DIN Track Mounted, Standard 22.5-mm Width Timer Range

- A wide AC/DC power supply range (24 to 230 VAC/DC) reduces the number of timer models kept in stock. (except for H3DE-H)
- 12-VDC model available for a specific application. (H3DE-M2)
- Nameplate provided for easy timer identification and management.
- Terminal clamp left open when delivered.
- Finger protection terminal block to meet VDE0106/P100.
- Enables easy sequence checks through instantaneous outputs for a zero set value at any time range.
- Incorporates environment-friendly, cadmium-free contacts. (except for H3DE-H)
- High immunity to inverter noise.
- Approved by UL and CSA.
- Conforms to EN61812-1 and IEC60664-1 4 kV/2 for Low Voltage, and EMC Directives.

Broad Line-up of H3DE Series

Contents

Solid-state Timer

H3DE-M/-S 2
H3DE-F 12
H3DE-G 18
H3DE-H. 24
Common to ALL Timers
Accessories 30
Precautions 31

Solid-state Multi-functional Timer H3DE-M/-S

- Eight operating modes (H3DE-M) and four operating modes (H3DE-S) cover a wide range of applications.
- Programmable contact enables the building of a self-holding relay circuit (- $\square 2$ models).
- A wide time setting range of 0.10 s to 120 h .

Model Number Structure

Model Number Legend

H3DE $-\frac{\square}{1} \frac{\square}{2}$

1. M : Multi-function type

S: Standard type
2. 2 : DPDT

1 : SPDT

Ordering Information

List of Models

Supply voltage	Control output	Model	
		Multi-function type	Standard type
12 VDC 24 to 230 VAC/DC	Contact output: DPDT (time-limit output SPDT and switchable SPDT (time-limit $\leftarrow \rightarrow$ instantaneous))	H3DE-M2 (see note)	---

Note: Specify both the model number and supply voltage when ordering H3DE-M2.
Example: H3DE-M2 24 to 230 VAC/DC
__Supply voltage

Accessories (Order Separately)

Optional Products for Track Mounting		
Mounting Track	$50 \mathrm{~cm}(\mathrm{I}) \times 7.3 \mathrm{~mm}(\mathrm{t})$	PFP-50N
	$1 \mathrm{~m}(\mathrm{I} \times 7.3 \mathrm{~mm}(\mathrm{t})$	PFP-100N
	$1 \mathrm{~m}(\mathrm{I}) \times 16 \mathrm{~mm}(\mathrm{t})$	PFP-100N2
		PFP-M
Spacer		PFP-S

Specifications

General

Note: Can be mounted to $35-\mathrm{mm}$ DIN track with a plate thickness of 1 to 2.5 mm .

Time Ranges

Time scale display	Time unit display			
	$\mathbf{~ s e c ~}$	$\mathbf{m i n}$	hrs	10 h
$\times 0.1$	0.1 to 1.2 s	0.1 to 1.2 min	0.1 to 1.2 h	1 to 12 h
$\times 1$	1 to 12 s	1 to 12 min	1 to 12 h	10 to 120 h

Note: When the main dial is set to " 0 " for all settings, the output will operate instantaneously.

Ratings

Rated supply voltage (see notes 1 and 2)		$\begin{aligned} & 24 \text { to } 230 \text { VAC/DC (50/60 Hz) } \\ & 12 \text { VDC (H3DE-M2 model only) } \end{aligned}$
Operating voltage range		85% to 110% of rated supply voltage
Power reset		Minimum power-off time: 0.1 s
Reset voltage		2.4 VAC/DC max.
Power consumption (see note 3)	H3DE-M1	AC: approx. 4.3 VA (2.2 W) at 230 VAC DC: approx. 0.7 W at 24 VDC
	H3DE-M2	AC: approx. 4.8 VA (2.4 W) at 230 VAC DC: approx. 1.0 W at 24 VDC
	H3DE-S1	AC: approx. 2.7 VA (1.6 W) at 230 VAC DC: approx. 0.7 W at 24 VDC
	H3DE-S2	AC: approx. 3.2 VA (1.9 W) at 230 VAC DC: approx. 1.0 W at 24 VDC
Voltage input		Max. permissible capacitance between input lines (terminals B1 and A2): 2000 pF Load connectable in parallel with inputs (terminals B1 and A2) H-level: 20.4 to 253 VAC/DC L-level: 0 to 2.4 VAC/DC
Control output		Contact output: 5 A at 250 VAC with resistive load $(\cos \phi=1)$ 5 A at 30 VDC with resistive load $(\cos \phi=1)$
Ambient temperature		Operating: $-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (with no icing) Storage: $\quad-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ (with no icing)
Ambient humidity		Operating: 35\% to 85\%

Note: 1. DC ripple rate: 20\% max.
2. Since an inrush current of 0.25 A will occur when using the power supply voltage at 24 VDC , pay careful attention when turning on or off the power supply to the Timer with a solid-state output such as a sensor.
3. The power consumption is for mode A after the Timer counts the time-up time and for the AC input at 50 Hz . The power consumption of the H3DE-M \square includes the input circuit with the B1 and A1 terminals short-circuited.

Characteristics

Accuracy of operating time	$\pm 1 \%$ max. of $\mathrm{FS}(\pm 1 \% \pm 10 \mathrm{~ms} \mathrm{max}$. at 1.2-s range) (see note 1)
Setting error	$\pm 10 \% \pm 50 \mathrm{~ms} \mathrm{max}$. of FS (see note 1)
Signal input time	50 ms min . (see note 1)
Influence of voltage	$\pm 0.5 \%$ max. of FS ($\pm 0.5 \% \pm 10$ ms max. at 1.2-s range)
Influence of temperature	$\pm 2 \%$ max. of FS ($\pm 2 \% \pm 10 \mathrm{~ms} \mathrm{max}$. at 1.2-s range)
Insulation resistance	$100 \mathrm{M} \Omega$ min. at 500 VDC
Dielectric strength	Between current-carrying metal parts and exposed non-current-carrying metal parts: 2,000 VAC for 1 min. Between control output terminals and operating circuit: 2,000 VAC for 1 min . Between contacts of different polarities: 2,000 VAC for 1 min. Between contacts not located next to each other: 1,000 VAC for 1 min .
Vibration resistance	Malfunction: $0.5-\mathrm{mm}$ single amplitude at 10 to 55 Hz Destruction: $0.75-\mathrm{mm}$ single amplitude at 10 to 55 Hz
Shock resistance	Malfunction: $100 \mathrm{~m} / \mathrm{s}^{2}$ Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$
Contact material	AGNi+gold plating (Use the G6RN-1 at $12 \mathrm{VDC}$.)
Impulse withstand voltage	3 kV (between power terminals) 4.5 kV (between current-carrying metal parts and exposed non-current-carrying metal parts)
Noise immunity	Square-wave noise generated by noise simulator (pulse width: $100 \mathrm{~ns} / 1 \mu \mathrm{~s}, 1-\mathrm{ns}$ rise) $\pm 1.5 \mathrm{kV}$
Static immunity	Malfunction: 4 kV Destruction: 8 kV
Life expectancy	Mechanical: 10 million operations min. (under no load at 1,800 operations/h) Electrical: $\quad 100,000$ operations min. (5 A at 250 VAC , resistive load at 360 operations/h) (see note 2)
EMC	
Degree of protection	IP30 (Terminal block: IP20)
Weight	120 g

Note: 1. With the H3DE-M \square, if the voltage exceeds $26.4 \mathrm{VAC} / \mathrm{DC}$, the following hold at signal OFF for C, D, and G modes:
Accuracy of operating time: $\pm 1 \% \pm 50 \mathrm{~ms}$ max. at $1.2-\mathrm{s}$ range
Setting error: $\pm 10 \%+100 /-50 \mathrm{~ms}$ max.
Signal input time: 100 ms min.
2. For reference: A maximum current of 0.15 A can be switched at $125 \mathrm{VDC}(\cos \phi=1)$.

A maximum current of 0.1 A can be switched if L / R is 7 ms .
In both cases, a life of 100,000 operations can be expected.
The minimum applicable load is 10 mA at 5 VDC (failure level: P).

Connections

Block Diagram

I/O Functions

Item		H3DE-M1/-M2	H3DE-S1/-S2
Input	Start	Starts operation.	No input is available.
Output	Control output	Outputs are turned ON according to designated out- put mode when preset value is reached. (See note.)	Outputs are turned ON according to designated out- put mode when preset value is reached. (see note.)

Note: When the output type selector switch on the bottom of the Timer is set to the instantaneous side, the relay R2 (terminal numbers 21/25, 22/ 26 , and $24 / 28$) becomes an instantaneous contact and turns ON/OFF in synchronization with the changes in the power supply.

Terminal Arrangement

Note: 1. The relay R2 can be set to either instantaneous or time-limit contact using the switch located on the bottom of the Timer.
2. DC supply voltage does not require the designation of polarity.
3. The contact symbol for the H3DE is indicated with \qquad because it offers multiple operating modes and is different from the delayed contact for conventional timers.

Input Connections

The inputs of the H3DE-M1/-M2 are voltage (voltage imposition or open) inputs.

No-contact Input
(Connection to PNP output sensor.)

Operates with PNP transistor ON

No-contact Input
(Connection to NPN output sensor.)

Operates with NPN transistor ON

Contact Input

Operates with relay ON

Voltage Input Signal Levels

No-contact input	1. Transistor ON Residual voltage: 1 V max. (Voltage between terminals B1 and A2 must be more than the rated "H-level" voltage (20.4 VDC min.).)
	2. Transistor OFF Leakage current: 0.01 mA max. (Voltage between terminals B1 and A2 must be less than the rated "L-level" voltage (2.4 VDC max.).)
	Use contacts that can adequately switch 0.1 mA at each voltage to be imposed. (When the contacts are ON or OFF, voltage between terminals B1 and A2 must be within the following ranges: When contacts are ON: 20.4 to $253 \mathrm{VAC/DC}$ When contacts are OFF: 0 to $2.4 \mathrm{VAC/DC}$

Operation

Basic Operation

Setting of Selector

The selectors can be turned clockwise and counterclockwise to select the desired time unit, time scale, or operating mode.
Each selector has a snap mechanism that secures the selector at a given position. Set the selector at a position at which it is secured. Do not set it midway between two securing positions or a malfunction could result from improper setting.

Selection of Operating Mode

The H3DE-M/-S can be set to any one of the operating modes A to J . Turn the operating mode selector with a screwdriver until the desired operating mode (A, B, C, B2, D, E, J, or G for the H3DE-M and A, E, J, or B2 for the H3DE-S) appears in the operating mode display window located below the selector.

Selection of Time Unit and Time Scale

The desired time unit ($\mathrm{s}, \mathrm{m}, \mathrm{h}$, or 10 h) can be displayed in the time unit display window above the time setting dial by turning the time unit selector located at the upper right corner of the front panel. Time scale (0.1 or 1) is selected with the time scale selector at the upper left corner of the front panel, it appears in the time scale display window above the selector.

- Timing Chart

Note: 1. The minimum power reset time is 0.1 s and the minimum signal input time is 0.05 s .
2. The letter " t " in the timing charts stands for the set time and " $\mathrm{t}-\mathrm{a}$ " means that the period is less than the time set.
3. There is no start input with H3DE-S \square models. Operation starts when the power is turned ON.
4. There is no instantaneous output with H3DE-M1/-S1 models.

Note: The start input of the H3DE-M1 or H3DE-M2 model is activated by applying a voltage to B1 and A2 terminals.
The voltage can be applied by turning on the contact between B1 and A1 (Refer to Terminal Arrangement on page 6)

Note: The start input of the H3DE-M1 or H3DE-M2 model is activated by applying a voltage to B1 and A2 terminals. The voltage can be applied by turning on the contact between B1 and A1 (Refer to Terminal Arrangement on page 6).

(Front View)

Output Type Selector Switch Settings

Setting	Output type
4 葍	Time-limit output (terminal numbers 25, 26 and 28) (default setting)
園	Instantaneous output (terminal numbers 21, 22 and 24)

Dimensions

Note: All units are in millimeters unless otherwise indicated.

H3DE-M/-S

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .
In the interest of product improvement, specifications are subject to change without notice.

- Operates in flicker-OFF or flicker-ON start mode with one Unit.
- Independent ON- and OFF-time settings.

Combinations of long ON- or OFF-time and short OFF- or ONtime setting are possible.

- Long time range from 0.1 s to 12 h for both ON and OFF time settings.

Model Number Structure

\square Model Number Legend

1. F : Twin timers

Ordering Information

\square List of Models

Operating mode	Supply voltage	Model
Flicker-OFF/Flicker-ON start	24 to 230 VAC/VDC	H3DE-F

Accessories (Order Separately)

Optional Products for Track Mounting		Model
Mounting Track	$50 \mathrm{~cm}(\mathrm{I}) \times 7.3 \mathrm{~mm}(\mathrm{t})$	PFP-50N
	$1 \mathrm{~m}(\mathrm{I}) \times 7.3 \mathrm{~mm}(\mathrm{t})$	PFP-100N
	$1 \mathrm{~m}(\mathrm{I}) \times 16 \mathrm{~mm}(\mathrm{t})$	PFP-100N2
End Plate		PFP-M
Spacer		PFP-S

Specifications

General

Item	
Operating mode	Flicker-OFF/Flicker-ON start
Operating/Reset method	Time-limit operation/Time-limit reset or self-reset
Terminal block	Clamps two 2.5 mm ${ }^{2}$ max. bar terminals without sleeves
Terminal screw tightening torque	$0.98 \mathrm{~N} \cdot \mathrm{~m}$ max. \{approx. $10 \mathrm{kgf} \cdot \mathrm{cm}$ max.\}
Output type	Relay: SPDT
Mounting method	DIN track mounting (see note)
Attachment	Nameplate
Approved standards	UL508, CSA 22.2 No.14 Conforms to EN61812-1, IEC60664-14 Output category according to IEC60947-5-1 (AC-13; 250 V 5A/AC-15; 250 V $3 \mathrm{~A} / \mathrm{DC}-13 ; 30 \mathrm{~V} \mathrm{0.1} \mathrm{A)}$

Note: Can be mounted to $35-\mathrm{mm}$ DIN track with a plate thickness of 1 to 2.5 mm .

\square Time Ranges

Time scale display (see note 1)	Time unit display			
	sec	$\mathbf{1 0 ~ s}$	$\mathbf{~ m i n}$	hrs
$\times 0.1$	0.1 to 1.2 s	1 to 12 s	0.1 to 1.2 min	1 to 1.2 h
$\times 1$	1 to 12 s	10 to 120 s	1 to 12 min	12 h

Note: 1. Time scale display is applied commonly for ON and OFF time.
2. When the main dial is set to " 0 " for all settings, the output will operate instantaneously.

Ratings

Rated supply voltage (see note)	24 to $230 \mathrm{VAC} / \mathrm{VDC}(50 / 60 \mathrm{~Hz})$
Operating voltage range	85% to 110% of rated supply voltage
Power reset	Minimum power-off time: 0.1 s
Reset voltage	$2.4 \mathrm{VAC} / \mathrm{DC}$ max.
Power consumption	AC: Approx. $3.1 \mathrm{VA}(1.8 \mathrm{~W})$ at 230 VAC DC: Approx. 0.8 W at 24 VDC
Control output	Contact output: 5 A at 250 VAC with resistive load (cos $\phi=1)$ 5 A at 30 VDC with resistive load (cosf $=1$)
Ambient temperature	Operating: $-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (with no icing) Storage: $-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ (with no icing)
Ambient humidity	Operating: 35% to 85%

Note: DC ripple rate: 20\% max.

Characteristics

Accuracy of operating time	$\pm 1 \%$ max. of FS ($\pm 1 \% \pm 10 \mathrm{~ms} \mathrm{max}$. at 1.2-s range)
Setting error	$\pm 10 \% \pm 0.05$ s max. of FS
Influence of voltage	$\pm 0.5 \%$ max. of FS ($\pm 0.5 \% \pm 10 \mathrm{~ms}$ max. at 1.2-s range)
Influence of temperature	$\pm 2 \%$ max. of FS ($\pm 2 \% \pm 10 \mathrm{~ms}$ max. at 1.2-s range)
Insulation resistance	$100 \mathrm{M} \Omega \mathrm{min}$. at 500 VDC
Dielectric strength	Between current-carrying metal parts and exposed non-current-carrying metal parts: 2,000 VAC (50/60 Hz) for 1 min. Between control output terminals and operating circuit: 2,000 VAC ($50 / 60 \mathrm{~Hz}$) for 1 min . Between contacts not located next to each other: 1,000 VAC $(50 / 60 \mathrm{~Hz})$ for 1 min .
Impulse withstand voltage	3 kV (between power supply terminals) 4.5 kV (between current-carrying metal parts and exposed non-current-carrying metal parts)
Noise immunity	Square-wave noise generated by noise simulator (pulse width: $100 \mathrm{~ns} / 1 \mu \mathrm{~s}, 1-\mathrm{ns}$ rise) $\pm 1.5 \mathrm{kV}$
Static immunity	Malfunction: 4 kV Destruction: 8 kV
Vibration resistance	Malfunction: $0.5-\mathrm{mm}$ single amplitude at 10 to 55 Hz Destruction: $0.75-\mathrm{mm}$ single amplitude at 10 to 55 Hz
Shock resistance	Malfunction: $100 \mathrm{~m} / \mathrm{s}^{2}$ Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$
Life expectancy	Mechanical: 10 million operations min. (under no load at 1,800 operations/h) Electrical: $\quad 100,000$ operations min. (5 A at 250 VAC, resistive load at 360 operations/h)
EMC	
Degree of protection	IP30 (IP20 for terminal block)
Weight	Approx. 110 g

Note: For reference:
A maximum current of 0.15 A can be switched at $125 \mathrm{VDC}(\cos \phi=1)$.
A maximum current of 0.1 A can be switched if L / R is 7 ms .
In both cases, a life of 100,000 operations can be expected.
The minimum applicable load is 10 mA at 5 VDC (failure level: P).

Connections

Block Diagram

I/O Function

Inputs	---	
Outputs	Control output	Outputs are turned ON/OFF according to the time set by the ON-and OFF-time setting dial.

Terminal Arrangement

(DIN notation)

Note: DC supply voltage does not require the designation of polarity.

Operation

Basic Operation

Time Unit Selection

The time unit display window for output ON is located on the upperright side of the front panel above the corresponding time unit selector.
The time unit display window for output OFF is located on the lowerright side of the front panel below the corresponding time unit selector.
According to the setting of each time unit selector, "sec" for seconds, "10s" for 10 seconds, "min" for minutes, or "hrs" for hours will appear in the corresponding time unit display window.

Time Scale Selection

The time scale selector on the upper-left side of the front panel can be set to 0.1 or 1 as a magnification coefficient.

Time Setting

Use the ON/OFF-time setting dial to set the ON/OFF time.

Timing Charts

Operating mode			Timing chart
Flicker-OFF start	Power (A_{1} and A_{2}) Output relay: NO 15 and 18 (ON indicator) Output relay: NC 15 and 16 OFF indicator	ON OFF ON OFF ON OFF ON OFF	ton: ON set time toff: OFF set time
Flicker-ON start	Power (A_{1} and A_{2}) Output relay: NO 15 and 18 (ON indicator) Output relay: NC 15 and 16 OFF indicator	ON OFF ON OFF ON OFF ON	ton: ON set time toff: OFF set time

Note: 1. The reset time requires a minimum of 0.1 s .
2. When power is supplied in flicker-ON start mode, the OFF indicator lights momentarily. This, however, has no effect on the performance of the Timer.

Nomenclature

(Front View)

(Bottom View)

Dimensions

H3DE-F

- A wide star-time range (up to 120 seconds) and star-delta transfer time range (up to 0.5 seconds)

피웅

Model Number Structure

■ Model Number Legend

H3DE $-\underset{1}{\square}$

1. G: Star-delta timer

Ordering Information

List of Models

Supply voltage	Model
24 to 230 VAC/VDC	H3DE-G

■ Accessories (Order Separately)

Optional Products for Track Mounting		Model
Mounting Track	$50 \mathrm{~cm}(\mathrm{l}) \times 7.3 \mathrm{~mm}(\mathrm{t})$	PFP-50N
	$1 \mathrm{~m}(\mathrm{l}) \times 7.3 \mathrm{~mm}(\mathrm{t})$	PFP-100N
	$1 \mathrm{~m}(\mathrm{I}) \times 16 \mathrm{~mm}(\mathrm{t})$	PFP-100N2
End Plate		PFP-M
Spacer		PFP-S

Specifications

General

Item	
Operating mode	Star-delta operation
Operating/Reset method	Time-limit operation/Self-reset
Terminal block	Clamps two 2.5 mm ${ }^{2}$ max. bar terminals without sleeves
Terminal screw tightening torque	$0.98 \mathrm{~N} \cdot \mathrm{~m}$ max. \{approx. $10 \mathrm{kgf} \cdot \mathrm{cm}$ max.\}
Output type	(Star operation circuit) Relay: SPDT (Delta operation circuit) Relay: SPDT
Mounting method	DIN track mounting (see note)
Attachment	Nameplate
Approved standards	UL508, CSA 22.2 No.14 Conforms to EN61812-1, IEC60664-14 Output category according to IEC60947-5-1 (AC-13; $250 \mathrm{~V} \mathrm{5A/AC-15;} \mathrm{250} \mathrm{V} 3 \mathrm{~A} / \mathrm{DC}-13 ; 30 \mathrm{~V} \mathrm{0.1} \mathrm{A)}$

Note: Can be mounted to $35-\mathrm{mm}$ DIN track with a plate thickness of 1 to 2.5 mm .

- Time Ranges

Time scale display	Star operation time ranges
x 1	1 to 12 s
x 10	10 to 120 s

Star-delta transfer time	Programmable at $0.05 \mathrm{~s}, 0.1 \mathrm{~s}, 0.25 \mathrm{~s}$ or 0.5 s

Ratings

Rated supply voltage (see note)	24 to $230 \mathrm{VAC/VDC}(50 / 60 \mathrm{~Hz})$
Operating voltage range	85% to 110% of rated supply voltage
Power reset	Minimum power-off time: 0.5 s
Reset voltage	$24 \mathrm{VAC/DC}$ max.
Power consumption	AC: Approx. $3 \mathrm{VA}(1.8 \mathrm{~W})$ at 230 VAC DC: Approx. 0.8 W at 24 VDC
Control output	Contact output: 5 A at 250 VAC with resistive load ($\operatorname{cos\phi } \phi=1)$ 5 A at 30 VDC with resistive load ($\cos \phi=1)$
Ambient temperature	Operating: $-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (with no icing) Storage: $-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ (with no icing)
Ambient humidity	Operating: 35% to 85%

Note: DC ripple rate: 20\% max.

Characteristics

Accuracy of operating time	$\pm 1 \%$ max. of FS
Setting error	$\pm 10 \% \pm 0.05$ s max. of FS
Total tolerance of transfer time	\pm (25\% FS + 5 ms) max.
Influence of voltage	$\pm 0.5 \%$ max. of FS
Influence of temperature	$\pm 2 \%$ max. of FS
Insulation resistance	$100 \mathrm{M} \Omega$ min. at 500 VDC
Dielectric strength	Between current-carrying metal parts and exposed non-current-carrying metal parts: 2,000 VAC (50/60 Hz) for 1 min. Between control output terminals and operating circuit: 2,000 VAC $(50 / 60 \mathrm{~Hz})$ for 1 min . Between contacts not located next to each other: 1,000 VAC $(50 / 60 \mathrm{~Hz})$ for 1 min .
Impulse withstand voltage	3 kV (between power supply terminals) 4.5 kV (between current-carrying metal parts and exposed non-current-carrying metal parts)
Noise immunity	Square-wave noise generated by noise simulator (pulse width: $100 \mathrm{~ns} / 1 \mathrm{~ms}, 1-\mathrm{ns}$ rise) $\pm 1.5 \mathrm{kV}$
Static immunity	Malfunction: 4 kV Destruction: 8 kV
Vibration resistance	Malfunction: $0.5-\mathrm{mm}$ single amplitude at 10 to 55 Hz Destruction: $0.75-\mathrm{mm}$ single amplitude at 10 to 55 Hz
Shock resistance	Malfunction: $100 \mathrm{~m} / \mathrm{s}^{2}$ Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$
Life expectancy	Mechanical: 10 million operations min. (under no load at 1,800 operations/h) Electrical: 100,000 operations min. (5 A at 250 VAC , resistive load at 360 operations/h)
EMC	(EMI) EN61812-1 Emission Enclosure: EN55011 Group 1 class B Emission AC Mains: EN55011 Group 1 class B Harmonic Current: EN61000-3-2 Voltage Fluctuation and Flickering: EN61000-3-3 (EMS) EN61812-1 Immunity ESD: EN61000-4-2: 6 kV contact discharge (level 3) Immunity RF-interference from AM Radio Waves:EN61000-4-3: 10 VV air discharge (level 3) (80 MHz to 1 GHz$)$ Immunity Burst: (level 3) Immunity Surge:\quad EN61000-4-4: 2 kV power port and output port (level 3) EN6 control port with capacitive clamp (level 3)
Degree of protection	IP30 (IP20 for terminal block)
Weight	Approx. 120 g

Note: For reference:
A maximum current of 0.15 A can be switched at $125 \mathrm{VDC}(\cos \phi=1)$.
A maximum current of 0.1 A can be switched if L / R is 7 ms .
In both cases, a life of 100,000 operations can be expected.
The minimum applicable load is 10 mA at 5 VDC (failure level: P).

Connections

Block Diagram

I/O Functions

Inputs	---	Control output Outputs
Star output is turned OFF when the dial set value is reached and delta output is ON after the preset transfer time elapses		

Terminal Arrangement

(DIN notation)

Note: DC supply voltage does not require the designation of polarity.

Operation

Basic Operation

Time Unit Setting

The star-delta transfer time is set to $0.05,0.1,0.25$ or 0.5 with the star-delta transfer time selector on the lower-right side of the front panel and the set value appears in the star-delta transfer time display window below the selector.

Time Scale Selection

The star operation time scale selector on the upper-left side of the front panel can be set to 1 or 10 as a magnification.

Time Setting

The operation time of the Timer is set with the time setting dial.

- Timing Charts

Note: The reset time requires a maximum of 0.5 s .

Nomenclature

Dimensions

H3DE-G

Terminal block (black)

- Two delay-time models available.
0.1 to 12 seconds (S Series)

1 to 120 seconds (L Series)

- Covers wide range of supply voltage.

끼 (ϵ

Model Number Structure

\square Model Number Legend

H3DE -

1. H: Power OFF-delay timer

Ordering Information

■ List of Models

Supply voltage	Model	
	S Series (time range: $\mathbf{0 . 1}$ to $\mathbf{1 2} \mathbf{s})$	L Series (time range: $\mathbf{1}$ to $\mathbf{1 2 0} \mathbf{s})$
100 to 120 VAC	H3DE-H	H3DE-H
200 to 230 VAC		
24 VAC/VDC		
48 VAC/VDC		

Note: Specify both the model number and supply voltage when ordering.
Example: H3DE-H 24 VAC/DC S

Time span code
Supply voltage

- Accessories (Order Separately)

Optional Products for Track Mounting		Model
Mounting Track	$50 \mathrm{~cm}(\mathrm{l}) \times 7.3 \mathrm{~mm}(\mathrm{t})$	PFP-50N
	$1 \mathrm{~m}(\mathrm{l}) \times 7.3 \mathrm{~mm}(\mathrm{t})$	PFP-100N
	$1 \mathrm{~m}(\mathrm{l}) \times 16 \mathrm{~mm}(\mathrm{t})$	PFP-100N2
End Plate		PFP-M
Spacer		PFP-S

Specifications

General

Item	
Operating mode	Power OFF-delay
Operating/Reset method	Instantaneous operation/Time-limit reset
Terminal block	Clamps Two 2.5 mm ${ }^{2}$ max. bar terminals without sleeves
Terminal screw tightening torque	$0.98 \mathrm{~N} \cdot \mathrm{~m}$ max. \{approx. $10 \mathrm{kgf} \cdot \mathrm{cm}$ max.\}
Output type	Relay: SPDT
Mounting method	DIN track mounting (see note)
Attachment	Nameplate
Approved standards	UL508, CSA 22.2 No.14 Conforms to EN61812-1, IEC60664-14 Output category according to IEC60947-5-1 (AC-13; $250 \mathrm{~V} 5 \mathrm{~A} / \mathrm{AC}-15 ; 250 \mathrm{~V} 3 \mathrm{~A} / \mathrm{DC}-13 ; 30 \mathrm{~V} \mathrm{0.1} \mathrm{A)}$

Note: Can be mounted to $35-\mathrm{mm}$ DIN track with a plate thickness of 1 to 2.5 mm .

■ Time Ranges

Time scale display		Time ranges	Min. power ON time
S series	$\times 0.1 \mathrm{~s}$	0.1 to 1.2 s	0.1 s minimum
	$\times 1 \mathrm{~s}$	1 to 12 s	0.3 s minimum
L series	$\times 1 \mathrm{~s}$	1 to 12 s	
	$\times 10 \mathrm{~s}$	10 to 120 s	

Note: The Timer will not operate if the specified power-on time is not kept. Be sure to supply power for at least the period specified.

Ratings

Rated supply voltage (see note)		$\begin{aligned} & 100 \text { to } 120 \text { VAC }(50 / 60 \mathrm{~Hz}) \\ & 200 \text { to } 230 \text { VAC }(50 / 60 \mathrm{~Hz}) \\ & 24 \mathrm{VAC} / \mathrm{VDC}(50 / 60 \mathrm{~Hz}) \\ & 48 \text { VAC/VDC }(50 / 60 \mathrm{~Hz}) \\ & \hline \end{aligned}$
Operating voltage range		85\% to 110\% of rated supply voltage
Power consumption	24 VAC/VDC Type	AC: Approx. 0.3 VA (0.2 W) at 24 VAC DC: Approx. 0.2 W at 24 VDC
	48 VAC/VDC Type	AC: Approx. 0.5 VA (0.5 W) at 48 VAC DC: Approx. 0.5 W at 48 VDC
	100 to 120 VAC Type	AC: Approx. 0.8 VA (0.7 W) at 120 VAC
	200 to 230 VAC Type	AC: Approx. 1.6 VA (1.0 W) at 230 VAC
Control output		Contact output: 5 A at 250 VAC with resistive load $(\cos \phi=1)$ 5 A at 30 VDC with resistive load $(\cos \phi=1)$
Ambient temperature		Operating: $-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (with no icing) Storage: $\quad-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ (with no icing)
Ambient humidity		Operating: 35\% to 85\%

Note: The ripple in DC power supply must be 20% max. A single-phase, full-wave rectifying power supply can be connected if the ripple output of the power supply is a maximum of 20% of the whole output.

Characteristics

Accuracy of operating time	$\pm 1 \%$ max. of FS ($\pm 1 \% \pm 10 \mathrm{~ms} \mathrm{max}$. at 1.2-s range)
Setting error	$\pm 10 \% \pm 0.05$ s max. of FS
Influence of voltage	$\pm 0.5 \%$ max. of FS ($\pm 0.5 \% \pm 10 \mathrm{~ms}$ max. at 1.2-s range)
Influence of temperature	$\pm 2 \%$ max. of FS ($\pm 2 \% \pm 10 \mathrm{~ms} \mathrm{max}$. at 1.2-s range)
Insulation resistance	$100 \mathrm{M} \Omega \mathrm{min}$. at 500 VDC
Dielectric strength	Between current-carrying metal parts and exposed non-current-carrying metal parts: 2,000 VAC (50/60 Hz) for 1 min. Between control output terminals and operating circuit: 2,000 VAC $(50 / 60 \mathrm{~Hz})$ for 1 min . Between contacts not located next to each other: 1,000 VAC $(50 / 60 \mathrm{~Hz})$ for 1 min .
Impulse withstand voltage	3 kV (or 1 kV for 24/48 VAC/VDC models) (between power supply terminals) 4.5 kV (or 1.5 kV for 24/48 VAC/VDC models) (between current-carrying metal parts and exposed non-currentcarrying metal parts)
Noise immunity	Square-wave noise generated by noise simulator (pulse width: $100 \mathrm{~ns} / 1 \mathrm{~ms}, 1$-ns rise) $\pm 1.5 \mathrm{kV}$ (between power supply terminals)
Static immunity	Malfunction: 4 kV Destruction: 8 kV
Vibration resistance	Malfunction: $0.5-\mathrm{mm}$ single amplitude at 10 to 55 Hz Destruction: $0.75-\mathrm{mm}$ single amplitude at 10 to 55 Hz
Shock resistance	Malfunction: $100 \mathrm{~m} / \mathrm{s}^{2}$ Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$
Life expectancy	Mechanical: 10 million operations min. (under no load at 1,200 operations/h) Electrical: $\quad 100,000$ operations \min. (5 A at 250 VAC, resistive load at 1,200 operations/h)
EMC	(EMI) EN61812-1 Emission Enclosure: EN55011 Group 1 class A Emission AC Mains: EN55011 Group 1 class A Harmonic Current: EN61000-3-2 Voltage Fluctuation and Flickering: EN61000-3-3 (EMS) EN61812-1 Immunity ESD: EN61000-4-2: 6 kV contact discharge (level 3) 8 kV air discharge (level 3) Immunity RF-interference from AM Radio Waves: EN61000-4-3: $10 \mathrm{~V} / \mathrm{m}(80 \mathrm{MHz}$ to 1 GHz (level 3) Immunity Burst: EN61000-4-4:2 kV power port and output port (level 3) 1 kV control port with capacitive clamp (level 3) Immunity Surge: EN61000-4-5:2 kV common mode (level 3) 1 kV differential mode (level 3)
Degree of protection	IP30 (IP20 for terminal block)
Weight	Approx. 120 g

Note: For reference:
A maximum current of 0.15 A can be switched at $125 \mathrm{VDC}(\cos \phi=1)$.
A maximum current of 0.1 A can be switched if L / R is 7 ms .
In both cases, a life of 100,000 operations can be expected.
The minimum applicable load is 100 mA at 5 VDC (failure level: P).

Connections

Block Diagram

I/O Functions

Inputs	---	
Outputs	Control output	The Timer operates instantaneously when the Timer is turned ON. The Timer is in counting operation after the Timer is turned OFF and the output of the Timer is turned OFF when the preset time elapses.

Terminal Arrangement

(DIN notation)

Note: DC supply voltage does not require the designation of polarity.

Operation

Basic Operation

Time Scale Selection

The time scale selector on the upper left-hand side of the front panel of the S Series can be set to 0.1 or 1 and that of the L Series can be set to 1 or 10 as magnification coefficients.

Time Setting

The operating time of the Timer is set with the time setting dial.

Timing Charts

		$\|-\mathrm{Rt} \rightarrow+-\mathrm{t} \rightarrow\| \rightarrow\|\mathrm{Rt}\|-\mathrm{t} \rightarrow \mid$
Power supply (A_{1} and A_{2})	$\begin{aligned} & \text { ON } \\ & \text { OFF } \end{aligned}$	
Output relay: NC	ON	
15 and 16	OFF	
Output relay: NO 15 and 18	$\begin{aligned} & \text { ON } \\ & \text { OFF } \end{aligned}$	
Power indicator	$\begin{aligned} & \text { ON } \\ & \text { OFF } \end{aligned}$	
t: Set time Rt: Minimu (The outpu	powe nay	me (S-series: 0.1 s min.; rn ON if this time or mor

Nomenclature

Dimensions

H3DE-H

Accessories (Order Separately) (Common)

Note: The following is common for all H3DE models.
Note: All units are in millimeters unless otherwise indicated.

- Dimensions

Mounting Track

```
PFP-100N, PFP-50N
```


L: Length

1 m	PFP-100N
50 cm	PFP-50N
1 m	PFP-100N2

End Plate

PFP-M

PFP-100N2

Safety Precautions (Common)

Refer to Safety Precautions for All Timers.
Note: The following is common for all H3DE models.

Changing of Setting

CAUTION

Do not change the time unit, time scale, operating mode, or output type selector switch while the Timer is in operation or malfunction could result.

Mounting and Dismounting

The H3DE should be mounted as horizontally as possible.
When mounting the H3DE on a socket mounting track, hook portion (A) of the Timer to an edge of the track first, and then depress the Timer in the direction of (B).

When dismounting the H3DE, pull out portion (C) with a flat-blade screwdriver and remove the Timer from the mounting track.

The H3DE can be mounted and dismounted with ease if a distance of 30 mm or more is kept between the H3DE and the top surface of other equipment located below the H3DE.

Power Supplies

The H3DE Series is provided with a transformerless power supply system. An electric shock may be received if the input terminal or the output type selector switch is touched while power is being supplied.
Use the bar terminal for wiring the H3DE. Using a stranded-wire terminal may cause a short-circuit due to a stray wire entering into the Timer.
Both AC and DC power supplies can be connected to the power input terminals without regarding polarity.
With the H3DE only, a DC power supply must be connected to the power input terminals as designated according to the polarity of the terminals.
A DC power supply can be connected if its ripple factor is 20% or less and the mean voltage is within the rated operating voltage range of the Timer.
Connect the power supply voltage through a relay or switch in such a way that the voltage reaches a fixed value at once or the Timer may not be reset or a timer error could result.

For the power supply of an input device, use an isolating transformer, of which the primary and secondary windings are mutually isolated and the secondary winding is not grounded.

The H3DE-H has a large inrush current; provide sufficient power supply capacity. If the power supply capacity is too small, there may be delays in turning ON the output.

\square Installation

If the load current is continuously being supplied to the Timer for a long period of time, be sure to provide the mounting clearance as shown in the figure below. If used under the conditions other than those specified below, the life of internal components may be shortened due to an excessive rise in the internal temperature.

t : Mounting clearance (mm)

Switching Current vs. Ambient Temperature (When Mounting Two or More H3DE Units Side-by-Side)

Input/Output

Relationship between Input and Power

Supply Circuits

Since the input circuit and the power supply circuit are configured independently, the input circuit can be turned on or off irrespective of the on/off state of the power supply.
It must be noted that a voltage equivalent to the power supply voltage is applied to the input circuit.
When connecting a relay or a transistor as an external signal input device, pay attention to the following points to prevent short-circuiting due to a sneak current to the transformerless power supply.
If a relay or transistor is connected to two or more Timers, the input terminals of those Timers must be wired properly so that they will not be different in phase or the terminals will be short-circuited to one another (refer to the figures below).

The H3DE Series is provided with a transformerless power supply system.

Input Wires

The input wires must be as short as possible. If the floating capacity of wires exceeds $2,000 \mathrm{pF}$ (approx. 17 m for cables with $120 \mathrm{pF} / \mathrm{m}$), the operation will be affected. Pay particular attention when using shielded cables.

Wiring (H3DE-H)

The H3DE has a high impedance circuit. Therefore, the H3DE may not be reset if the H3DE is influenced by inductive voltage. In order to eliminate any influence of inductive voltage, the wires connected to the H3DE must be as short as possible and should not be installed alongside power lines. If the H3DE is influenced by inductive voltage that is 30% or more of the rated voltage, connect a CR filter with a capacitance of approximately $0.1 \mu \mathrm{~F}$ and a resistance of approximately 120Ω or a bleeder resistor between the power supply terminals. If there is any residual voltage due to current leakage, connect a bleeder resistor between the power supply terminals.

Operation (H3DE-H)

An interval of 3 s minimum is required to turn on the H3DE after the H3DE is turned off. If the H3DE is turned on and off repeatedly with an interval of shorter than 3 s , the internal parts of the H3DE may deteriorate and the H3DE may malfunction.

If it is required that the output be turned on repeatedly with an interval of shorter than 3 s , consider use of the H3DE-M2/-M1 in mode D (signal OFF-delay).

■ Precautions for EN61812-1

Conformance

The H3DE as a built-in timer conforms to EN61812-1 provided that the following conditions are satisfied:

The output section of the H3DE is provided only with basic isolation. To ensure reinforced isolation required by the EN61812-1, provide supplementary basic isolation on the load side connected to the output.

The H3DE itself is designed according to the following:

- Overvoltage category III
- Pollution degree 2

On the above basis:
Operation parts on the front and bottom: Reinforced isolation

- With clearance of 5.5 mm and creepage distance of 5.5 mm at 230 VAC
Output: Basic isolation
- With clearance of 3 mm and creepage distance of 3 mm at 230 VAC

Environment

When using the Timer in an area with excess electronic noise, separate the Timer, wiring, and the equipment which generates the input signals as far as possible from the noise sources. It is also recommended to shield the input signal wiring to prevent electronic interference.
Organic solvents (such as paint thinner), as well as very acidic or basic solutions can damage the outer casing of the Timer.
Do not use the Timer in places where it is exposed to dust, corrosive gas, or direct sunlight.
When storing the Timer, make sure that the ambient temperature and humidity are within the rated values. Leave the Timer at room temperature for at least three hours before using the Timer if it has been stored at an ambient temperature of $-10^{\circ} \mathrm{C}$ or below.

Others

If the Timer is mounted on a control board, dismount the Timer from the control board or short-circuit the circuitry of the power board before carrying out a voltage withstand test between the electric circuitry and non current-carrying metal part of the Timer, in order to prevent the internal circuitry of the Timer from damage.
It must be noted that although the electrical life expectancy of the H3DE Timer shown in the catalog is the same as the H3DR Timer shown in the catalog, the actual performance varies because the built-in relays are different as follows:
Built-in relay for the H3DR: G2R; 100,000 operations min.
(10 A for SPDT and 5 A for DPDT at
250 VAC, resistive load at 1,800 operations/h.)
Built-in relay for the H3DE: G6RN; 50,000 operations min. (8 A at 250 VAC, resistive load at 360 operations/h.)

[^0]
Read and Understand This Catalog

Please read and understand this catalog before purchasing the products. Please consult your OMRON representative if you have any questions or comments.

Warranty and Limitations of Liability

WARRANTY

OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a period of one year (or other period if specified) from date of sale by OMRON.

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

LIMITATIONS OF LIABILITY

OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT LIABILITY.

In no event shall the responsibility of OMRON for any act exceed the individual price of the product on which liability is asserted.
IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

Application Considerations

SUITABILITY FOR USE

OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of products in the customer's application or use of the products.

At the customer's request, OMRON will provide applicable third party certification documents identifying ratings and limitations of use that apply to the products. This information by itself is not sufficient for a complete determination of the suitability of the products in combination with the end product, machine, system, or other application or use.

The following are some examples of applications for which particular attention must be given. This is not intended to be an exhaustive list of all possible uses of the products, nor is it intended to imply that the uses listed may be suitable for the products:

- Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or uses not described in this catalog.
- Nuclear energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles, safety equipment, and installations subject to separate industry or government regulations.
- Systems, machines, and equipment that could present a risk to life or property.

Please know and observe all prohibitions of use applicable to the products.
NEVER USE THE PRODUCTS FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCTS ARE PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

PROGRAMMABLE PRODUCTS
OMRON shall not be responsible for the user's programming of a programmable product, or any consequence thereof.

Disclaimers

CHANGE IN SPECIFICATIONS

Product specifications and accessories may be changed at any time based on improvements and other reasons.
It is our practice to change model numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the products may be changed without any notice. When in doubt, special model numbers may be assigned to fix or establish key specifications for your application on your request. Please consult with your OMRON representative at any time to confirm actual specifications of purchased products

DIMENSIONS AND WEIGHTS

Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when tolerances are shown.

PERFORMANCE DATA

Performance data given in this catalog is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of OMRON's test conditions, and the users must correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and Limitations of Liability.

ERRORS AND OMISSIONS

The information in this document has been carefully checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.

[^0]: ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
 To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

