
The Netherlands

Tel: (31)2356-81-300/Fax: (31)2356-81-388

OMRON ELECTRONICS LLC

1 East Commerce Drive, Schaumburg, IL 60173
U.S.A.

Tel: (1)847-843-7900/Fax: (1)847-843-8568

OMRON ASIA PACIFIC PTE. LTD.

83 Clemenceau Avenue,

#11-01, UE Square,

Singapore 239920

Tel: (65)6835-3011/Fax: (65)6835-2711

MRON

(" N
Authorized Distributor:

N J

Cat. No. W206-E1-04 Note: Specifications subject to change without notice. Printed in Japan

Cat. No. W206-E1-04 CV500-BSC11/21/31/41/51/61 BASIC Units OPERATION MANUAL OMRON

No. 6182
OMRON Corporation

Read and Understand this Manual

Please read and understand this manual before using the product. Please consult your OMRON
representative if you have any questions or comments.

Warranty and Limitations of Liability

WARRANTY

OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a
period of one year (or other period if specified) from date of sale by OMRON.

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-
INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE
PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS
DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR
INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

LIMITATIONS OF LIABILITY

OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES,
LOSS OF PROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS,
WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT
LIABILITY.

In no event shall the responsibility of OMRON for any act exceed the individual price of the product on which
liability is asserted.

IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS
REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS
WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO
CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

No. 6182

Application Considerations

SUITABILITY FOR USE

OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the
combination of products in the customer's application or use of the products.

At the customer's request, OMRON will provide applicable third party certification documents identifying
ratings and limitations of use that apply to the products. This information by itself is not sufficient for a
complete determination of the suitability of the products in combination with the end product, machine,
system, or other application or use.

The following are some examples of applications for which particular attention must be given. This is not
intended to be an exhaustive list of all possible uses of the products, nor is it intended to imply that the uses
listed may be suitable for the products:

¢ Qutdoor use, uses involving potential chemical contamination or electrical interference, or conditions or
uses not described in this manual.

* Nuclear energy control systems, combustion systems, railroad systems, aviation systems, medical
equipment, amusement machines, vehicles, safety equipment, and installations subject to separate
industry or government regulations.

¢ Systems, machines, and equipment that could present a risk to life or property.

Please know and observe all prohibitions of use applicable to the products.

NEVER USE THE PRODUCTS FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR
PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO
ADDRESS THE RISKS, AND THAT THE OMRON PRODUCTS ARE PROPERLY RATED AND INSTALLED
FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

PROGRAMMABLE PRODUCTS

OMRON shall not be responsible for the user's programming of a programmable product, or any
consequence thereof.

No. 6182

Disclaimers

CHANGE IN SPECIFICATIONS

Product specifications and accessories may be changed at any time based on improvements and other
reasons.

It is our practice to change model numbers when published ratings or features are changed, or when
significant construction changes are made. However, some specifications of the products may be changed
without any notice. When in doubt, special model numbers may be assigned to fix or establish key
specifications for your application on your request. Please consult with your OMRON representative at any
time to confirm actual specifications of purchased products.

DIMENSIONS AND WEIGHTS

Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when
tolerances are shown.

PERFORMANCE DATA

Performance data given in this manual is provided as a guide for the user in determining suitability and does
not constitute a warranty. It may represent the result of OMRON's test conditions, and the users must
correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and
Limitations of Liability.

ERRORS AND OMISSIONS

The information in this manual has been carefully checked and is believed to be accurate; however, no
responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.

	W206-E1-04.pdf
	Insertion(6182)_add.pdf

